LINEAR ALGEBRA- LECTURE 19

1. MATRIX OF A LINEAR TRANSFORMATION

Having defined the matrix of a linear transformation let us look at some more properties and ap-
plications. We first recall that any m X n matrix A with entries in a field F' gives rise to a linear
transformation
A:F" — F™, A(X)=AX

(which is left multiplication by the matrix A and is) usually denoted by A. We also know that given
any linear transformation

T:F*"— F™
there is a unique m x n matrix A such that T equals left multiplication by A. This matrix A is the
matrix of T relative to the standard basis of F™ and F™. In particular every linear transformation
T : F™ — F™ is actually left multiplication by a matrix.

We further note the following. Suppose that T': V' — W is a linear map between finite dimensional
vector spaces. Let B, C be bases of V and W respectively. Let A be the matrix of T relative to the
bases B and C. Then we have a diagram of vector spaces and linear maps as below.

T

V w
o] le
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The linear transformations B, C are given by
B(X)=BX, C(Y)=CY.
The linear maps B and C are both isomorphisms since B, C are bases of V' and W respectively. We
claim that we have equality
CoA=ToB (1.0.1)
of composition of maps. To see this we let B = (v1,...,v,) and C+ (w1,...,w,,) be bases of V and
W respectively. We now compute
TB(e;) = T(v;).

Assume that

T(Uj) = aljwl 4+ -4 amjwm
so that

C™HT(v)) = (ayj,- -, amy)’
is the coordinate vector of T'(v;) and also equals the j-th column vector of the matrix A. It is now
clear that

Alej) = C7H(T(v;)) = CT'TB(e;)

thereby proving (1.0.1).
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Remark 1.1. Since the linear transformation A is unique, whenever we have a diagram as above
and (1.0.1) holds, the matrix A is always the matrix of T relative to the bases B and C. Note that
we have the following observations
T(B)=CA, AX=Y (1.1.1)
where we recall that T(B) is the ordered set
T(B) = (T(v1),...,T(vy))

and the equation AX =Y means that if v € V has coordinate vector X, then the coordinate vector
Y of T'(v) can be computed by
AX =Y.

Example 1.2. Let A be a m X n matrix and consider the associated linear transformation A :
F™ — F™. Then the matrix of Arelative to the standard basis of F'™ and F™ clearly equals the
matrix A.

Example 1.3. Let B = C be bases of a finite dimensional vector space V. Then the matrix of the
identity map id : V' — V relative to B and C equals the identity matrix.

Example 1.4. Let V Ty W 25 U be linear transformations between finite dimensional vector
spaces with bases B, C, D respectively. Let m(T), m(S) denote the matrices of TS respectively
relative to the chosen bases. We then claim the the matrix m(S oT') of S o T relative to B and D
equals the product

m(SoT)=m(S) m(T).
This follows from the diagram

1% T 1% 5 U
BT T c T »
Fn m FT‘

m(T) m(S)

and the remark above.

Given a linear transformation T : V — W between finite dimensional vector spaces, it is often
useful to know if it is possible to chose bases so that the matrix of T has a nice form. we shall be
interested in such results. Here is an example.

Proposition 1.5. Let T : V — W be a linear transformation between finite dimensional vector
spaces. Then there exists basis B of V' and C of W such that the matrix A = m(T) of T has the

form
I, 0
A= (O 0> (1.5.1)

where I, denotes the r x r identity matrix and r is the rank of T

Proof. Is left as an exercise. O

Definition 1.6. Given a m x n matrix A with entries in a field F', the span of the column vectors
is a subspace W of F™. The dimension of W is called the rank (or sometimes the column rank) of
the matrix A.



3

The rank of a m x n matrix A is therefore the the rank of the linear transformation A : F"* — F™.

We note that if
I, 0
1= (5 o)

rank(A) = rank(A").
The matrix form of the above proposition is the following.

then

Proposition 1.7. Let A be a m x n matrix. Then there exist invertible matrices P, Q such that
the matrix A’ given by

A =Q AP
has the form as in (1.5.1) and r is the rank of the matrix A.

Proof. Is left as an exercise. O

We now consider the question of how the matrix of a linear transformation changes if change the
bases. More precisely, let T : V. — W be a linear transformation between finite dimensional vector
spaces and A = m(T') be the matrix of T relative to the bases B, C' of V and W respectively. Suppose
we are given basis B’ of V and C’ of W. Let A’ = m(T) relative to the bases B’ and C’. Then we
wish to understand how the matrices A and A’ are related.

We know from our earlier observations that given the basis B of V every other basis B’ is obtained
as

B'=BP, PX'=X
where P is an invertible matrix and X, X’ denote the coordinate vectors in the bases B and B’
respectively. Indeed, P is the basechange matrix from B to B’. Similarly we have an invertible
matrix @) such that

C'=CQ, QY' =Y.
Since A is the matrix of 7', by (1.1.1) we also have that

AX =Y
and also
AX' =Y.
We may now compute
QY' =Y = AX = APX'

and hence
Y = (Q 'AP)X'. (1.7.1)
But since A is the unique matrix such that (1.7.1) holds, we must have
A =Q AP

Proposition 1.8. Let A be the matrix of a linear transformation T : V — W relative to bases
B, C of V,W respectively.

(1) The matrix A" of T relative to bases B’,C" of V, W is of the form
A =Q AP
where P and Q are the basechange matrices from B to B’ and C to C’ respectively.

(2) The matrices A’ that represent T with respect to other bases are of the form A’ = Q= 1AP
where P, () are invertible matrices.



Here is an example.

Example 1.9. Let T : R?® — R? be the linear transformation defined by

T
_[(r+2y
Tl ly | = ( 9 ) .
z
The matrix of T" in the standard bases is

120
A‘(ooz)

B’ =((1,2,0)",(0,1,0,(0,1,2)"), C" = ((1,1)",(0,1)")
be two new bases of R? and R? respectively. Let P denote the basechange matrix from the standard
basis of R3 to B’ and @ denote the basechange matrix from the standard basis of R? to C’. Then

100
10
13_211,@2_(1 1).

Let

0 0 2
Thus the matrix of T relative to the bases B’,C’ is
A =Q AP,

Here is an application of the results that we have proved so far. Let A be a m X n matrix with
entries in a field F'. Then we have two linear transformations

A:F* — F™
We know, by Proposition 1.7, that there exist invertible matrices P, Q such that
A =Q AP
has the form in (1.5.1). Thus we obtain two diagrams
oA pm o opm_ A o

¢l lo o |

P pFm pm______ _pm
A/ A/t

We observe that as P, Q are isomorphisms, (Q maps the column space of A’ isomorphically onto the
column space of A and hence

rank(A) = rank(A’).
A similar argument shows that

rank(A") = rank(A"").
Thus we get the equality

rank(A) = rank(A").
Since the rank of A! can be thought of as the dimension of the row vectors of A, we obtain the
following.

Proposition 1.10. Let A be a m x n matrix with entries in a field F'. Let W < F™ and U < F™
denote the vector spaces spanned by the column and the row vectors of A respectively. Then

dim(W) = dim(U).
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The subspace U is called the row space of the matrix A and dim(U) the row rank of A. Thus the
proposition expresses the equality of the row and the column rank of a matrix. Thus to compute
the rank of a matrix it is enough to compute either the row rank or the column rank.

Here are some problems.

Exercise 1.11. Use Proposition 1.8 to show that Propositions 1.5 and 1.7 are equivalent.
Exercise 1.12. Let A be a m x n matrix. Show that rank(A) < min{m,n}.

Exercise 1.13. Let P be an invertible matrix. Show that rank(P~'AP) = rank(A).

Exercise 1.14. Let A be a m X n matrix. Show that the space of solutions has dimension at least
n—m.

Exercise 1.15. Prove that every m x n matrix A has the form A = XY where X,Y are m-
dimensional column vectors.

Exercise 1.16. If A and B are row equivalent matrices, prove that rank(A) = rank(B). Thus the
rank of a matrix equals the rank of its row echelon form.

Exercise 1.17. Prove that rank(AB) < rank(B) and rank(A + B) < rank(A) + rank(B) whenever
the product and sum are defined.

Exercise 1.18. Let T : R® — R3 be a linear transformation whose kernel is a line through the
origin. Can the image of T" be a line through the origin?

Exercise 1.19. Write down a 3 x 3 matrix whose column space is a plane in R®. What is the row

space in this case?
1 2 3
A= (1 0 1)

Exercise 1.20. Let
Find invertible matrices P, Q such that A’ = Q! AP has the form in (1.5.1).



