
LINEAR ALGEBRA- LECTURE 17

1. Matrix of a linear transformation

Recall that a linear transformation1 T : V −→ W is a function that satisfies

T (u+ v) = T (u) + T (v)

T (au) = aT (u)

for all u, v ∈ V and all scalars a. We have already seen several examples of linear transformations.
Here are two more.

Example 1.1. Let A be a m × n matrix with entries in a field F . This matrix gives rise to a
function, which we again denote by A

A : Fn −→ Fm

as follows. We set
A(X) = AX = x1A1 + x2A2 + · · ·+ xnAn (1.1.1)

where

X =

x1

...
xn

 ∈ Fn

is a column vector, Ai ∈ Fm denotes the i-th column of A and AX denotes the matrix product. In
particular note that the product AX is a linear combination of the column vectors of A. This shows
that the vector AX belongs to the column space of the matrix A.

Before discussing the next example, we recall the definition of a coordinate vector. Let V be a vector
space over F and let v ∈ V . Let B = (v1, . . . , vn) be a basis of V . Then we may write v uniquely as

v = a1v1 + a2v2 + · · ·+ anvn.

We recall that the column vector

v =


a1
a2
...
an

 ∈ Fn

is called the coordinate vector of v. Note that v may be written as the product2

v = (v1, v2, . . . , vn)


a1
a2
...
an

 = BX.

1Whenever we talk of a linear transformation T : V −→ W , it is implicit that V,W are vector spaces over the
same field F .

2B is a hypervector.
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Example 1.2. Let B = (v1, v2, . . . , vn) be a basis of the vector space V over F . We then have a
map, which we denote by B

B : Fn −→ V

by
B(X) = BX

where the product on the right is the matrix product. Note that B is linear and infact an isomorphism
of vector spaces. The inverse linear transformation

B−1 : V −→ Fn

maps a vector v ∈ V to its coordinate vector.

Associated to any linear transformation T : V −→ W are two vector spaces, namely, the kernel
ker(T ) of T and the image im(T ) of T . We note the following important fact.

Theorem 1.3. Let T : V −→ W be a linear transformation with V finite dimensional. Then

dim(V ) = dim(ker(T )) + dim(im(T )). (1.3.1)

Proof. Since V is finite dimensional so is ker(T ). Fix a basis (u1, . . . , uk) of ker(T ). Extend this to
a basis

B = (u1, . . . , uk, v1, . . . , vn−k)

of V so that V is n-dimensional. We claim that the set

B′ = (T (v1), . . . , T (vn−k))

is a basis of im(T ).

Let w ∈ im(T ). Let v ∈ V be such that T (v) = w. Since B is a basis of V we can write

v = a1u1 + · · ·+ akuk + b1v1 + · · ·+ bn−kvn−k

and hence
w = T (v) = b1T (v1) + · · ·+ bn−k(vn−k).

Thus B′ spans im(T ). Next suppose that there exist scalars b1, . . . , bn−k such that

T (
∑
i

bivi) = b1T (v1) + · · ·+ bn−kT (vn−k) = 0.

Thus
∑

i bivi ∈ ker(T ) and hence we may write∑
i

bivi =
∑
j

ajuj

for some scalars a1, . . . , ak. But as B is linearly independent we must have ai = 0, bj = 0 for all
i, j. Thus B′ linearly independent and hence a basis of im(T ). This completes the proof of the
theorem. □

This theorem has several interesting consequences which we now note. First a definition.

Definition 1.4. Given a linear transformation T : V −→ W , the dimension of the image of T is by
definition the rank of the map T , that is,

rank(T ) = dim(im(T )).

Thus for a linear transformation T : V −→ W , with V finite dimensional, the equality in (1.3.1)
may be written as

dim(V ) = dim(ker(T )) + rank(T ). (1.4.1)
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Example 1.5. Let T : R3 −→ R2 be a linear transformation. Thus rank(T ) ≤ 2. This forces

dim(ker(T )) ≥ 1.

In particular ker(T ) ̸= {0}. Thus the linear map T can never be 1−1. More generally if T : V −→ W
is a linear map with V finite dimensional and dim(V ) > dim(W ), T can never be injective. Notice
that if dim(V ) ≥ dim(W ) then one can always define a surjective linear map

S : V −→ W.

This verification is left as an exercise.

Example 1.6. Dually, let T : R2 −→ R3 be a linear map. Then as

2 = dim(ker(T )) + rank(T )

we have that rank(T ) ≤ 2. Hence T can never be onto. More generally, if T : V −→ W is a linear
map with V finite dimensional and dim(V ) < dim(W ), then T cannot be surjective. Notice that if
dim(V ) ≤ dim(W ), then one can always define an injective linear map

S : V −→ W.

This verification is left as an exercise.

Example 1.7. Let T : V −→ W be a linear transformation where both are finite dimensional
and dim(V ) = dim(W ) = n. Assume that T is surjective so that rank(T ) = n. This forces
dim(ker(T )) = 0 and hence T is injective. Since one can also argue back we see that if T is injective,
then T is surjective. Thus if T : V −→ W is a linear transformation between two vector spaces of
the same finite dimension, then T is injective if and only if T is surjective. This is not true when
the spaces are not finite dimensional.

We note the following facts.

Lemma 1.8. Let A me a m× n matrix with entries in a field F . Let A : Fn −→ Fm be the linear
transformation defined by A(X) = AX.

(1) Given B ∈ Fm, there exists X ∈ Fn with A(X) = B if and only if the system of equations
AX = B has a solution.

(2) A : Fn −→ Fm is onto if and only if the system of equations AX = B has a solution for
each B ∈ Fm.

(3) A : Fn −→ Fm is injective if and only if the system of equations AX = 0 has a unique
solution.

Proof. Is left as an exercise. □

Example 1.9. Let A be a m× n matrix with entries in a field F . Let, as usual, A also denote the
associated linear map

A : Fn −→ Fm, A(X) = AX.

We look at several cases.

(1) Suppose that m < n. Then we know (by Example 1.5) that the linear map

A : Fn −→ Fm

cannot be injective. Hence there exists a nonzero vector X ∈ Fn with

AX = A(X) = 0.
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Thus the homogeneous system of equations AX = 0 has a nonzero solution. Something that
we had proved earlier using different methods. We now know more. Let W be the solution
space of the homogeneous system AX = 0 so that W = ker(A). Then

dim(W ) = n− rank(A).

(2) Assume that n > m. In this case we know (Example 1.6) that the linear transformation

A : Fn −→ Fm

is not surjective. Thus there exists B ∈ Fm which is not in the image of A. This is the same
as saying (by the above lemma) that there exists B ∈ Fm such that the system of equations

AX = B

has no solutions.
(3) Finally, let n = m. Then there are two subcases. First assume that the matrix A is invertible.

Then the system of equations AX = B has a unique solution for each B ∈ Fn. In particular,

A(X) = 0

if and only if X = 0. Thus A : Fn −→ Fn is an isomorphism. Thus A is an isomorphism if
and only if

n = rank(A) = dim(column space of A).

Next assume that the matrix A is not invertible. Thus the homogeneous system AX = 0
has a non zero solution. In particular,

ker(A) ̸= 0

so that dim(ker(A)) > 0. This implies that A : Fn −→ Fn is not onto. Hence there exists
B ∈ Fn such that

AX = A(X) = B

has no solution. If AX = B has a solution then clearly it has more than one solution. For
if Y ∈ ker(A), then

A(X + Y ) = A(X + Y ) = A(X) +A(Y ) = 0 +B = B.

The above example makes it clear that solutions to a system of equations AX = B can be well
understood in terms of the nature of the linear transformation

A : Fn −→ Fm.

Let F be a field and let
T : Fn −→ Fm

be a linear transformation. Let B = (e1, . . . , en) and B′ = (e′1. . . . , e
′
m) denote the standard bases

of Fn and Fm respectively. We may now write

T (ej) = a1je
′
1 + · · ·+ amje

′
m

for 1 ≤ j ≤ n. Now let Aj be the column vector

Aj =

a1j
...

amj


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and let A be the m × n matrix whose j-th column is the column vector Aj . By Example 1.1, the
matrix A induces a linear map

A : Fn −→ Fm, A(X) = AX.

It is clear that, as maps, the linear transformations T and A are identical, that is,

T (X) = A(X) = AX

for all X ∈ Fn. Thus in particular

rank(T ) = rank(A) = dim(column space of A). (1.9.1)

The last equality follows from the discussion in Example 1.1. The matrix A is called the matrix of
the linear transformation T relative to the bases B and B′.

Here are two examples.

Example 1.10. Let T : R2 −→ R2 be the linear map defined by

T

(
x
y

)
=

(
x+ y
y

)
Let B = (e1, e2) = B′ e the bases of the domain and target of T respectively. Then

T (e1) = T (1, 0)t = (1, 0)t = 1 · e1 + 0 · e2
T (e2) = T (0, 1)t = (1, 1)t = 1 · e1 + 1 · e2

Thus the matrix of T is (
1 1
0 1

)
relative to the above bases. Now let w1 = e2 and w2 = e1. Let us now determine the matrix of T
relative to the bases

B = (w1, w2) = B′

of the domain and the target of T . We note

T (w1) = T (0, 1)t = (1, 1)t = 1 · w1 + 1 · w2

T (w2) = T (1, 0)t = (1, 0)t = 0 · w1 + 1 · w2

and thus the matrix of T is (
1 0
1 1

)
relative to the second set of bases. Thus this example shows the importance of keeping tranc of the
order of the basis vectors.

Example 1.11. Let T : R3 −→ R2 be the linear transformation defined by

T

x
y
z

 =

(
x+ y
x+ z

)
Let us determine the matrix of T relative to the standard ordered bases of R3 and R2. We note

T (e1) = T (1, 0, 0)t = (1, 1)t = e1 + e2

T (e2) = T (0, 1, 0)t = (1, 0)t = e1 + 0 · e2
T (e3) = T (0, 0, 1)t = (0, 1)t = 0 · e1 + e2.

Thus the matrix of T is (
1 1 0
1 0 1

)
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relative to the standard bases.

Here are some problems.

Exercise 1.12. Prove the claims made in Examples 1.51.6,1.7.

Exercise 1.13. Prove Lemma1.8

Exercise 1.14. Let A be a m× n matrix and B a n×m matrix. If BA = I prove that m ≥ n.

Exercise 1.15. Let A be a ℓ×m matrix and B a n× p matrix. Show that the map

Mm×n(R) −→ Mℓ×p(R), X 7→ AXB

is a linear transformation.

Exercise 1.16. Let A be am×nmatrix of reals. Show that the space of solution to the homogeneous
system AX = 0 has dimension at least n−m.

Exercise 1.17. Find all linear transformations T : R2 −→ R2 that carries the subspace x = y onto
the subspace y = 3x.


