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1. Direct sums

In this section we study a new way of constructing new vector spaces, namely, the notion of the
direct sum of vector spaces. We begin with the definition of the sum of vector spaces.

Definition 1.1. Let W1, . . . ,Wk be subspaces of the vector space V . The set

W1 + · · ·+Wk = {v ∈ V : v = w1 + · · ·+ wk, wi ∈ Wi}
is clearly a subspace of V and is called the sum of the vector spaces W1, . . . ,Wk. This will sometimes
be denoted by ΣiWi.

Thus W1 + · · ·+Wk consists precisely of those vector v ∈ V that can be represented as

v = w1 + · · ·+ wk

a sum of k many vectors w1, . . . , wk with wi ∈ Wi. The proof that ΣiWi is a subspace of V is left
as an exercise. Here are two examples.

Example 1.2. As usual let e1 = (1, 0)t ∈ R2. Let W1 = span(e1) and W2 = span(−e1) be subspaces
of R2. It can now be checked that

W1 +W2 = W1 = W2.

Example 1.3. Let e1 = (1, 0)t, v = (1, 1)t ∈ R2. LetW1 = span(e1) andW2 = span(v) be subspaces
of R2. It can now be checked that

W1 +W2 = R2.

Let us try to understand some properties of the sum of vector spaces. We first make a definition.

Definition 1.4. The subspaces W1, . . . ,Wk of a finite dimensional vector space V are said to be
independent if whenever we have

w1 + w2 + · · ·+ wk = 0

with wi ∈ Wi, then w1 = w2 = · · · = wk = 0.

For example the subspaces W1,W2 in Example 1.2 are not independent whereas the ones in Exam-
ple 1.3 are independent. This can be readily verified. Here is another example.

Example 1.5. LetW1,W2 be subspaces of a finite dimensional vector space V . Assume thatW1,W2

are independent. Let 0 ̸= v ∈ W1 ∩W2. Since v ∈ W2 we must have −v ∈ W2. Now if w1 = v and
w2 = −v, then

w1 + w2 = 0

but neither of w1, w2 is zero contradicting the fact that W1,W2 are independent. Thus v = 0.
Consequently, if W1,W2 are independent, then

W1 ∩W2 = {0}.
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Conversely suppose that W − 1 ∩ W2 = {0}. We shall show that W1,W2 are independent. So let
there be a relation

w1 + w2 = 0

with wi ∈ Wi, i = 1, 2. Thus w1 = −w2 and hence w2 ∈ W1. Thus w2 ∈ W1 ∩ W2 we must have
w2 = 0 and hence w1 = 0 which shows that W1,W2 are independent. Thus two subspaces W1,W2

of V are independent if and only if W1 ∩W2 = {0}.

Proposition 1.6. Let W1, . . . ,Wk be subspaces of a finite dimensional vector space V and let Bi

be a basis of Wi for i = 1, 2, . . . , k. Then the following statements are equivalent.

(1) W1, . . . ,Wk are independent and W1 + · · ·+Wk = V .
(2) The set B = (B1, . . . , Bk) is a basis of V .

Proof. Assuming that (1) holds we check that B is a basis of V . Let v ∈ V . Then we may write

v = w1 + · · ·+ wk

with wi ∈ Wi. Since each wi can be written as a linear combination of the vectors in Bi (1 ≤ i ≤ k)
it follows that v can be written as a linear combination of the vectors in B. This shows that B spans
V . Next assume that w = 0 where w is a linear combination of vectors in B. We may then write

w =
∑
i

wi = 0

where each
wi =

∑
j

aijvij

is a linear combination of vectors in Bi and where for each i, the vectors vij are the basis vectors in
Bi. But as W1, . . . ,Wk are independent we must have each wi = 0. This forces aij = 0 for all i, j.
This shows B is linearly independent and hence a basis of V .

Conversely assume that (2) holds. Then as B spans V we clearly have that

W1 + · · ·+Wk = V.

So all that remains to be checked is that W1, . . . ,Wk are independent. So assume that there is a
relation

w1 + · · ·+ wk = 0

where wi ∈ Wi. Then we may write

wi =
∑
j

aijvij .

It now follows, since B is independent, that aij = 0 for all i, j. Thus wi = 0 for all i. This completes
the proof. □

Proposition 1.7. SupposeW1, . . . ,Wk are subspaces of the finite dimensional vector space V . Then

dim(W1 + · · ·+Wk) ≤ dim(W1) + · · ·+ dim(Wk). (1.7.1)

Equality holds if and only if W1, . . . ,Wk are independent.

Proof. Let Bi be a basis of Wi, i = 1, . . . , k and assume that |Bi| = ni, i = 1, . . . , k. Then
B = (B1, B2, . . . , Bk) spans W1 + · · ·+Wk and hence

dim(W1 + · · ·+Wk) ≤ |B| = n1 + · · ·+ nk = dim(W1) + · · ·+ dim(Wk).

This proves first part of the proposition. Suppose equality holds in (1.7.1), then B = (B1, . . . , Bk)
is a basis of

∑
i Wi. By the previous proposition we have that W1, . . . ,Wk are independent. On the
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other hand if W1, . . . ,Wk are independent then, again by the previous proposition, B = (B1, . . . , Bk)
is a basis of

∑
i Wi and hence the equality in (1.7.1) must hold. This completes the proof. □

We end this section with a definition.

Definition 1.8. Let W1, . . . ,Wk be subspaces of V . We say that V is the direct sum of W1,W2 if
V = W1 + · · ·+Wk and W1, . . . ,Wk are independent. If this happens we write

V = W1 ⊕W2 ⊕ · · · ⊕Wk.

2. Infinite dimensional spaces

Recall that a vector space V is finite dimensional if there exists a finite subset S of V such that

span(S) = V.

If no such S exists we say that V is infinite dimensional. Here are some examples.

Example 2.1. Let R∞ denote the set of all sequences (a1, a2, . . .) of real numbers that are eventually
zero. In other words a sequence (a1, a2, . . .) ∈ R∞ if and only if there exists N > 0 such that ai = 0
for all i ≥ N . Of course this N will be different for different elements of R∞. We know that R∞

is a vector space under coordinate wise addition and scalar multiplication. We have also seen that
R∞ is not finite dimensional.

Example 2.2. Let Rω denote the set of all sequences (a1, a2, . . .) of real numbers. Then Rω is a
vector spaces under coordinate wise addition and scalar multiplication. In fact,

R∞ ≤ Rω

and hence Rω is infinite dimensional.

Example 2.3. Let V denote the set of all polynomials in the variable x with real coefficients. Then
with the usual definition of addition and scalar multiplication of polynomials we have that V is a
vector space over R. Then it is an exercise to check that V is infinite dimensional over R.

Example 2.4. Let V denote the set of all continuous functions f : [0, 1] −→ R. Then V is a vector
space over R and is infinite dimensional.

We can make sense of the span of an infinite subset of a vector space. Here is the definition.

Definition 2.5. Let S be a subset of a vector space V . Then the span of the set S, denoted by
span(S) is by definition the set of all linear combinations of finitely many elements of S.

For example let ei denote the sequence

ei = (0, . . . , 0, 1, 0, . . .) ∈ R∞

where 1 is in the i-th position. Then if S = (e1, e2, . . .) it is clear that

span(S) = R∞.

One may now define linear independence of a (possibly infinite) subset of a vector space.

Definition 2.6. Let S be a subset of a vector space V . We say that S is linearly independent if
every finite subset is linearly independent.

Finally a basis is defined as follows.
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Definition 2.7. A subset B of a vector space V is said to be a basis if B spans V and is linearly
independent.

For example the set S = (e1, e2, . . .) discussed above is a basis of R∞. Finally we note an important
fact without proof.

Theorem 2.8. Every vector space has a basis. □

Here are some problems.

Exercise 2.9. Complete the proof of the claims made in Examples 1.2-1.3.

Exercise 2.10. Show that the vector space V in Examples 2.3-2.4 is infinite dimensional.

Exercise 2.11. Let W1,W2 be subspaces of a finite dimensional vector space V . Show that

dim(W1) + dim(W2) = dim(W1 ∩W2) + dim(W1 +W2).

Exercise 2.12. Let W1 +W2 = V . Show that there is a subspace W ′
2 of W2 such that

V = W1 ⊕W ′
2.

Exercise 2.13. Let V be a finite dimensional vector space and W a subspace. Does there always
exist a subspace W ′ of V such that V = W ⊕W ′?

Exercise 2.14. A n×n matrix A is said to be symmetric if At = A and skew-symmetric if At = −A.
Let Symn(R) denote the set of all n × n symmetric matrices and let SkSymn(R) denote the set of
all n × n skew symmetric matrices. Show that Symn(R) and SkSymn(R) are subsaces of Mn(R).
Further show that

Mn(R) = Symn(R)⊕ SkSymn(R).

Exercise 2.15. Let V denote the subspace of Mn(R) consisting of matrices (aij) such that
∑

i aii =
0. Show that V is a subspace of Mn(R). Find a subspace W such that

Mn(R) = V ⊕W.


