

Indian Statistical Institute

Analysis II (HW - 1) Date: February 7, 2022 Instructor : Jaydeb Sarkar

NOTE: (i) $B[a, b]$ = the set of all bounded real-valued functions on $[a, b]$. (ii) $R[a, b]$ = the set of all Riemann integrable functions on $[a, b]$. (iii) $C[a, b]$ = the set of all continuous functions on $[a, b]$. (iv) $C[a, b]$ = the set of all partitions on $[a, b]$.

- (1) Let $f \in B[a, b]$. Prove that f is a constant function if and only if there exists $P \in P[a, b]$ such that $L(f, P) = U(f, P)$.
- (2) Give an example of a function $f \in B[0, 1]$ such that $f \notin R[0, 1]$ but $f^2 \in R[0, 1]$.
- (3) Let $f, g \in B[a, b]$, and let $f(x) \leq g(x)$ for all $x \in [a, b]$. Prove that

$$\underline{\int_a^b} f \leq \underline{\int_a^b} g \quad \text{and} \quad \overline{\int_a^b} f \leq \overline{\int_a^b} g.$$

- (4) True/False (with explanation)? “If $f(x) \leq g(x) \leq h(x)$ for all $x \in [a, b]$, and $f, h \in R[a, b]$, then $g \in R[a, b]$.”
- (5) Consider the characteristic function $\chi_{[1,3]}$ on $[0, 5]$ (that is, $\chi_{[1,3]} : [0, 5] \rightarrow \mathbb{R}$ where $\chi_{[1,3]}(x) = 1$ if $1 \leq x \leq 3$ and $\chi_{[1,3]}(x) = 0$ if $3 < x \leq 5$). Prove that $f \in R[0, 5]$ and compute $\int_0^5 \chi_{[1,3]}$.
- (6) Define $f : [0, 1] \rightarrow \mathbb{R}$ by

$$f(x) = \begin{cases} x & \text{if } x \neq 0 \text{ and } \frac{1}{x} \in \mathbb{N} \\ 0 & \text{otherwise.} \end{cases}$$

Prove that f is not continuous at n , $n \in \mathbb{N}$. Is $f \in R[0, 1]$?

- (7) Let $f \in R[a, b]$ be a nonnegative function. If $f(r) = 0$ for all $r \in [a, b] \cap \mathbb{Q}$, then prove that $\int_a^b f = 0$.
- (8) (i) Give an example of two functions $f, g \in B[a, b]$ such that $f, g \notin R[0, 1]$, but $fg \in R[a, b]$. (ii) Give an example of two functions $f, g \in B[a, b]$ such that $f \in R[a, b]$, $g \notin R[a, b]$, but $fg \in R[a, b]$.
- (9) (a) (Cauchy-Schwarz inequality) Let $f, g \in R[a, b]$. Prove that

$$\left(\int_a^b fg \right)^2 \leq \left(\int_a^b f^2 \right) \left(\int_a^b g^2 \right).$$

[Hint: Expand $\int_a^b (tf + g)^2$ into a quadratic in t . Clearly $\int_a^b (tf + g)^2 \geq 0$ for all $t \in \mathbb{R}$. Now look at the non-positive discriminant.]

(b) Given that f and g are continuous, prove that equality holds if and only if one of the functions is a constant times the other.

(c) Use the Cauchy-Schwarz inequality for an upper estimate on the integral

$$\int_0^{\frac{\pi}{2}} \sqrt{x \sin x} dx.$$

[By the way, can you compute the value of the integration?]

(10) (Minkowsky's inequality) Let $f, g \in R[a, b]$. Prove that

$$\left(\int_a^b (f + g)^2 \right)^{\frac{1}{2}} \leq \left(\int_a^b f^2 \right)^{\frac{1}{2}} + \left(\int_a^b g^2 \right)^{\frac{1}{2}}.$$

[Hint: Note that $\int (f + g)^2 = \int f^2 + \int g^2 + 2 \int fg$. Now consider the Cauchy-Schwarz inequality.]

(11) Let $f \in R[0, 1]$. Prove that

$$\int_0^1 f = \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^n f\left(\frac{j}{n}\right).$$

(12) Use (11) to find the limit

$$\lim_{n \rightarrow \infty} \frac{1}{\sqrt{n}} \sum_{m=1}^n \frac{1}{\sqrt{m}}.$$

(13) Let $f \in B[a, b]$ and let $P \in P[a, b]$. Prove that (i) $U(f, P)$ is the supremum of the set of all Riemann sums of f over P , and (ii) $L(f, P)$ is the infimum of the set of all Riemann sums of f over P .

(14) Let $f \in C[a, b]$ and let $P \in P[a, b]$. Prove that $U(f, P)$ and $L(f, P)$ are Riemann sums of f over P .