LINEAR ALGEBRA- LECTURE 5

1. MATRICES - ELEMENTARY ROW OPERATIONS...CONTINUED...

Our discussion in the previous sections shows that matrices are very well suited to understanding a
method of finding solutions to a system of linear equations. For we noticed that if we start with a
system of linear equations

AX =B,
and use (a sequence of) elementary row operations on the augmented matrix (A|B) to get a matrix
(A’| B’), then the system of equations

AX =P
has the same set of solutions as the system AX = B. The system of equations A’X = B’ can be
easier to understand than the original equations if the augmented matrix (A’|B’) has a nice form.
We now focus on this.

So we will now try to understand if there is a particularly nice form to which every matrix can be
row reduced. Recall our convention : for a matrix A, A; denotes the i-th row vector of A. We make
the following definition.

Definition 1.1. A matrix A is said to be a row echelon matrix (or to be in row echelon form) if
the following conditions are satisfied.

(1) The first non-zero entry in each row is 1. This is called a pivot.

(2) The first non-zero entry of the (i 4 1)-th row is to the right of the first non-zero entry of the
i-th row. That is, the pivot in the (i 4+ 1)-th row is to the right of the pivot in the i-th row.

(3) The entries above a pivot are zero.

For example, the 4 x 5 matrix

010 30
001 20
A=(@i)=19 0 0 0 1
00000

is a row echelon matrix. The entries ay2, ass, ags are pivots. There is no pivot in the 4-th row.

Observe that in a row echelon matrix A if the i-th row A; consists of zeros, then by property (2) each
row Aj, j > ¢ also consists of zeros. Also note that all entries (other than the pivot) in a column
containing a pivot are zero. This follows from property (2).

Just so that we understand the definition here is an example of a matrix not in the row echelon
form. Consider the matrix

2 1 3 1
A=|10 0 0 O
01 2 3
This violates all the conditions.

It turns out that every matrix can be row reduced to a row echelon matrix. In other words, every
matrix can be converted to a row echelon matrix by a sequence of elementary row operations.
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Proposition 1.2. Every matrix can be row reduced to a row echelon matrix.

Proof. This can be done by induction using the following algorithmic method. Clearly, the propo-
sition is true for row matrices.

(1) Identify the first column, say the j-th column, that contains a non-zero entry. If this entry
is in the i-th row, we interchange the first row and the i-th row (a type (ii) row operation).
Then multiply the first row by a suitable scalar (a type (iii) row operation) so that the first
non-zero entry in the j-th column becomes 1. The pivot in the first row is in the 1j-th
position.

(2) Now clear out the entries in the ij-th position ¢ > 1 by row operations of type(i).

After carrying out operations (1) and (2) on a matrix A, the resultant matrix will have the form

0 0 0 0 = *

which may be now written in the block form

/0 o1 ‘ B\
\0 .0 ‘ C }
where the matrix C' now has lesser number of rows. By induction hypothesis we may now convert
C into a row echelon matrix C’ by row operations to get a matrix of the form
/ o --- 1 B\
\0 o 0 C’ /
where C’ is in row echelon form. We now clear out the entries in the row vector B that are above
pivots in C’ to get a row vector B’. The matrix
{ 0o --- 1 B’ \
\0 ) C’ /

is now a row echelon matrix. This completes the proof. O

Let us try to understand why and how the existence of an echelon form can be of help. Suppose we
are looking for solutions to the system of m linear equations in n variables given by

AX = B.
We consider the augmented matrix (A|B) and row reduce it to a row echelon matrix (A’| B’) which
represents the system of equations

AX="D.
We know that both these systems have the same set of solutions. Suppose that there is a pivot in
the last column B’. Then we claim that the system A’X = B’ has no solutions. For, a pivot in the
last column B’ gives us an equation of the form

0=1

This implies that the original system AX = B does not have any solutions either. Thus not having
a pivot in the last column B’ is a necessary condition for A’X = B’ to have a solution. This is
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evidently sufficient too. For suppose that the row echelon matrix (A’|B’) does not have a pivot in
the last column B’. Assume that the pivots appear in columns ji, ..., 7, with

1<ji<ig<--<j <n
where A’ is a m x n matrix. The first row of A’ gives us the equation
gz + Y ayw; = b
JFJ1sedr

We may now solve this equation for x;, by assigning arbitrary but fixed values to x;, j # j1,...,Jr
say ¢; = ¢; to get x;, = ¢;,, say. Next, the second row of (A’|B’) gives us the equation

Q2j, %5 + Y as;w; = b

JF#T1se5dr
We may now solve this equation for z;, using the above fixed values x;, j # ji1,42,...,jr to get
Zj, = Cj,, say. Continuing this way we can solve for the unknows x;,,...,x;. . It is clear that
(c1,...,cpn) is a solution for the system A’X = B’. We record these observations below.

Proposition 1.3. Suppose (A’'|B’) is a row echelon matrix. Then the system A’X = B’ has a
solution if and only if there is no pivot in the last last column B’. In this case a solution can be
obtained by assigning arbitrary value to the variable x; if there is no pivot in the j-th column. [

Here are two examples.

Example 1.4. Consider the system of equations

To+5r3 = —4
r1 +4re +3r3 = —2 (1.4.1)
2%1 + 7:752 +x3 = 2.
The associated augmented matrix is
01 5 —4
(A|IB)=11 4 3 -2
2 7 1 2

We now perform elementary row operations to row reduce the above matrix to a row echelon matrix
as follows.

01 5 —4 1 4 3 -2 1 4 3 -2
14 3 2|2 (o 1 5 4 @820 1 5 4
2 71 2 2 71 2 0 -1 -5 6
. 1 0 -17 14 1 0 —-17 14 1 0 =17 O
st g 1 5 4| (01 05 —4af-— (o1 5 0] =B
0 -1 -5 6 00 O 2 0 0 1
Thus the augmented matrix (A’ | B') represents the system of equations
$1717£L'3 = 0
T2 +0ox3 = 0 (1.4.2)
0 =1

and hence the system (1.4.2) cannot have any solutions. This implies that the original system (1.4.1)
cannot have any solutions either. We note that the (augmented) row echelon matrix (A’| B’) has
a pivot in the last column and therefore the system of equations that it represents cannot have a
solution (Proposition 1.3).



Example 1.5. Consider the system of equations

2x1 —6xg = -8
To+2x3 = 3 (151)
3r1 + 620 —2x3 = —4
The associated augmented matrix is
2 0 -6 -8
01 2 3
3 6 —2 —4

It is now easy to check that the above augmented matrix can be row reduced by elementary row
operations to the row echelon matrix

1 0 0 2
01 0 —1
00 1 2
This represents the system of equations
xry = 2
r9g = -1 (1.5.2)
r3 = 2

which now gives us the solution to the original system of equations.

Having looked at two examples, we now again analyse Proposition 1.3 and derive some consequences.
First observe that every homogeneous system of m linear equations in n variables
AX =0

has a solution, namely, X = 0. In trying to obtain a solution to the above system we need not look
at the augemented matrix since the last column of the augmented matrix is zero. We just try to
row reduce the matrix A of coefficients by elementary row operations to a row echelon matrix A’ to
get the system of equations
AX =0.
Now observe that if the number of pivots in the matrix A’ is r, then
r < min{m,n}.

Now suppose that m < n, that is, the number of equations is leass than the number of unknowns,
the proof of Proposition 1.3 shows that we may assign arbitrary values to n — r many variables to
get a solution of the system. This tells us the following.

Corollary 1.6. Let AX = 0 be a homogeneous system of m linear equations in n variables. If
m < n, then the system has a non-zero solution. O

Here is a simple fact about square row echelon matrices whose proof is left as an exercise.

Lemma 1.7. If A is a square row echelon matrix, the either A is the identity matrix or the last
row of A is zero.

Proof. Exercise. U

We may now characterize invertible matrices.

Proposition 1.8. Let A be a square matrix. Then the following statements are equivalent.



(1) A is row equivalent to the identity matrix.

(2) A is a product of elementary matrices.

(3) A is invertible.

(4) The system of homogeneous equations AX = 0 has only the trivial solution.

Proof. Assume (1) holds. Thus after a sequence of, say s many, elementary row operations on A we
get the identity matrix. Since every elementary row operations corresponds to a left multiplication
by an elementary matrix, we may write
EE, 1---E1A=1
and therefore
A=E7 . BT
Thus (1) implies (2) as the inverse of an elementary matrix is again an elementary matrix.

Next assume that A = E; --- E; is a product of elementary matrices. Then as each FE; is invertibe,
so is their product and hence A is invertible. Thus (2) implies (3).

Next assume that (3) holds so that A is invertible. Given a homogeneous systemAX = 0, it is clear
that X = A0 = 0 is the only solution.

Finally assume that the homogeneous system AX = 0 has only the trivial solution. We now row
reduce A to a row echelon matrix A’. Then it is clear that either A’ is the identity matrix or the
last row is zero. If the last row is not zero we are done. So assume that the last row of A’ is zero.
Then, by Corollary 1.6, the system A’X = 0 has a non-trivial solution and hence so does AX = 0.
Thus A’ must be the identity matrix and therefore (4) implies (1). O

The above proposition presents us with several ways to decide if a square matrix is invertible. We
can also compute the inverse of a matrix. For example, suppose A is an invertible matrix. Then we
know that A can be row reduced to the identity matrix. Thus we can write

EF; 1---F1A=1
where FE;’s are elementary matrices. Hence,
E,---EI=A"1

This means that we can apply the same set of elementary row operations to the identity matrix
(that we have applied on A) to get A~ L.

Example 1.9. Suppose we wish to find the inverse of the matrix
1 2
(3
So we find out what are the elementary row operations that will reduce A to the identity matrix.

The same operations then are applied to the identity matrix. To do this it is convenient to work on
both A and I simultaneously by considering the 2 x 4 matrix below.

1210X2;X_2;X11210X1;)£>2X2103—2
1 3 01 01 -1 1 01 -1 1

Thus

Here are some exercises.



Exercise 1.10. Complete the proof of Lemma 1.7.

Exercise 1.11. Find solutions to the system of equations

r1 —2rx94+2x3 = 0

2$2 — 8333 = 8

*3£E2 + 13:63 = -9
Exercise 1.12. Find solution to the system of equations
3rg — 6x3 +6x4 +45 = -5
3r1 — Txog +8x3 —bxy +8x5 = 9

31‘1 - 9%2 + 121’3 + 79564 + 61’5 15
209 —4x3 +4xy 4+ 225 = —6

Exercise 1.13. Find inverses of the following matrices using the method discussed

0 1 3 5

1 0/7 \1 2
Exercise 1.14. Let A, B be n X n matrices such that AB is invertible. Show that A, B are both
invertible.

Exercise 1.15. Let AX = B be a system of linear equations where A, B are real matrices. Prove
that if the system AX = B has more than one solution, then it has infinitely many solutions. Prove
that if there is a solution in the complex numbers, then there is a also a real solution.

Exercise 1.16. Let A be a square matrix. Show that if the system AX = B has a unique solution
for some particular column vector B, then it has a unique solution for all B.

Exercise 1.17. Use elementary row operations to determine whether the matrix

2 5 -1
4 -1 2
6 4 1

is invertible, and to find the inverse if it is.

Exercise 1.18. Let A be a n x n matrix. If A is invertibe and AB = 0 for some n x n matrix B,
then show that B = 0. If A is not invertible show that there exists a n x n matrix B with AB =0
and B # 0.



