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1. Compute the variances of the uniform random variable on [n], the Bino-
mial and the hypergeometric random variable.

Proof: For the uniform random variable, let Ω = [n] with p(ω) = 1
n for all ω ∈ Ω.

Let X(ω) = ω. Then, it is clear that P (X = ω) = 1
n for all ω ∈ Ω, and

therefore

E[X] =

n∑
i=1

iP(X = i) =

n∑
i=1

i2

n
=

n + 1

2

and

VAR[X] =

n∑
i=1

i2P(X = i)− E[X]2 =
n2 − 1

12

For X ∼ Bin(p), we have the sample space Ω = {(a1, ..., an) : ai ∈ {0, 1}}
with p(a1, ..., an) = pb(1−p)c where b, c are the number of ones and zeros in
the sequence a1, ..., an respectively. Now, with this, we define X(a1, ..., an)
to be the number of 1s in the sequence ai. Then X ∼ Bin(p). Consider
the random variables Xi = 1ai=1. Then, note that Xi are independent,
and X =

∑n
i=1 Xi. Therefore, we get :

E[Xi] = P[ai = 1] = p =⇒ E[X] = np

and because X2
i = Xi, we get

VAR[X] =

n∑
i=1

VAR[Xi] =

n∑
i=1

(E[Xi]− E[Xi]
2) = np(1− p)

For the hypergrometric distribution with parameters n ≥ m, r, we consider
the sample space of r-sized subsets of n with the uniform pmf, and let
X(S) = #{S ∩ [m]}. Then X is hypergeometric with parameters n,m, r.
We define the random variables Xi(S) = 1i∈S for i ∈ [m]. Now it is clear
that

E[Xi] =
r

n
=⇒ E[X] =

mr

n

However, the Xi are dependent, therefore we calculate

E[X2] =

n∑
i=1

E[X2
i ] +

∑
i 6=j

E[XiXj ]

1



Note that E[XiXj ] = P[i, j ∈ S] = r(r−1)
n(n−1) . Therefore, noting that X2

i =

Xi, we get

E[X2] =
mr

n
+

(
m

2

)
r(r − 1)

n(n− 1)

whence VAR[X] = E[X2]− E[X]2 gives the answer. �

2. Show that VAR[aX + b] = a2VAR[X] .

Proof : We have :

VAR[aX + b] = E[(aX + b)2]− E[(aX + b)]2

= a2E[X2] + 2abE[X] + b2 − a2E[X]2 − 2abE[X]− b2

= a2(E[X2]− E[X]2) = a2VAR[X]

as desired. �

3. Two fair dice are rolled independently. Find the pmf, mean and variance
of the following random variables - (1) The sum of the two dice. (2) The
maximum among the two dice.

Proof : By a case-by-case analysis, it is easy to see that if X is the sum of the

dice, then P (X = a) = 6−|7−a|
36 for a ∈ {2, 3, ..., 12}. From this, it is easy

to find , by definition just as in question 1, E[X] = 7, VAR[X] = 35
6 .

For the second, we note that if Y is the larger of the numbers, then
{Y = a} = {(c, d) : c = a, d < aORc < a, d = a}, so it has 2a − 1
elements. Thus, P(Y = a) = 2a−1

36 for a ∈ [6]. Using the definitions, one
finds E[X] = 161

36 and VAR[X] = 2555
1296 . �

4. Balls are thrown one after another (uniformly at random) into two bins.
Each throw is independent of the previous throw. The experiment stops
when there is no empty bin. Let X be the total number of balls thrown.
Find P(X ≥ n) for all n ≥ 1.

Proof: See that {X ≥ n} if and only if the first n− 1 throws have landed in the
same bin. That bin has two ways of being picked, and the probability
of the ball going into the same bin each time is 1

2 , so we get 2( 1
2 )n−1 =

1
2n−2 = P{X ≥ n}, for n ≥ 2. �

5. Let X be the number of empty cells corresponding to Maxwell-Boltzmann
distribution. Compute the pmf, mean and variance of X.

Proof: The sample space is Ω = {(r1, ..., rn) : ri = 0,
∑

ri = r} with the probabil-
ity distribution p(r1, ..., rn) = 1

nr

(
r

r1,r2,...,rn

)
. Let Ei = P(ri = 0). Then,

we note that

P (Ei1 ∩ . . . ∩ Eij ) =
∑

ri≥0,
∑

ri=n,ril=0∀l

1

nr

(
r

r1, r2, ..., rn

)

=
∑

ri≥0,
∑

ri=n,i=1,...,n−j

1

nr

(
r

r1, r2, ..., rn−j

)

=
(n− j)r

nr

2



Therefore, using the generalized IEP,

P(X = k) =

m∑
j=k

(−1)j−k
(
j

k

)(
n

j

)
(n− j)r

nr

Let Xi = 1Ei
. Then X =

∑n
i=1 Xi. Note that for i 6= j,

E[Xi] = E[X2
i ] =

(n− 1)r

nr
; E[XiXj ] = P[Ei ∩ Ej ] =

(n− 2)r

nr

Therefore

E[X] = n
(n− 1)r

nr

and

E[X2] =

n∑
i=1

E[X2
i ] +

∑
i 6=j

E[XiXj ] = n
(n− 1)r

nr
+

(
n

2

)
(n− 2)r

nr

and one can finish from here. �

6. Let X be the number of empty cells corresponding to Fermi-Dirac distri-
bution. Compute the pmf, mean and variance of X.

Proof: In the Fermi-Dirac distribution, it is always true that n−r cells are empty.
Therefore, P(X = n− r) = 1 and P(X = t) = 0 for t 6= n− r. It is easily
seen that E[X] = n− r and X − E[X] = 0, so VAR[X] = 0. �

7. Prove Markov’s inequality and Chebyshev’s inequality just using pmf of
a random variable. Recall that for a finite random variable with pmf pX ,
P(X ∈ A) =

∑
x∈A pX(x) for any subset A ⊂ R.

Proof: Suppose that X takes values {a1, ..., an} with 0 ≤ ai < aj for i < j. Let
t > 0. If t ≤ a1 or t > an, the Markov inequality is obvious. If not, then
there exists k such that ak < t ≤ ak+1 , following which we do

tP(X ≥ t) ≤
n∑

i=k+1

iP(X = ai) ≤ E[X]

and the inequality follows. Chebyshev follows from

P(|X − E[X]| ≥ t) = P((X − E[X])2 ≥ t2) ≤ E[(X − E[X])2]

t2
=

VAR[X]

t2

whence, we are done. �

8. In a population of size N , m people prefer candidate A. In an opinion poll,
n people are chosen at random and asked their preferences. Let Y denote
the proportion of people who prefer candidate A among the n randomly
chosen people. Find t (depending on N,n,m) such that P(|Y − m

N | ≥ t) ≤
10−2. 1

1EXTRA : Can you find n such that t ≤ 10−4.
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Proof: Note that nY ∼ Bin(n, m
N ). Therefore, E[Y ] = m

N and VAR[Y ] = m(N−m)
nN2 .

By Chebyshev’s inequality,

P
[
|Y − m

N
‖ ≥ t

]
≤ m(N −m)

nN2t2

and therefore, t2 ≥ 100m(N−m)
nN2 is sufficient. �

9. Suppose two permutations of [n] are chosen at random and independently.
Let X denote the number of matches between the two random permuta-
tions i.e., the number of co-ordinates at which the permutations match.
Compute the pmf and mean of X.

Proof: To match at exactly m places, we choose a subset of size m in
(
n
m

)
ways,

and ensure the rest of the indices are deranged, which has probability
Dn−m

(n−m)! .Thus, we get P(X = m) =
(
n
m

) Dn−m

(n−m)! .

The expectation is much easier : If Xi denotes the random variable that
there is a match at the ith position, then E[Xi] = 1

n and X =
∑n

i=1 Xi,
so E[X] = 1. �

10. Let a standard fair die be rolled. Suppose the die shows the number i,
then we choose a coin with probability of heads being i/6. Now this coin is
tossed independently and repeatedly until we get a heads. Let the random
variable X be the number of tosses. Find the probability P(X = n) for
all n ≥ 1.

Proof: Note that P(X = n) =
∑6

i=1 P(X = n|D = i)P(D = i) by the law of
total probability, where D denotes the value of the dice roll. However,
P(X = n|D = i) = (1− i

6 )n−1 i
6 , so we simply get

P(X = n) =
1

6

6∑
i=1

(1− i

6
)n−1

i

6

which is the final answer. �
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