

LINEAR ALGEBRA- LECTURE 17

1. MATRIX OF A LINEAR TRANSFORMATION

Recall that a linear transformation¹ $T : V \longrightarrow W$ is a function that satisfies

$$\begin{aligned} T(u + v) &= T(u) + T(v) \\ T(au) &= aT(u) \end{aligned}$$

for all $u, v \in V$ and all scalars a . We have already seen several examples of linear transformations. Here are two more.

Example 1.1. Let A be a $m \times n$ matrix with entries in a field F . This matrix gives rise to a function, which we again denote by A

$$A : F^n \longrightarrow F^m$$

as follows. We set

$$A(X) = AX = x_1 A_1 + x_2 A_2 + \cdots + x_n A_n \quad (1.1.1)$$

where

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in F^n$$

is a column vector, $A_i \in F^m$ denotes the i -th column of A and AX denotes the matrix product. In particular note that the product AX is a linear combination of the column vectors of A . This shows that the vector AX belongs to the column space of the matrix A .

Before discussing the next example, we recall the definition of a coordinate vector. Let V be a vector space over F and let $v \in V$. Let $B = (v_1, \dots, v_n)$ be a basis of V . Then we may write v uniquely as

$$v = a_1 v_1 + a_2 v_2 + \cdots + a_n v_n.$$

We recall that the column vector

$$v = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \in F^n$$

is called the coordinate vector of v . Note that v may be written as the product²

$$v = (v_1, v_2, \dots, v_n) \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = BX.$$

¹Whenever we talk of a linear transformation $T : V \longrightarrow W$, it is implicit that V, W are vector spaces over the same field F .

² B is a hypervector.

Example 1.2. Let $B = (v_1, v_2, \dots, v_n)$ be a basis of the vector space V over F . We then have a map, which we denote by B

$$B : F^n \longrightarrow V$$

by

$$B(X) = BX$$

where the product on the right is the matrix product. Note that B is linear and in fact an isomorphism of vector spaces. The inverse linear transformation

$$B^{-1} : V \longrightarrow F^n$$

maps a vector $v \in V$ to its coordinate vector.

Associated to any linear transformation $T : V \longrightarrow W$ are two vector spaces, namely, the kernel $\ker(T)$ of T and the image $\text{im}(T)$ of T . We note the following important fact.

Theorem 1.3. Let $T : V \longrightarrow W$ be a linear transformation with V finite dimensional. Then

$$\dim(V) = \dim(\ker(T)) + \dim(\text{im}(T)). \quad (1.3.1)$$

Proof. Since V is finite dimensional so is $\ker(T)$. Fix a basis (u_1, \dots, u_k) of $\ker(T)$. Extend this to a basis

$$B = (u_1, \dots, u_k, v_1, \dots, v_{n-k})$$

of V so that V is n -dimensional. We claim that the set

$$B' = (T(v_1), \dots, T(v_{n-k}))$$

is a basis of $\text{im}(T)$.

Let $w \in \text{im}(T)$. Let $v \in V$ be such that $T(v) = w$. Since B is a basis of V we can write

$$v = a_1u_1 + \dots + a_ku_k + b_1v_1 + \dots + b_{n-k}v_{n-k}$$

and hence

$$w = T(v) = b_1T(v_1) + \dots + b_{n-k}T(v_{n-k}).$$

Thus B' spans $\text{im}(T)$. Next suppose that there exist scalars b_1, \dots, b_{n-k} such that

$$T\left(\sum_i b_i v_i\right) = b_1T(v_1) + \dots + b_{n-k}T(v_{n-k}) = 0.$$

Thus $\sum_i b_i v_i \in \ker(T)$ and hence we may write

$$\sum_i b_i v_i = \sum_j a_j u_j$$

for some scalars a_1, \dots, a_k . But as B is linearly independent we must have $a_i = 0, b_j = 0$ for all i, j . Thus B' linearly independent and hence a basis of $\text{im}(T)$. This completes the proof of the theorem. \square

This theorem has several interesting consequences which we now note. First a definition.

Definition 1.4. Given a linear transformation $T : V \longrightarrow W$, the dimension of the image of T is by definition the rank of the map T , that is,

$$\text{rank}(T) = \dim(\text{im}(T)).$$

Thus for a linear transformation $T : V \longrightarrow W$, with V finite dimensional, the equality in (1.3.1) may be written as

$$\dim(V) = \dim(\ker(T)) + \text{rank}(T). \quad (1.4.1)$$

Example 1.5. Let $T : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ be a linear transformation. Thus $\text{rank}(T) \leq 2$. This forces

$$\dim(\ker(T)) \geq 1.$$

In particular $\ker(T) \neq \{0\}$. Thus the linear map T can never be 1–1. More generally if $T : V \rightarrow W$ is a linear map with V finite dimensional and $\dim(V) > \dim(W)$, T can never be injective. Notice that if $\dim(V) \geq \dim(W)$ then one can always define a surjective linear map

$$S : V \rightarrow W.$$

This verification is left as an exercise.

Example 1.6. Dually, let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ be a linear map. Then as

$$2 = \dim(\ker(T)) + \text{rank}(T)$$

we have that $\text{rank}(T) \leq 2$. Hence T can never be onto. More generally, if $T : V \rightarrow W$ is a linear map with V finite dimensional and $\dim(V) < \dim(W)$, then T cannot be surjective. Notice that if $\dim(V) \leq \dim(W)$, then one can always define an injective linear map

$$S : V \rightarrow W.$$

This verification is left as an exercise.

Example 1.7. Let $T : V \rightarrow W$ be a linear transformation where both are finite dimensional and $\dim(V) = \dim(W) = n$. Assume that T is surjective so that $\text{rank}(T) = n$. This forces $\dim(\ker(T)) = 0$ and hence T is injective. Since one can also argue back we see that if T is injective, then T is surjective. Thus if $T : V \rightarrow W$ is a linear transformation between two vector spaces of the same finite dimension, then T is injective if and only if T is surjective. This is not true when the spaces are not finite dimensional.

We note the following facts.

Lemma 1.8. Let A be a $m \times n$ matrix with entries in a field F . Let $A : F^n \rightarrow F^m$ be the linear transformation defined by $A(X) = AX$.

- (1) Given $B \in F^m$, there exists $X \in F^n$ with $A(X) = B$ if and only if the system of equations $AX = B$ has a solution.
- (2) $A : F^n \rightarrow F^m$ is onto if and only if the system of equations $AX = B$ has a solution for each $B \in F^m$.
- (3) $A : F^n \rightarrow F^m$ is injective if and only if the system of equations $AX = 0$ has a unique solution.

Proof. Is left as an exercise. □

Example 1.9. Let A be a $m \times n$ matrix with entries in a field F . Let, as usual, A also denote the associated linear map

$$A : F^n \rightarrow F^m, \quad A(X) = AX.$$

We look at several cases.

- (1) Suppose that $m < n$. Then we know (by Example 1.5) that the linear map

$$A : F^n \rightarrow F^m$$

cannot be injective. Hence there exists a nonzero vector $X \in F^n$ with

$$AX = A(X) = 0.$$

Thus the homogeneous system of equations $AX = 0$ has a nonzero solution. Something that we had proved earlier using different methods. We now know more. Let W be the solution space of the homogeneous system $AX = 0$ so that $W = \ker(A)$. Then

$$\dim(W) = n - \text{rank}(A).$$

(2) Assume that $n > m$. In this case we know (Example 1.6) that the linear transformation

$$A : F^n \longrightarrow F^m$$

is not surjective. Thus there exists $B \in F^m$ which is not in the image of A . This is the same as saying (by the above lemma) that there exists $B \in F^m$ such that the system of equations

$$AX = B$$

has no solutions.

(3) Finally, let $n = m$. Then there are two subcases. First assume that the matrix A is invertible. Then the system of equations $AX = B$ has a unique solution for each $B \in F^n$. In particular,

$$A(X) = 0$$

if and only if $X = 0$. Thus $A : F^n \longrightarrow F^n$ is an isomorphism. Thus A is an isomorphism if and only if

$$n = \text{rank}(A) = \dim(\text{column space of } A).$$

Next assume that the matrix A is not invertible. Thus the homogeneous system $AX = 0$ has a non zero solution. In particular,

$$\ker(A) \neq 0$$

so that $\dim(\ker(A)) > 0$. This implies that $A : F^n \longrightarrow F^n$ is not onto. Hence there exists $B \in F^n$ such that

$$AX = A(X) = B$$

has no solution. If $AX = B$ has a solution then clearly it has more than one solution. For if $Y \in \ker(A)$, then

$$A(X + Y) = A(X) + A(Y) = 0 + B = B.$$

The above example makes it clear that solutions to a system of equations $AX = B$ can be well understood in terms of the nature of the linear transformation

$$A : F^n \longrightarrow F^m.$$

Let F be a field and let

$$T : F^n \longrightarrow F^m$$

be a linear transformation. Let $B = (e_1, \dots, e_n)$ and $B' = (e'_1, \dots, e'_m)$ denote the standard bases of F^n and F^m respectively. We may now write

$$T(e_j) = a_{1j}e'_1 + \dots + a_{mj}e'_m$$

for $1 \leq j \leq n$. Now let A_j be the column vector

$$A_j = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{pmatrix}$$

and let A be the $m \times n$ matrix whose j -th column is the column vector A_j . By Example 1.1, the matrix A induces a linear map

$$A : F^n \longrightarrow F^m, \quad A(X) = AX.$$

It is clear that, as maps, the linear transformations T and A are identical, that is,

$$T(X) = A(X) = AX$$

for all $X \in F^n$. Thus in particular

$$\text{rank}(T) = \text{rank}(A) = \dim(\text{column space of } A). \quad (1.9.1)$$

The last equality follows from the discussion in Example 1.1. The matrix A is called the matrix of the linear transformation T relative to the bases B and B' .

Here are two examples.

Example 1.10. Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the linear map defined by

$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + y \\ y \end{pmatrix}$$

Let $B = (e_1, e_2) = B'$ be the bases of the domain and target of T respectively. Then

$$T(e_1) = T(1, 0)^t = (1, 0)^t = 1 \cdot e_1 + 0 \cdot e_2$$

$$T(e_2) = T(0, 1)^t = (0, 1)^t = 0 \cdot e_1 + 1 \cdot e_2$$

Thus the matrix of T is

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

relative to the above bases. Now let $w_1 = e_2$ and $w_2 = e_1$. Let us now determine the matrix of T relative to the bases

$$B = (w_1, w_2) = B'$$

of the domain and the target of T . We note

$$T(w_1) = T(0, 1)^t = (0, 1)^t = 0 \cdot w_1 + 1 \cdot w_2$$

$$T(w_2) = T(1, 0)^t = (1, 0)^t = 1 \cdot w_1 + 0 \cdot w_2$$

and thus the matrix of T is

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

relative to the second set of bases. Thus this example shows the importance of keeping track of the order of the basis vectors.

Example 1.11. Let $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be the linear transformation defined by

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + y \\ x + z \end{pmatrix}$$

Let us determine the matrix of T relative to the standard ordered bases of \mathbb{R}^3 and \mathbb{R}^2 . We note

$$T(e_1) = T(1, 0, 0)^t = (1, 1)^t = e_1 + e_2$$

$$T(e_2) = T(0, 1, 0)^t = (1, 0)^t = e_1 + 0 \cdot e_2$$

$$T(e_3) = T(0, 0, 1)^t = (0, 1)^t = 0 \cdot e_1 + e_2.$$

Thus the matrix of T is

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

relative to the standard bases.

Here are some problems.

Exercise 1.12. Prove the claims made in Examples 1.51.6,1.7.

Exercise 1.13. Prove Lemma 1.8

Exercise 1.14. Let A be a $m \times n$ matrix and B a $n \times m$ matrix. If $BA = I$ prove that $m \geq n$.

Exercise 1.15. Let A be a $\ell \times m$ matrix and B a $n \times p$ matrix. Show that the map

$$M_{m \times n}(\mathbb{R}) \longrightarrow M_{\ell \times p}(\mathbb{R}), \quad X \mapsto AXB$$

is a linear transformation.

Exercise 1.16. Let A be a $m \times n$ matrix of reals. Show that the space of solution to the homogeneous system $AX = 0$ has dimension at least $n - m$.

Exercise 1.17. Find all linear transformations $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ that carries the subspace $x = y$ onto the subspace $y = 3x$.