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1. MATRIX OF A LINEAR TRANSFORMATION

Recall that a linear transformation® 7' : V' — W is a function that satisfies
T(u+v) =T(u)+T(v)
T(au) = aT'(u)
for all u,v € V and all scalars a. We have already seen several examples of linear transformations.
Here are two more.

Example 1.1. Let A be a m X n matrix with entries in a field F. This matrix gives rise to a
function, which we again denote by A

A:F* — ™
as follows. We set
AX) = AX = 1Ay + 22 A + -+ 20 Ay (1.1.1)
where
A
X=1|:|ecF"
Tn

is a column vector, A; € F™ denotes the i-th column of A and AX denotes the matrix product. In
particular note that the product AX is a linear combination of the column vectors of A. This shows
that the vector AX belongs to the column space of the matrix A.

Before discussing the next example, we recall the definition of a coordinate vector. Let V' be a vector
space over F' and let v € V. Let B = (v1,...,v,) be a basis of V. Then we may write v uniquely as

V= a1v1 + agvy + -+ anvy,.

We recall that the column vector

v=| . | eF"

an
is called the coordinate vector of v. Note that v may be written as the product?

ai
a2

v =(v1,V2,...,0p) : = BX.
an

Whenever we talk of a linear transformation T': V' —» W, it is implicit that V, W are vector spaces over the
same field F'.
2Bisa hypervector.



2

Example 1.2. Let B = (v1,v2,...,v,) be a basis of the vector space V over F. We then have a
map, which we denote by B

B:F"—YV
by

B(X)=BX
where the product on the right is the matrix product. Note that B is linear and infact an isomorphism
of vector spaces. The inverse linear transformation

BV —F"
maps a vector v € V to its coordinate vector.

Associated to any linear transformation T' : V' — W are two vector spaces, namely, the kernel
ker(T") of T' and the image im(7") of T'. We note the following important fact.

Theorem 1.3. Let T: V — W be a linear transformation with V finite dimensional. Then

dim (V) = dim(ker(T")) + dim(im(7)). (1.3.1)
Proof. Since V is finite dimensional so is ker(7"). Fix a basis (u1,...,uy) of ker(T"). Extend this to
a basis

B = (u1,...,uk7v1,...7vn,k)
of V so that V is n-dimensional. We claim that the set
B' = (T(v1),...,T(vn—x))
is a basis of im(7T).
Let w € im(T'). Let v € V be such that T(v) = w. Since B is a basis of V we can write
v =aiuy + -+ apup +b1v1 + -+ bp_pUp_g

and hence
w=Tw)=0bT(w1)+ "+ bp_i(vn_k).
Thus B’ spans im(T'). Next suppose that there exist scalars by, ..., b,_x such that

T(Z bﬂ)l) = blT(Ul) + -+ bnfkT(vnfk) =0.

Thus ), b;v; € ker(T') and hence we may write

E bﬂ}iz E a;uj
i J

for some scalars aq,...,a;. But as B is linearly independent we must have a; = 0, b; = 0 for all
i,7. Thus B’ linearly independent and hence a basis of im(7T). This completes the proof of the
theorem. O

This theorem has several interesting consequences which we now note. First a definition.

Definition 1.4. Given a linear transformation 7' : V' — W the dimension of the image of T" is by
definition the rank of the map T, that is,

rank(7T") = dim(im(7T)).
Thus for a linear transformation T': V. — W, with V finite dimensional, the equality in (1.3.1)

may be written as
dim (V') = dim(ker(T")) + rank(T). (1.4.1)



Example 1.5. Let T : R? — R? be a linear transformation. Thus rank(7") < 2. This forces
dim(ker(7)) > 1.

In particular ker(7') # {0}. Thus the linear map 7" can never be 1—1. More generally if T': V. — W
is a linear map with V finite dimensional and dim(V) > dim(W), T can never be injective. Notice
that if dim(V) > dim(W) then one can always define a surjective linear map

S:V—W.

This verification is left as an exercise.

Example 1.6. Dually, let T : R2 — R3 be a linear map. Then as
2 = dim(ker(T")) + rank(7T)

we have that rank(7T) < 2. Hence T can never be onto. More generally, if T': V. — W is a linear
map with V finite dimensional and dim(V') < dim(W), then T' cannot be surjective. Notice that if
dim (V) < dim(W), then one can always define an injective linear map

S:V—W.

This verification is left as an exercise.

Example 1.7. Let T : V. — W be a linear transformation where both are finite dimensional
and dim(V) = dim(W) = n. Assume that T is surjective so that rank(7) = n. This forces
dim(ker(T")) = 0 and hence T is injective. Since one can also argue back we see that if T is injective,
then T is surjective. Thus if T : V — W is a linear transformation between two vector spaces of
the same finite dimension, then 7T is injective if and only if T is surjective. This is not true when
the spaces are not finite dimensional.

We note the following facts.

Lemma 1.8. Let A me a m X n matrix with entries in a field F'. Let A : F™* — F™ be the linear
transformation defined by A(X) = AX.

(1) Given B € F™, there exists X € F™ with A(X) = B if and only if the system of equations
AX = B has a solution.
(2) A: F™ — F™ is onto if and only if the system of equations AX = B has a solution for

each B € F™.
(3) A: F® — F™ is injective if and only if the system of equations AX = 0 has a unique
solution.
Proof. Is left as an exercise. O

Example 1.9. Let A be a m x n matrix with entries in a field F. Let, as usual, A also denote the
associated linear map

A:F" — F™ A(X) = AX.
We look at several cases.
(1) Suppose that m < n. Then we know (by Example 1.5) that the linear map
A:F" — F™
cannot be injective. Hence there exists a nonzero vector X € F™ with
AX = A(X)=0.



Thus the homogeneous system of equations AX = 0 has a nonzero solution. Something that
we had proved earlier using different methods. We now know more. Let W be the solution
space of the homogeneous system AX = 0 so that W = ker(A). Then
dim(W) = n — rank(A).
Assume that n > m. In this case we know (Example 1.6) that the linear transformation
A:F" — F™
is not surjective. Thus there exists B € F" which is not in the image of A. This is the same
as saying (by the above lemma) that there exists B € F™ such that the system of equations
AX =B

has no solutions.
Finally, let n = m. Then there are two subcases. First assume that the matrix A is invertible.
Then the system of equations AX = B has a unique solution for each B € F". In particular,

AX)=0
if and only if X = 0. Thus A : F™ — F™ is an isomorphism. Thus A is an isomorphism if
and only if
n = rank(A) = dim(column space of A).
Next assume that the matrix A is not invertible. Thus the homogeneous system AX = 0
has a non zero solution. In particular,

ker(A) #0
so that dim(ker(A)) > 0. This implies that A : F' — F™ is not onto. Hence there exists
B € F" such that
AX =A(X)=1B
has no solution. If AX = B has a solution then clearly it has more than one solution. For
it Y € ker(A), then

AX+Y)=AX+Y)=AX)+ AY)=0+B = B.

The above example makes it clear that solutions to a system of equations AX = B can be well

understood in terms of the nature of the linear transformation

A:F" — F™.
Let F be a field and let
T:F"— F™
be a linear transformation. Let B = (e1,...,e,) and B’ = (€}....

of F™ and F™ respectively. We may now write
T(ej) = ajey + -+ + amjen,

for 1 < j <n. Now let A; be the column vector

,el.) denote the standard bases
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and let A be the m x n matrix whose j-th column is the column vector A;. By Examplel.1, the
matrix A induces a linear map

A:F" — F™, A(X)=AX.
It is clear that, as maps, the linear transformations 7" and A are identical, that is,
T(X)=AX)=AX
for all X € F™. Thus in particular
rank(7) = rank(A4) = dim(column space of A). (1.9.1)

The last equality follows from the discussion in Example1.1. The matrix A is called the matrix of
the linear transformation T relative to the bases B and B’.

Here are two examples.
Example 1.10. Let T : R? — R? be the linear map defined by
r()-(0)
Y Y
Let B = (e1,e3) = B’ e the bases of the domain and target of T respectively. Then

T(El) = T(I,O)t — (170)75 =1-e;4+0-¢e5
T(eg) = T(O, 1)t — (17 1)t =1-e1+1-e9

1 1
(o )
relative to the above bases. Now let w; = e5 and we = e1. Let us now determine the matrix of T
relative to the bases

Thus the matrix of T is

B = (wy,ws) = B’
of the domain and the target of T'. We note
T(w)=T0,1)' = (1,1)  =1-w; +1-ws
T(wy) =T(1,0)" = (1,0)" =0-wy +1-wy
and thus the matrix of T is Lo
(i 1)

relative to the second set of bases. Thus this example shows the importance of keeping tranc of the
order of the basis vectors.

Example 1.11. Let T : R? — R? be the linear transformation defined by
v +
o) - (Y
xr+z
z
Let us determine the matrix of T relative to the standard ordered bases of R3 and R?2. We note
T(e1) =T(1,0,0)" = (1, 1) = e; + e

T(e2) = T(O’ 170>t = (170)t =e1+0-e
T(63) = T(0707 1)t = (07 1)t = O s €1 + €.

1 10
1 01

Thus the matrix of T is



relative to the standard bases.

Here are some problems.

Exercise 1.12.
Exercise 1.13.
Exercise 1.14.

Exercise 1.15.

Prove the claims made in Examples 1.51.6,1.7.
Prove Lemma 1.8
Let A be a m x n matrix and B a n x m matrix. If BA = I prove that m > n.

Let A be a £ x m matrix and B a n X p matrix. Show that the map
Mpyxn(R) — Myxp(R), X — AXB

is a linear transformation.

Exercise 1.16. Let A be a mxn matrix of reals. Show that the space of solution to the homogeneous
system AX = 0 has dimension at least n — m.

Exercise 1.17.

Find all linear transformations T : R? — R? that carries the subspace z = ¥ onto

the subspace y = 3.



