
LINEAR ALGEBRA- LECTURE 14

1. Linear transformations

A linear transformation is a special type of function between vector spaces, one that respects the
vector space structure. More precisely we have the following definition.

Definition 1.1. Let V,W be two vector spaces over the (same) field F . A function f : V −→ W is
said to be a linear transformation (or a linear map or simply linear) if

f(u+ v) = f(u) + f(v), f(au) = af(u)

for all u, v ∈ V and a ∈ F .

Note that for a function between vector spaces to be a linear transformation both the vector spaces
have to be vector spaces over the same field. Thus in the statement : Let f : V −→ W be alinear
map....it is implicit that f is a linear transformation where V,W are vector spaces over the same
field. Here are some examples.

Example 1.2. Let V,W be vector spaces over F . Then the map f : V −→ W defined by f(v) = 0
for all v ∈ V is linear. f is called the zero linear transformation.

Example 1.3. Fix a ∈ R. Thinking of R as a vector space over itlself, the map f : R −→ R defined
by f(x) = ax for all x ∈ R is a linear map.

Example 1.4. Let 1 ≤ k ≤ n. Consider the map

f : Mm×n(R) −→ Rm

defined by

f ((aij)) =


a1k
a2k
...

amk


is a linear map for each k. The map g defined by

g ((aij)) = a11

gives a linear map g : Mm×n(R) −→ R. Here Mm×n(R) and R are thought of as vector spaces over
R.

Example 1.5. Let V denote the set of all continuous functions f : [0, 1] −→ R. Then we know
V is a vector space over R with respect to pointwise addition and scalar multiplication. The map
T : V −→ R defined by

T (f) =

∫ 1

0

f(x) dx

is a linear map.
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Example 1.6. For n ≥ 0 let Pn(x) denote the set of all polynomials p(x) with real coefficients of
degree at most n. The map f : Pn+1(x) −→ Pn(x) defined by

f(p(x)) =
d

dx
p(x) = p′(x)

is a linear map.

Example 1.7. Let V be a finite dimensional vector space over a field F . Fix a basis B =
(v1, v2, . . . , vn) of V . Then each v ∈ V can be uniquely expressed as

v = a1v1 + · · ·+ anvn (1.7.1)

for some ai ∈ F . Consider the map
f : V −→ Fn

defined by

f(v) =


a1
a2
...
an


Then f is a linear map. It is clear that the function f is onto. The uniqueness of the expression in
(1.7.1) implies that f , in addition, is also 1− 1

The above example leads us to the following definition.

Definition 1.8. Let V,W be two vector spaces over the field F . A linear map f : V −→ W is said
to be an isomorphism if, in addition, f is both 1− 1 and onto. If such a map exists we say that V
and W are isomorphic and we write V ∼= W .

For example, the map f in Example 1.7 is an isomorphism and thus if V is a n-dimensional vector
space ver F , then

V ∼= Fn.

When two vector spaces are isomorphic we then think of the two vector spaces to be the same in all
respects.

Remark 1.9. Often in mathematics we encounter sets with similar structure (for example two vector
spaces) and wish to compare them. One way is to use functions between the two sets. However to
keep track of the additional structure present, one is interested in those functions that respect the
structure. That lead us to the definition of a linear transformations between vector spaces. While
studying sets with additional structure one is also interested in trying to understsnd when two such
structure are the ”same”. That is the notion of isomorphism of vector spaces.

Remark 1.10. A word about some alternative terminology. A linear transformation f : V −→ W
which is also 1− 1 is also said to be a monomorphism. Thus

monomorphism = linear + (1− 1).

A linear map f : V −→ W that is also onto is said to be an epimorphism. Thus

epimorphism = linear + onto.

Here are some problems.

Exercise 1.11. Check that the maps defiend in Examples 1.1-1.7 are all linear.
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Exercise 1.12. Construct an isomorphism f : R2 −→ C of real vector spaces.

Exercise 1.13. Show that Pn(x) ∼= Rn+1.

Exercise 1.14. Show that every vector space V over C is also a vector space over R.

Exercise 1.15. Let V be a 1-dimensional vector space over C. Find the dimension of V over R.
Generalize.

Exercise 1.16. Show that the composition of two linear maps is again linear. Furher show that
the composition of two isomorphisms is an isomorphism. Conclude that any two vector spaces (over
the same field) of the the same dimension are isomorphic.

Exercise 1.17. Show that the inverse of a vector space isomorphism is an isomorphism.

Exercise 1.18. Consider the map
f : P1(x) −→ R2

defined by

f(a+ bx) =

(
a− b
b

)
.

Is f an isomorphism?

Exercise 1.19. Let V denote the vector space over R of all functions f : R −→ R. Define an
ordered set S of vectors in V by setting

S = (sin θ, cos θ).

Let W = span(S) be the span of S. Then W is a subspace of V . W is isomorphic to which familiar
vector space?

Exercise 1.20. Fix a ∈ R. Consider the map f : R2 −→ R2 defined by

f

(
x
y

)
= a ·

(
x
y

)
=

(
ax
ay

)
.

Show that f is an isomorphism if and only if a ̸= 0. Generalize. This isomorphism of R2 with itself
tells us more than the obvious fact that a vector space is isomorphic to itself. It tells us more about
the nature of the isomorphisms possible. In this example dilation. Another example is given in the
next exercise.

Exercise 1.21. Consider the map f : P5(x) −→ P5(x) defined by

f(p(x)) = p(x− 1).

Show that f is an isomorphism.

Exercise 1.22. Exhibit subspaces W1,W2 of R3 such that Wi
∼= R2 for i = 1, 2. In your example,

compute W1 ∩W2.

Exercise 1.23. Describe all isomorphisms f : R −→ R.


