
LINEAR ALGEBRA- LECTURE 13

1. Vector spaces

Recall that last time we proved the following proposition.

Proposition 1.1. Let S = (v1, . . . , vm) be an ordered subset of a vector space V and let w ∈ V be
any vector. Let S′ = (L,w). Then

(1) span(S) = span(S′) if and only if w ∈ span(S), and
(2) Let S be linearly independent. Then S′ is linearly independent if and only if w /∈ span(S).

Suppose that B = (v1, . . . vm) is a basis of a vector space V over a field F . Then given a vector
v ∈ V we may write

v =
∑
i

aivi

where ai ∈ F . If v can also be written as

v =
∑
i

bivi

then the relation ∑
i

(ai − bi)vi = 0

forces ai = bi. Thus, if B = (vi, . . . , vn) is a basis of V , then each vector v ∈ V is a linear combination
of vi in a unique way.

Recall that a vector space V over a field F is finite dimensional if there exists a finite set S =
(v1, . . . , vn) such that

span(S) = V.

In other a words a vector space is finite dimensional if it can be spanned by finitely many vectors.

Proposition 1.2. Let V be a finite dimensional vector space over a field F .

(1) Let S = (v1, . . . , vm) span V and let L be an independent subset f V . Then one can get a
basis by adding (suitable) elements of S to L.

(2) Let S = (v1, . . . , vm) span V . Then one can get a basis of V by deleting (suitable) elements
of S.

Proof. We first prove (1). Let i1 be the smallest integer, 1 ≤ i1 ≤ m such that vi1 /∈ span(L). If no
such index exists then L spans V and hence is a basis. Then by Proposition 1.1,

L1 = (L, vi1)

is linearly independent and
vi ∈ span(L1)

for all i, 1 ≤ i ≤ ii. Next let i2, i1 < i2 ≤ m be the smallest integer such that vi2 /∈ span(L1) and
set

L2 = (L1, vi2).
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Then by Proposition 1.1, L2 is linearly independent and vi ∈ span(L2), 1 ≤ i ≤ i2. In finitely many
steps we get a linearly independent set L′ such that

S ⊆ span(L′).

This means
V = span(S) ⊆ span(L′)

and therefore V = span(L′) and so L′ is a basis. This completes the proof of (1).

We next prove (2). If S is linearly independent we are done. If not we can find a1, a2, . . . , am ∈ F
not all zero such that

a1v1 + a2v2 + · · ·+ amvm = 0.

Let ii be the smallest integer 1 ≤ i1 ≤ m such that ai1 ̸= 0. Consider the set S1 obtained from S
by deleting vi1 , that is

S1 = (v1, . . . , v̂i1 , . . . , vm).

Now as
vi1 = −(1/ai1)

∑
i ̸=i1

aivi

we see that vi1 ∈ span(S1) and hence by Proposition 1.1 we have

span(S1) = span(S) = V.

If S1 is linearly independent we are done. Otherwise, as before, there is a relation∑
i ̸=ii

aivi = 0

and we let i2 be the smallest integer, i1 < i2 ≤ m such that ai2 ̸= 0. Proceeding as before we let S2

to be the set obtained from S1 by deleting vi2 and observe that

span(S2) = span(S1) = span(S) = V.

Proceeding this way we obtain a set S′ that is now linearly independent and such that span(S′) = V .
This completes the proof of (2). □

We need to be careful in the proof of case (2) in the above proposition. For example what can
happen is that all the vectors vi could be the xero vectors and we will then be forced to throw out
every vector and then S′ = ∅. To resolve this we agree that the empty set is linearly independent
and that the span of the empty set of vectors is the vector space {0}.

Remark 1.3. It is important to note the following interpretation of the two cases of the above
proposition. The case (1) says that any linearly independent set L in a finite dimensional vector
space V may be enlarged to a basis by adjoining suitable vectors. All we have to do is fix a spanning
set (which exists since V is finite dimensional) and pick suitable vectors from the spanning set and
adjoin these to L. The second equally important point made by case (2) is that every spanning set
S contains a basis.

Theorem 1.4. Let S = (v1, . . . , vm) span the vector space V and let L = (w1, . . . , wn) be an linearly
independent set. Then m ≥ n

Proof. Notice that V is finite dimensional. The theorem says that (in a finite dimensional vector
space) the number of elements in any spanning set is greater than or equal to the number of elements
in any linearly independent set. We shall think of S and L as a row matrix (of vectors) and although
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multiplication of matrices of vectors does not make sense we may however right multiply by column
matrices

LX = (w1, . . . , wn)


x1

x2

...
xn

 = v1x1 + · · ·+ vnxn.

Here xi ∈ F . Thus as L is a linearly independent set and xi are variables, then the equation

LX = 0 (1.4.1)

has only yhe trivial solution.

We now prove the theorem by contradiction. Assume, if possible, that m < n. As S spans V , we
may write each wj as

wj = v1a1j + v2a2j + · · ·+ vmamj .

This can be expressed as the product

wj = (v1, . . . , vm)

a1j
...

vmj

 = SAj .

If A denote the matrix whose j-th column is Aj we then have

SA = (SA1, . . . , SAn) = (w1, . . . , wn) = L.

Thus
(SA)X = S(AX) = LX.

The associativity in the above equation can be readily checked. Now if AX = 0, then S(AX) = 0
and therefore LX = 0. But as m < n, the equation AX = 0 has a non zero solution which means
that LX = 0 has a non zero solution which is a contradiction. Thus m ≥ n. □

It is important to understand what the above theorem says. The above theorem has important
consequences. We now study some of the consequences.

Corollary 1.5. Let V be a finite dimensional vector space. Then any two bases have the same
number of elements.

Proof. Let B1 = (v1, . . . , vm) and B2 = (w1, . . . , wn) be two bases of V . Then as B1 spans V we
have m ≥ n. Similarly n ≥ m and equality follows. □

Corollary 1.6. Let B be a basis of the finite dimensional vector space V and let S span V . Then
|S| ≥ |B|. Further |S| = |B| if and only if S is a basis.

Proof. That |S| ≥ |B| is a consequence of Theorem1.4. If S is a basis, then |S| = |B| follows from
Corollary 1.5. Conversely assume that |S| = |B|. Then by Proposition 1.2 we may delete elements
of S to obtain a basis of V . But then we will get a set with fewer elements than |B| which is a basis.
This contradicts Corollary 1.5. Thus S must itself be a basis. □

Corollary 1.7. Let B be a basis of the finite dimensional vector space V and let L be an independent
subset of V . Then |L| ≤ |B| and equality holds if and only L is a basis.

Proof. Since any independent set can be enlarged to a basis and any two bases have the same number
of elements we have that |L| ≤ |B|. Suppose that |L| = |B| holds. If L is not a basis, then again as
it can be enlarged to a basis we would get a basis of larger size. Hence L is a basis. □
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Observe that any finite dimensional vector space has a basis. This is a consequence of Proposition 1.2.
One now makes the following definition.

Definition 1.8. The dimension of a finite dimensional vector space V is the number of element in
any basis of V . This is denote by dim(V ).

Here are some examples.

Example 1.9. R is one-dimensional as a vector space over itself. C is two-dimensional as a vector
space over R.

Example 1.10. If F is a field, then Fn is n-dimensional over F .

Example 1.11. Let V denote the vector space of all polynomials of degree at most n with real
coefficients. Then V is a vector space over R of fimension n+ 1.

Proposition 1.12. Let W be a subspace of a finite dimensional vector space V . Then W is finite
dimensional and dim(W ) ≤ dim(V ) and equality holds if and only if W = V .

Proof. Suppose L is an independent (and therefore a finite) subset of W . If L spans W , then L
is a basis of W and hence W is finite dimensional. Since L is linearly independent, it stays an
independent set when viewed as a subset of V . Now L can be enlarged to a basis of V and hence
dim(W ) ≤ dim(V ) also holds.

If L does not span W , we find w ∈ W such that w /∈ spanL and let L′ = (L,w). Then L′ is
independent as a subset of W . Since it is also independent as a subset of V we have, by Theorem1.5,
that |L| ≤ dim(V ). Now if L′ spans W , we are done otherwise we construct a larger set L′′ = (L′, w′)
that is linearly independent and |L′| ≤ dim(V ). After finitely many steps we get an independent
subset L1 of W that spans W and |L1| ≤ dim(V ). This shows that W is finite dimensional and that

dim(W ) ≤ dim(V ).

If |L1| = dim(V ), then by Corollary 1.7, L is a basis of V and hence W = V . □

Here are two examples.

Example 1.13. Let V be the vector space over R of all functions f : R −→ R. The addition and
scalar multiplication is defined pointwise. Consider the vectors u = x2, v = cosx,w = ex. We claim
that these three functions are linearly independent. Consider the relation

ax2 + b cosx+ cex = 0.

Differentiating thrice we obtain
b sinx = −cex. (1.13.1)

Since ex is never zero and (1.13.1) holds for all x we conclude that b = c = 0. Hence a = 0.

A somewhat unrelated example.

Example 1.14. Recall that F2 is the field with two elements F2 = {0, 1} where addition and
multiplication is defined by

0 + 1 = 0 = 1 + 0, 1 + 1 = 0

1 · 0 = 0 · 1 = 0, 1 · 1 = 1.
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Thus 0 is the additive identity and the additive inverse of 1 is itself, that is, −1 = 1. Also note that
for any integer n, n · 1 = 0 if n is even and n · 1 = 1 if n is odd. We now wish to solve the system of
equations 1 1 0

1 0 1
1 −1 −1

x1

x2

x3

 =

 1
−1
1

 (1.14.1)

This is an equation with coefficients in F2 since we will think of −1 as 1. To solve this system we
form the augmented matrix 1 1 0 1

1 0 1 −1
1 −1 −1 1


and row reduce it to the row echelon form as below.1 1 0 1

1 0 1 −1
1 −1 −1 1

 X1:X2−→

1 0 1 −1
1 1 0 1
1 −1 −1 1

 X2:X2+X1−→

1 0 1 −1
0 1 1 0
1 −1 −1 1


X3:X3+X1−→

1 0 1 −1
0 1 1 0
0 −1 0 0

 X3:X3+X2−→

1 0 1 −1
0 1 1 0
0 0 1 0

 X2:X2+X3−→

1 0 1 −1
0 1 0 0
0 0 1 0

 −→

1 0 0 −1
0 1 0 0
0 0 1 0


which is now in the row echelon form. Thus the original system of equations has the same solutions
as the system 1 0 0

0 1 0
0 0 1

x1

x2

x3

 =

−1
0
0

 (1.14.2)

The solutions can now readily be read off as x1 = −1 = 1, x2 = 0, x3 = 0.

Here are some problems.

Exercise 1.15. Decide whether the system (1.14.1) has solution over the rational numbers.

Exercise 1.16. Solve the system of equations(
6 −3
2 6

)(
x1

x2

)
=

(
3
1

)
over F2.

Exercise 1.17. Let 0 be a scalar and v ∈ V a vector. Show that the scalar product 0 · v equals the
zero vector in V .

Exercise 1.18. Decide which of the following subsets of Mn(R) are subspaces.

W = {A ∈ Mn(R) : A = At}
V = {A ∈ Mn(R) : A is invertible}.

U = {A ∈ Mn(R) : A is upper triangular}.
Exercise 1.19. Find a basis for the set of n× n matrices A with A = At. Such matrices are called
symmetric matrices.

Exercise 1.20. Let A be a m × n matrix and let A′ be obtained from A by a sequence of row
operations. Show that the rows of A and the rows of A′ span the same space.

Exercise 1.21. Let V = Fn be the space of column vectors. Prove that every subspace W of V is
the space of solutions of some system of homogeneous linear equations AX = 0.


