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1. DIRECT SUMS

In this section we study a new way of constructing new vector spaces, namely, the notion of the
direct sum of vector spaces. We begin with the definition of the sum of vector spaces.

Definition 1.1. Let Wy,..., W) be subspaces of the vector space V. The set
Wi+ +Wy={veV :iv=w+- - +wgw €W;}

is clearly a subspace of V' and is called the sum of the vector spaces Wy, ..., Wj. This will sometimes
be denoted by >;W;.

Thus W7 + - - - + Wy, consists precisely of those vector v € V' that can be represented as
v=wy+ -+ wg

a sum of £ many vectors wi, ..., w, with w; € W;. The proof that ¥;W; is a subspace of V is left
as an exercise. Here are two examples.

Example 1.2. Asusual let e; = (1,0)" € R?. Let Wy = span(e;) and Wy = span(—e; ) be subspaces
of R2. Tt can now be checked that

Wi+ Wy =W; = Ws.

Example 1.3. Let e; = (1,0)%,v = (1,1) € R2. Let W; = span(e;) and Wy = span(v) be subspaces
of R2. Tt can now be checked that
Wi+ Wy = R2.

Let us try to understand some properties of the sum of vector spaces. We first make a definition.

Definition 1.4. The subspaces Wy, ..., W} of a finite dimensional vector space V are said to be
independent if whenever we have

wy +wg + -+ wp =0
with w; € W;, then wl = we = --- = w = 0.

For example the subspaces Wi, W5 in Example 1.2 are not independent whereas the ones in Exam-
ple 1.3 are independent. This can be readily verified. Here is another example.

Example 1.5. Let Wy, W5 be subspaces of a finite dimensional vector space V. Assume that W7, W5
are independent. Let 0 # v € Wi N Ws. Since v € Wy we must have —v € Ws. Now if w; = v and
wo = —v, then

w1 + wo = 0
but neither of wy,ws is zero contradicting the fact that Wy, Wy are independent. Thus v = 0.
Consequently, if W7, W are independent, then

Wy N W, = {0}.
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Conversely suppose that W — 1N Wy = {0}. We shall show that Wy, W5 are independent. So let
there be a relation

w1 + wo = 0
with w; € Wy, ¢ = 1,2. Thus wy = —wy and hence wy € Wy. Thus wy € Wi N W5 we must have
wo = 0 and hence w; = 0 which shows that Wy, W5 are independent. Thus two subspaces W7, W5
of V are independent if and only if W3 N Wy = {0}.

Proposition 1.6. Let Wy,..., W) be subspaces of a finite dimensional vector space V and let B;
be a basis of W; for i = 1,2, ..., k. Then the following statements are equivalent.

(1) Wh,..., Wy are independent and Wy + -+ Wy, = V.
(2) The set B = (By,...,By) is a basis of V.
Proof. Assuming that (1) holds we check that B is a basis of V. Let v € V. Then we may write
V= w1 _|_ R W

with w; € W;. Since each w; can be written as a linear combination of the vectors in B; (1 <i < k)
it follows that v can be written as a linear combination of the vectors in B. This shows that B spans
V. Next assume that w = 0 where w is a linear combination of vectors in B. We may then write

w:E w; =0
i

w; = E Qi V55
J

is a linear combination of vectors in B; and where for each 7, the vectors v;; are the basis vectors in
B;. But as Wq,..., W} are independent we must have each w; = 0. This forces a;; = 0 for all i, j.
This shows B is linearly independent and hence a basis of V.

where each

Conversely assume that (2) holds. Then as B spans V' we clearly have that
Wit -+ Wy =V.

So all that remains to be checked is that W7y,..., W) are independent. So assume that there is a
relation
w4 Fwp =0

w; = E aijvij.
J

It now follows, since B is independent, that a;; = 0 for all 4, j. Thus w; = 0 for all . This completes

where w; € W;. Then we may write

the proof. O
Proposition 1.7. Suppose W7y, ..., W} are subspaces of the finite dimensional vector space V. Then
dim(Wy + -+« + W) < dim(W7) + - - - + dim(Wy,). (1.7.1)

Equality holds if and only if Wy, ..., W} are independent.
Proof. Let B; be a basis of W;, i = 1,...,k and assume that |B;| = n;, i = 1,...,k. Then
B = (B1,Ba,...,By) spans Wi + -+ - + W}, and hence

dim(Wy + -+ Wy) < |Bl =n1 + - + ngp = dim(Wy) + - - - + dim(Wy).

This proves first part of the proposition. Suppose equality holds in (1.7.1), then B = (B, ..., B)
is a basis of ), W;. By the previous proposition we have that Wi, ..., W are independent. On the



other hand if W7y, ..., W} are independent then, again by the previous proposition, B = (B4, ..., B)
is a basis of ), W; and hence the equality in (1.7.1) must hold. This completes the proof. O

We end this section with a definition.

Definition 1.8. Let Wy, ..., W} be subspaces of V. We say that V is the direct sum of Wy, Wy if
V=W +- -4+ W,and Wy,..., Wy are independent. If this happens we write

V=W eW,d- - & W
2. INFINITE DIMENSIONAL SPACES

Recall that a vector space V' is finite dimensional if there exists a finite subset S of V' such that
span(S) = V.
If no such S exists we say that V is infinite dimensional. Here are some examples.

Example 2.1. Let R* denote the set of all sequences (a1, ag, . . .) of real numbers that are eventually
zero. In other words a sequence (ai,aq,...) € R if and only if there exists N > 0 such that a; =0
for all 4 > N. Of course this N will be different for different elements of R>°. We know that R
is a vector space under coordinate wise addition and scalar multiplication. We have also seen that
R is not finite dimensional.

Example 2.2. Let R“ denote the set of all sequences (ay,as,...) of real numbers. Then R¥ is a
vector spaces under coordinate wise addition and scalar multiplication. In fact,

R>*® < RY¥
and hence R¥ is infinite dimensional.

Example 2.3. Let V denote the set of all polynomials in the variable x with real coefficients. Then
with the usual definition of addition and scalar multiplication of polynomials we have that V is a
vector space over R. Then it is an exercise to check that V' is infinite dimensional over R.

Example 2.4. Let V denote the set of all continuous functions f : [0,1] — R. Then V is a vector
space over R and is infinite dimensional.

We can make sense of the span of an infinite subset of a vector space. Here is the definition.
Definition 2.5. Let S be a subset of a vector space V. Then the span of the set S, denoted by

span(S) is by definition the set of all linear combinations of finitely many elements of S.

For example let e; denote the sequence
e; =(0,...,0,1,0,...) e R*™®
where 1 is in the i-th position. Then if S = (e, e2,...) it is clear that
span(S) = R*.
One may now define linear independence of a (possibly infinite) subset of a vector space.
Definition 2.6. Let S be a subset of a vector space V. We say that S is linearly independent if

every finite subset is linearly independent.

Finally a basis is defined as follows.
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Definition 2.7. A subset B of a vector space V is said to be a basis if B spans V and is linearly
independent.

For example the set S = (e1, ea,...) discussed above is a basis of R*>. Finally we note an important
fact without proof.

Theorem 2.8. Every vector space has a basis. U

Here are some problems.
Exercise 2.9. Complete the proof of the claims made in Examples 1.2-1.3.
Exercise 2.10. Show that the vector space V in Examples 2.3-2.4 is infinite dimensional.
Exercise 2.11. Let Wy, W5 be subspaces of a finite dimensional vector space V. Show that
dim(W7) + dim(Ws) = dim(W; N Wa) + dim(W; + Wa).
Exercise 2.12. Let W; + Wy = V. Show that there is a subspace W3 of W5 such that
V=W aW,.

Exercise 2.13. Let V be a finite dimensional vector space and W a subspace. Does there always
exist a subspace W’ of V such that V=W & W’'?

Exercise 2.14. A n xn matrix A is said to be symmetric if A* = A and skew-symmetric if A = —A.
Let Sym,, (R) denote the set of all n x n symmetric matrices and let SkSym,, (R) denote the set of
all n x n skew symmetric matrices. Show that Sym, (R) and SkSym,,(R) are subsaces of M, (R).
Further show that

M, (R) = Sym,, (R) & SkSym,, (R).

Exercise 2.15. Let V denote the subspace of M, (R) consisting of matrices (a;;) such that ), a;; =
0. Show that V is a subspace of M,,(R). Find a subspace W such that



