LINEAR ALGEBRA- LECTURE 7

1. DETERMINANTS...FURTHER PROEPRTIES

Recall that if A = (a;;) be a n x n matrix with n > 2, then the determinant of A is defined by

det(A) = ajrdet(A11) — agrdet(Asr) + -+ - £ apidet Ay, (1.0.1)
This defines the determinant function recursively for all n where the determinant of a 1 x 1 matrix
is defined in an obvious manner.

Recall that we had also seen the proof of the following theorem which states the three fundamental
properies of the determinant function.

Theorem 1.1. The determinant function det : M, (R) — R satisfies the following conditions.

(1) det(L,) = 1.
(2) det is linear in the rows of A.
(3) If two adjacent rows of A are equal, then det(A) = 0.

We shall now investigate some further properties of the determinant function. We emphasize that
the properties that we shall derive depend solely on the fact that the determinant function satisfies
the three conditions of the above theorem and not on the defining formula of the determinant.

Lemma 1.2. Suppose A is n X n matrix. Then the determinant is unchanged when the i-th row
A; is changed to A; + 7 A;41.

Proof. As mentioned earlier we will derive this just from the fact that the determinant satisfies the
three properties of the above theorem. By the linearity of the determinant we have

- Ay - - A - - A -
Ai+rAi _ - A - - Ain
det [ A | =det | Ay - +r-det | A - (1.2.1)
- An - - An - . An

The last determinant is zero by property (3) of the above theorem. This completes the proof. O

Lemma 1.3. If two adjacent rows of a matrix are interchanged, then the determinant is multiplied
by —1.



Proof. We look at the following sequence of equalities of determinant of matrices

- Ay - - Aq — - Ay _
o A1 - _ - Al -1 _ Az + (Ai+1 _ Al)
det | Ay |~ det | A — A —| = det | A — A; B (1.3.1)
- A, - - A, - - A, _
where the equalities are due to Lemma 1.2. Next we see that
N Al - - Al - — Al — — Al _
_ A,’ - _ Ai+1 — Ai+1 -1 Ai+
det | Ay |7 det | Ay - +det | T —det | A - (1.3.2)
- An o . Ay, - - A, — — A, _
where the equalities follow from properties (2) and (3) of the above theorem. This completes the
proof. .

The property (3) in Theorem 1.1 says that if two adjacent rows of a matrix A are equal, then
det(A) = 0. This remains true even if the rows are not adjacent.

Lemma 1.4. If two rows of a matrix A are equal, then det(A) = 0.

Proof. We keep interchanging the rows of A to get a matrix A’ in which now two rows are adjacent.
Then

det(A) = £det(A4’) = 0.
The first equality follows from Lemma 1.3 and the second equality follows from Theorem 1.1 (3). O

Lemmas 1.2 and 1.3 also remain true more generally. We note this below. The proofs in both cases
are left as exercises.

Lemma 1.5. If a multiple of a row is added to another row, then the determinant remains un-
changed.

Proof. Exercise. O

Lemma 1.6. If two rows of a matrix are interchanged, then the determinant changes sign.
Proof. Exercise. O

The linearity proprty of the determinant shows, as can be easily checked, that if a matrix A has
A; =0 then det = 0. Let us look at the last two lemmas a bit more closely.

Lemma 1.5 says that the determinant of a matrix A remains unchanged for example when the i-
th row A; is changed to A; + rA;. In particular the det(A) does not change after performing an
elementary row operation of type (i) on A. In other words, if E an elementary matrix of type (i),
then

det(EA) = det(A) (1.6.1)



Similarly, we may conclude from Lemma 1.6 that if E is an elementary matrix of typre (ii), then
det(FA) = —det(A). (1.6.2)

Finally, if E =1 — e;; + rre;; is an elementary matrix of type (iii), then
det(FA) =r-det(A). (1.6.3)
This is a consequence of the linearity of the determinant. These observations allow us to compute
the determinant of the elementary matrices.
Lemma 1.7. For an elementary matrix £ we have
1 if Eis of type (i)
det(F) = —1 if E is of type (ii)
r if E=1— e+ rey is of type (iii)

Proof. Take A=1T1in (1.6.1), (1.6.2) and (1.6.3). O
Lemma 1.8. Let FE be an elementary matrix. Then for any matrix A we have

det(EA) = det(E) - det(A). (1.8.1)
Proof. This follows from the equations (1.6.1), (1.6.2), (1.6.3) and Lemma1.7. O

At this point we again emphasize that all the statements made after Theorem 1.1 have ony used the
fact that the determinant satisfies the three properties in Theorem 1.1. We now observe the very
interesting fact that we can now compute the determinant of a square matrix A as follows.

Suppose A is a square matrix. We then row reduce A to a row echelon matrix A’. The matrix A’ is
either the identity matrix (when A is invertible) or has the bottom row to be zero (when A is not
invertible). Now we may write
A=E,.--EA
and therefore
det(A") = det(E;) - - - det(FE7) det(A). (1.8.2)

The equation (1.8.2) gives us a formula to compute det(A). At this point we note the uniqueness of
the determinant function.

Theorem 1.9. Let f : M,(R) — R be a function that satisfies the conditions (1)-(2)-(3) of
Theorem 1.1. Then f(A) = det(A) for every matrix A € M, (R).

Proof. A moments thought will tell us that Lemmas 1.2 to 1.8 remain valid with det replaced by f
and so do all the equations. Thus the final equation (1.8.2) tells us that f(A) = det(A). O

Observe that it follows from equation (1.8.2) that a matrix A is invertible if and only if
det(A) # 0. (1.9.1)
We now state a very important property of the determinant.
Theorem 1.10. Let A, B € M, (R). Then
det(AB) = det(A) - det(B). (1.10.1)
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Proof. Suppose that A is not invertible. Then, by (1.9.1), the right hand side of (1.10.1) is zero.
Since A is not invertible the product AB is not invertible. Hence the left hand side of (1.10.1) is
also zero.

Next assume that A is invertible. Then A is a product of elementary matrices, say,
A=FE;---F
and hence we have
det(AB) = det(Es--- Fy B) = det(Es - - - Fy) det(B) = det(A) det(B).
This completes the proof. O
Theorem 1.11. For a square matrix A, we have det(A) = det(A").

Proof. This is an interesting exercise. g
Remark 1.12. The determinant function was defined as a function
det : M,,(R) — R

and we did not use any properties of the real numbers in our discussion of the determinant and its
properties. The definition of the determinant can be made as in (1.0.1) for matrices with complex
entries and all the above results remain valid. Thus we also have the determinant function

det : M,,(C) — C

where M, (C) denotes the set of n x n matrices with complex entries and all the above results remain
valid for the complex determinant.

Here are some problems.
Exercise 1.13. Complete the proofs of Lemma 1.5, 1.6

Exercise 1.14. Let a row of a square matrix A be zero. Show that det(4) = 0. What happens if
a column is zero?

Exercise 1.15. Show that a matrix A is invertible if and only if det(A) # 0.

Exercise 1.16. Let F be an elementary matrix of type (i). Is the transpose E? also an elementary
matrix? If so what is the type of E*. What can you say about det(E)? Answer the same questions
when F is an elementary matrix of types (ii),(iii).

Exercise 1.17. Prove Theorem 1.11.

Exercise 1.18. Convince yourselves that Theorem 1.1 (2)-(3), Lemma 1.2, Lemma 1.3 remain valid
if the word ”"row” is changed to column in each statement.

Exercise 1.19. For square matrices A, B show that det(AB) = det(BA).

Exercise 1.20. Given a square matrix A = (a;;), the trace of A denoted by tr(A) is defined to be
tI'(A) = Z (0778
Prove the following.

(1) tr(A+ B) = tr(A) + tr(B) and that tr(AB) = tr(BA).
(2) If B is invertible, then tr(A) = tr(BAB™1).

Exercise 1.21. Find a 2 x 2 matrix A such that A% = —I,.



Exercise 1.22. Find a representation of the complex numbers by real 2 X 2 matrices which is
compatible with addition and multiplication.

Exercise 1.23. The expansion of det(I + rA) gives a polynomial in r. What is the constant term
and the coefficient of r in this expansion?

Exercise 1.24. If A is invertibe show that
(A7) = ()7

Exercise 1.25. Show that the area of a triangle with vertices (x1,y1), (x2,¥2), (x3,y3) is equal to

1 1 oy 1
—det To Y2 1

2
x3 ys 1

Exercise 1.26. Compute the determinant of

0 0 0 a b
00 0 ¢ d
00 0 e f
p q r s t
u vow Ty



