
LINEAR ALGEBRA- LECTURE 2

1. Matrices - ii

Recall that last time we had discussed matrix addition and multiplication. We also noted two
properties, namely that matrix multiplication distributes over matrix addition and that matrix
multiplication is associative. In this section we will discuss a few more properties and see some
examples.

To begin we first note that (
1 2
3 4

)(
1 1
1 1

)
=

(
3 3
7 7

)
whereas (

1 1
1 1

)(
1 2
3 4

)
=

(
4 6
4 6

)
Thus matrix multiplication is in general not commutative. Thus we need to be careful when dealing
with matrix multiplication and equations. For example, if A,B are square matrices of the same size,
then

(A+B)2 = A2 +AB +BA+B2.

If for two matrices A,B the equality
AB = BA

holds, then we say that the matrices A and B commute. Here are some special kinds of matrices
that we often encounter.

Definition 1.1. A matrix all of whose entries are 0 is called the zero matrix and we denote it by
the symbol 0. A square matrix A = (aij) is said to be a diagonal matrix if the off diagonal entries
are all zero. In other words A is diagonal if aij = 0 whenever i ̸= j.

Definition 1.2. The n× n matrix

In =

1
. . .

1


in which all the off diagonal entries are zero and all the diagonal entries are 1 is called the n × n
identity matrix.

The identity matrix In has the property that for any n× n matrix A, we have

AIn = InA = A.

Having defined the identity matrix we define an inverse of a matrix.

Definition 1.3. Let A be a n × n matrix. A n × n matrix B is said to be an inverse of A if both
equalities

AB = In, BA = In (1.3.1)

hold. If such a B exists, we say that A is invertible. We write A−1 = B.
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Not all matrices are invertible. It is easy to see that if B is an inverse of A, then B is unique. For
suppose that B,B′ are two n× n matrices such that

B′A = In = AB.

Then,
B′ = B′In = B′(AB) = (B′A)B = InB = B.

Thus an inverse if it exists is unique. It turns out that to show A−1 = B we need not check that
both equalities in (1.3.1) hold. If one holds the other holds too. We shall prove this soon.

It is easy to see that the product of two invertible matrices is invertible. Indeed, if A,B are two
invertible matrices, then as

ABB−1A−1 = In = B−1A−1AB

we conclude that (AB) is also invertible and

(AB)−1 = B−1A−1.

Thus, the product of finitely many invertible matrices is invertible.

The entries of an invertible matrix are somewhat constrained. For example if a whole row (or
column) of an n× n matrix A is zero, then the matrix cannot be invertible. This verification is left
as an exercise.

It is instructive to pause at this point and see the connection between matrices, matrix multiplication
and system of linear equations. Suppose we are given a system of m linear equations in n variables

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

am1x1 + am2x2 + · · ·+ amnxn = bm

(1.3.2)

The above system gives rise to three matrices : the m× n matrix A

A =


a11 a12 . . . . . . a1n
a21 a22 . . . . . . a2n
...

... . . . . . .
...

amn am2 . . . . . . amn


consisting of the coefficients of the above system; the n× 1 column vectors of variables

X =


x1

x2

...
xn


and the m× 1 column vector

B =


b1
b2
...
bm

 .

From our discussion it is clear that the system (1.3.2) may be written as a single equation

AX = B.
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All the m equations in (1.3.2) are captured in the single equation above. This is not just a notational
convenience, for if the matrix A were invertible, then the unknowns can be immediately computed
from

X = A−1B.

We now come back to our discussion on some standard types of matrices that we often encounter.
We shall denote by eij the m× n matrix that has 1 in the ij-th place and 0 elsewhere. The matrix
eij is called a matrix unit. For example,

e12 =

(
0 1 0
0 0 0,

)
is the 2× 3 matrix unit e12. It is clear that every m× n matrix A = (aij) can be written as a linear
combination of matrix units in a unique way. Indeed,

A =
∑
i,j

aijeij .

For example, (
1 2
3 4

)
= 1

(
1 0
0 0

)
+ 2

(
0 1
0 0

)
+ 3

(
0 0
1 0

)
+ 4

(
0 0
0 1

)
= e12 + 2e12 + 3e21 + 4e22.

We use a special notation to denote the matrix unit ei1 of size m× 1. Traditionally, we denote it by

ei = ei1 =



0
...
1
0
...
0


Thus ei is the column vector with 1 in the i-th place and 0 elsewhere and hence any m× 1 column
vector can be uniquely written as

X = x1e1 + x2e2 + · · ·+ xmem

where xi are the entries of X.

Let us look at the definition of multiplication of matrices a bit more closely. Let X = (xij) be a
n× r matrix. Let the row vector Xi denote the i-th row of X. Thus

Xi =
(
xi1, xi2, . . . , xir

)
We denote the matrix X in the following fashion

X =


– X1 –
– X2 –
...

...
...

– Xn –


Now suppose we left multiply the n × r matrix X by the n × n matrix A to get the n × r matrix
Y = (yij), that is

AX = Y



4

then we wish to understand how the matrix

Y =


– Y1 –
– Y2 –
...

...
...

– Yn –


looks like. It is therefore enough to understand what the row vector Yi is. By the definition of the
matrix product we obtain

Yi =
(
Σkaikxk1, Σaikxk2, · · · , Σkaikxkr

)
=

(
ai1x11 + ai2x21 + · · ·+ ainxn1, · · · , ai1x1r + ai2x2r + · · ·+ ainxnr

)
= ai1

(
x11, x12, · · · , x1n

)
+ · · ·+ ain

(
xn1, x12, · · · , xnr

)
= ai1X1 + ai2X2 + · · ·+ ainXn

Thus we see that when we multiply two matrices AX as above we get a matrix Y whose i-th row is a
linear combination of the rows of X with coefficients the i-th row of A. This is an easy but important
observation that we should keep in mind. In particular, each row of Y is a linear combination of the
rows of X with coefficients coming from an appropriate row of X.

We shall study products AX when A are some specific type of matrices. This will lead us to the
definition of row operations. As of now let us end this section with some examples.

Example 1.4. Let us look at a product AX where A and X are clear from the expression below.(
1 a
0 1

)(
1 2
3 4

)
=

(
1 + a · 3 2 + 3 · 4

3 4

)
In this example, left multiplication by A modifies the matrix X in this fashion : it modifies the row
vector X1 of X to

Y1 = X1 + aX2.

and does not change X2 so that Y2 = X2. Note that A is invertible.

Example 1.5. Let us look at a product AX where A and X are clear from the expression below.(
0 1
1 0

)(
1 2
3 4

)
=

(
3 4
1 2

)
In this example, left multiplication by A interchanges the rows of the matrix X. Again, the matrix
A is invertible.

Example 1.6. Let us look at a product AX where A and X are clear from the expression below.(
a 0
0 1

)(
1 2
3 4

)
=

(
a 2a
3 4

)
In this example, left multiplication by A modifies the matrix X in this fashion : it modifies the row
vector X1 of X to

Y1 = aX1.

and does not change X2 so that Y2 = X2. Note that A is invertible.

We shall try to understand such operations next time. Note that in all the three examples above,
the matrix A can be obtained as a combination of the identity matrix and suitable unit matrices.

Here are some exercises.
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Exercise 1.7. Let A = eij be an n × n matrix unit and X = (xij) a n × r matrix. If AX = Y ,
show that

Yk =
0 k ̸= i
Xj k = i

Thus left multiplication by a matrix unit eij transforms the matrix X to a matrix Y all of whose
rows are zero except the i-th row which now equals the j-th row Xj of X.

Exercise 1.8. Let eij be an n× n matrix unit. Show that

eijeij =
0 i ̸= j
eij i = j.


