LINEAR ALGEBRA- LECTURE 6

1. ROW OPERATIONS....FINAL PART

We recall that we have seen several equivalent ways of showing that a matrix is invertible. Indeed,
we had proved the following proposition.

Proposition 1.1. Let A be a square matrix. Then the following statements are equivalent.

(1) A is row equivalent to the identity matrix.

(2) A is a product of elementary matrices.

(3) A is invertible.

(4) The system of homogeneous equations AX = 0 has only the trivial solution.

We had seen some consequences of the above proposition. We record one more.

Proposition 1.2. Let A, B be square matrices such that AB =1 (or BA =1), then A is invertible
and A~! = B.

Proof. We first row reduce A to a row echelon matrix A’. Then either A’ =T or the bottom row of
A’ is zero. Now we may write

E.E,  ---E,A=A
where F; are elementary matrices, so that

AB=EFE,_, - E.
This implies that the bottom row of A’ is not zero and hence A’ = I. This implies, by the above
proposition, that A is invertible and

A'=FE,E, 4 ---E, = B.
O

Remark 1.3. We remark that the row echelon form of a matrix is essentially unique. In other
words suppose that A; and A; are two row echelon matrices obtained from the same matrix A by
possiby different sequence of elementary row operations. THen A; = A,

Here are two examples that make use of Proposition1.1. The proof of the second example was
pointed out by a friend in the class.

Example 1.4. Let A be a square matrix. Then A is invertible if and only if the row reduced
echelon form of A does not contain a row of zeros. This is essentially the equivalence of (i) and (iii)
in Proposition,1.1.

Example 1.5. Let A, B square matrices such that AB is invertible. Then both A and B are
invertible. To see this we first row reduce AB to the identity matrix by wrting

E;---Ei(AB) =1
where E; are elementary matrices. Thus

B '=E,...-E/A
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and hence B is invertible by Proposition 1.2. Consequently, A is also invertible.

Another operation that one can perform on a matrix is the transpose. Here is the formal definition.
Definition 1.6. Given a matrix A = (a;;) the matrix B = (b;;) where

bij = aj;
is called the transpose of A and is usually denoted by A?.

The way in which the transpose of a matrix is connected with the alegbraic operations on matrices
is noted below. The proof is left as an exercose.

Lemma 1.7. Given matrices A, B and a scalar r we have

(1) (A+ B)' = A*+ B".

(2) (AB)t = Bt A",
(3) (rA)t =rAt
(4) (A=A
Proof. Exercise. O

Here are some problems.

Exercise 1.8. Suppose that two square matrices A, B are row equivalent. Is it true that A is
invertible if and only if B is invertible?
Exercise 1.9. Let A, B be two n X n matrices. Prove that if
AX = BX
for every column vector X, then A = B.

Exercise 1.10. A matrix A is said to be symmetric if A = A?. Prove that for any matrux A, the
matrix AA? is symmetric and that if A is square matrix then A + A? is symmetric.

Exercise 1.11. Let A, B be two symmetric square matrices. Prove that AB is symmetric if and
only if AB = BA.

Exercise 1.12. Prove that the inverse of an invertible symmetric matrix is also symmetric.

2. DETERMINANTS

In this section we shall discuss the definition of the determinant of a square matrix and understand
some of its properties. Let M, (R) denote the set of all n x n matrices with real entries. The
determinant is a function denoted by det

det : M, (R) — R.
Our aim is to define this function and study some of its properties.

The definition of det is arrived at recursively in the following fashion. The determinant of a 1 x 1
matrix A = (a) is defined to be
det(4) = a. (2.0.1)
If A= (2}%), we set
det(A) = ad — be. (2.0.2)
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More generally we consider a n x n matrix A = (a;;) and assume that the determinant is defined
for matrices of size less than n. We first define the ¢j-minor A;; of the matrix A. This is defined
as the (n — 1) x (n — 1) matrix obtained from A by deleting the i-th row and the j-th column. For
example if

1 2 3
A=14 5 6
7 8 9

4 6
nae (20

is obtained from A by deleting the first row and the second column.

then

Definition 2.1. Let A = (a;;) be a n x n matrix with n > 2. Then we define
det(A) = alldet(All) — agldet(Agl) == anldetAnl. (2.1.1)

This along with (2.0.1) defines the determinant function recursively for all n.

It is clear that if A is a 2 x 2 matrix, then the definition of det(A) in (2.1.1) reduces to the one
expressed in (2.0.2). The definition in (2.1.1) is referred to as the expansion by minors on the first
column. Here is an example. If A is the 3 x 3 matrix above, then

5 6 2 3 2 3
det(A)—lodet<8 9>—4-det<8 9>+7-det<5 6>

The fundamental properties that the determinant function satisfies is expressed in the theorem
below. We shall soon show that the detereminant function is the only function that satisfies the
three conditions in the theorem below.

Theorem 2.2. The determinant function det : M,,(R) — R satisfies the following conditions.

(1) det(L,) = 1.
(2) det is linear in the rows of A.
(3) If two adjacent rows of A are equal, then det(A) = 0.

Before we start the proof of the theorem let us try to understand the meaning of the statement (2)
of the theorem. Suppose A = (a;;) is written in the form

- A -

A, -
Now suppose that the i-th row vector A4; splits as A; = A, + A;”. Then the condition (2) in theorem
says two things :

- Ay - - A - - A -
det | - A4+ A7 —|[=det|- A —|+det|- A - (2.2.1)

- An - - An An -



and
- A - - A -
det |- r A4, —|=r-det|- A - (2.2.2)
A, - A, -
where r is a scalar. For example
1 1 1 1 1 1 1 1 1 1 1 1
det {3 4 5] =det|24+1 1+3 441 =det{2 1 4| +det|{1l 3 1
1 1 1 1 1 1 1 1 1 1 1 1

We now prove the theorem.

Proof. The proof of each case is by a suitable induction hypothesis. It can be easily verified that in
each case the induction can be started.

The proof of (1) is an easy exercise in applying the definition of the determinant and using induction.
This verification is left as an exercise.

We shall now prove (2). We wish to show therefore that

- A - - A - - A -
det | - A4+ A7 —|[=det|- A —|+det|- A - (2.2.3)
- An - - An - - An -

Let A’ and A” denote the two matrices on the right hand side. Our induction hypothesis is that the
determinant is linear in the rows of matrices of size (n — 1) x (n — 1). We now compute

det(A") = ay1det(A];) — agrdet(AL;) + -+ + alydet(Aly) £ -+ £ aydet(A4];) (2.2.4)
and

det(A") = ajidet(AY;) — agidet(AS)) + - - + aljdet(A}) £ - + apidet(AL,) (2.2.5)
We now observe the following facts. If k£ # 4, then by our induction hypothesis

det(A};) + det(A};) = det(Ag1)
and
+ajydet(Afy) £ afydet(Af)) = E(ajy + afy)det(An)
since
Ajy = Afy = Aqr.
This shows that
det(A") + det(A”) = det(A)

and completes the proof of (2.2.3). That (2.2.2) holds is left as an exercise. This completes the proof
of (2). We have assumed that

A= (@), A = (@ all).

in in
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Finally, we turn to the proof of (3). We assume that A; = A;11 and wish to show that det(A) = 0.
Now

det(A) = audet(Au) et + anldet(Anl). (226)
we now observe that if k # 4,7 + 1, then the minor Ag; has two equal rwos and hence, by induction
hypothesis, det(Ag1) = 0 for k # 4,7+ 1. Thus (2.2.6) reduces to

det(A) = £a;det(As) £ ajp1,1det(Aiprn)
where the two terms on the right have opposite signs. Since
;1 = Ai41,1

and
An =Aip1n
we conclude that det(A) = 0. This completes the proof of the theorem. O

Here are some problems.

Exercise 2.3. Compute the determinant of the n x n matrix A = (a;;) where

0 ifi+j#n+1

;i = .
Y 1 otherwise

Exercise 2.4. Evaluate the determinant of the matrix

1 2 3 n
2 2 3 n
3 3 3 n

Exercise 2.5. For a n x n matrix A, what is det(—A)?



