
LINEAR ALGEBRA- LECTURE 7

1. Determinants ....final part

Let us recall the final part of our discussion in the last discussion. We had checked that if E is an
elementary matrix of whichever type and A is any matrix, then

det(EA) = det(E) · det(A).

It therefore, follows by induction, that if E1, . . . , Es are elementary matrices, then for any matrix A
we have

det(Es · · ·E1A) = det(Es · · ·E1) · det(A) = det(Es) · · · det(E1) · det(A).

We can now prove the following.

Proposition 1.1. A matrix A ∈ Mn(R) is invertible if and only of det(A) ̸= 0.

Proof. Row reduce A to a row echelon matrix A′ and write

A′ = Es · · ·E1A

where Ei are elementary matrices. Then A is invertible if and only if A′ = I. Thus A is invertible
if and only if

det(Es) · · · det(E1) · det(A) ̸= 0.

Thus A is invertible if and only if det(A) ̸= 0. Note that det(Ei) ̸= 0. □

Theorem 1.2. Let A,B ∈ Mn(R). Then
det(AB) = det(A) · det(B). (1.2.1)

Proof. Suppose that A is not invertible. Then, by Proposition 1.1, the right hand side of (1.2.1) is
zero. Since A is not invertible the product AB is not invertible. Hence the left hand side of (1.2.1)
is also zero.

Next assume that A is invertible. Then A is a product of elementary matrices, say,

A = Es · · ·E1

and hence we have

det(AB) = det(Es · · ·E1 B) = det(Es · · ·E1) det(B) = det(A) det(B).

This completes the proof. □

Theorem 1.3. For a square matrix A, we have det(A) = det(At).

Proof. This is an interesting exercise. □

It now follows that most of the results that we proved earlier are now true if we replace ”row” by
”column” in the statements of the above results. We state them without proof.

Theorem 1.4. The determinant function has the following properties.

(1) the determinant is linear in the columns of a matrix.
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(2) If two columns of a matrix A are equal, then det(A) = 0.
(3) If a multiple of a column is added to another column, then the determinant is unchanged.
(4) If two columns are interchanged, then the determinant changes sign.

Remark 1.5. The determinant function was defined as a function

det : Mn(R) −→ R
and we did not use any properties of the real numbers in our discussion of the determinant and its
properties. The definition of the determinant can be made as in (1.0.1) for matrices with complex
entries and all the above results remain valid. Thus we also have the determinant function

det : Mn(C) −→ C
where Mn(C) denotes the set of n×n matrices with complex entries and all the above results remain
valid for the complex determinant.

There are other definitions of the determinant of a matrix A = (aij) that one may use. For example
we may choose to expand by minors along the j-th column. This gives us the following expression
for the determinant

det(A) = (−1)1+ja1jdet(A1j) + (−1)2+ja2jdet(A2j + · · ·+ (−1)n+janjdet(Anj)
=

∑
k(−1)k+jakjdet(Akj).

(1.5.1)

One could also expand by minors on the rows. For example, expaanding by minors on the i-th row
yields the following expresseion for the determinant of the matrix A = (aij)

det(A) = (−1)1+iai1det(Ai1) + (−1)2+iai2det(Ai2 + · · ·+ (−1)n+iaindet(Ain)
=

∑
k(−1)k+iaikdet(Aik).

(1.5.2)

That the two expressions (1.5.1) and (1.5.2) yield the same value of the determinant is a consequence
of the fact both these expressions satisfy the three properties that are funndamental to out defi-
nition of the determinant and therefore by uniqueness the above values must agree with the usual
determinant.

We shall see one very useful method of computing the inverse of a matrix. This involves introducing
a new matrix called the cofactor matrix. This is defined as follows. Given a matrix A = (Aij) define

cij = (−1)i+jdet(Aij).

Let C denote the matric C = (cij).

Definition 1.6. Given a matrix A = (aij), let C = (cij) be the matrix defined above. Then the
cofactor matrix of A, denoted by cof(A) is defined to be

cof(A) = Ct

the transpose of the matrix C.

For example, let A be the matrix 1 2 1
3 1 1
0 1 2


We then compute

c11 = 1, c12 = −6, c13 = 3
c21 = −3, c22 = 2, c23 = −1
c31 = 1, c32 = 2, c33 = −5
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Thus the matrix C equals

C =

 1 −6 3
−3 2 −1
1 2 −5


and the cofactor matrix of A is

cof(A) = Ct =

 1 −3 1
−6 2 2
3 −1 −5


The cofactor matrix can be used to compute the inverse of an invertible matrix. This is contained
in the following theorem.

Theorem 1.7. Let A = (aij) be a square matrix and B = cof(A) be the cofactor matrix of A.
Then

BA = AB = αI

where α = det(A). Thus if α ̸= 0, then A−1 = (1/α)B.

Proof. This is a simple verification and is left as an exercise. □

Here are some problems.

Exercise 1.8. Let a row of a square matrix A be zero. Show that det(A) = 0. What happens if a
column is zero?

Exercise 1.9. Let E be an elementary matrix of type (i). Is the transpose Et also an elementary
matrix? If so what is the type of Et. What can you say about det(E)? Answer the same questions
when E is an elementary matrix of types (ii),(iii).

Exercise 1.10. Prove Theorem1.3.

Exercise 1.11. Prove Theorem1.7.

Exercise 1.12. For square matrices A,B show that det(AB) = det(BA).

Exercise 1.13. Given a square matrix A = (aij), the trace of A denoted by tr(A) is defined to be

tr(A) =
∑
i

aii.

Prove the following.

(1) tr(A+B) = tr(A) + tr(B) and that tr(AB) = tr(BA).
(2) If B is invertible, then tr(A) = tr(BAB−1).

Exercise 1.14. Find a 2× 2 matrix A such that A2 = −I2.

Exercise 1.15. Find a representation of the complex numbers by real 2 × 2 matrices which is
compatible with addition and multiplication.

Exercise 1.16. The expansion of det(I + rA) gives a polynomial in r. What is the constant term
and the coefficient of r in this expansion?

Exercise 1.17. If A is invertibe show that(
A−1

)t
=

(
At

)−1
.
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Exercise 1.18. Show that the area of a triangle with vertices (x1, y1), (x2, y2), (x3, y3) is equal to

1

2
det

x1 y1 1
x2 y2 1
x3 y3 1


Exercise 1.19. Compute the determinant of

0 0 0 a b
0 0 0 c d
0 0 0 e f
p q r s t
u v w x y




