

(1) Examine the convergence of

$$(i) \int_0^1 \frac{dx}{\sqrt{1-x^3}}, \quad (ii) \int_0^1 e^{-mx} x^n dx, \quad (iii) \int_0^1 \left(\log \frac{1}{x} \right)^m dx,$$

where m and n are in \mathbb{Z} .

(2) Suppose $m, n \in \mathbb{Z}$. Prove that $\int_0^1 x^m (1-x)^n dx$ exists if and only if $m > 1$ and $n > 1$.
(3) Determine all natural number m and n for which $\int_0^1 f$ converges, where

$$f(x) = \frac{1}{(\sin x)^m (1-x)^n}.$$

(4) (Cauchy–Schwarz Inequality for Improper Integrals:) Let $f, g \in C[a, b]$. Suppose both f and g are improperly integrable on $[a, b]$. Prove that fg is improperly absolutely integrable on $[a, b]$ and

$$\left(\int_a^b |fg| \right)^2 \leq \left(\int_a^b f^2 \right) \left(\int_a^b g^2 \right).$$

(5) Let f, g be improperly integrable functions on $[a, \infty)$, and let $\alpha, \beta \in \mathbb{R}$. Prove that $\alpha f + \beta g$ is improperly integrable on $[a, \infty)$, and

$$\int_a^\infty (\alpha f + \beta g) = \alpha \int_a^\infty f + \beta \int_a^\infty g.$$

(6) Prove that

$$\lim_{c \rightarrow 1^-} \int_{-c}^c \frac{x}{(x^2 - 1)^2} dx = 0.$$

Does this imply that $\int_{-1}^1 \frac{x}{(x^2 - 1)^2} dx$ converges to 0? Use your favourite programming/technology to plot the graph of $x \mapsto \frac{x}{(x^2 - 1)^2}$ over $(-1, 1)$ and figure out what is going on.

(7) Let $f : [-1, 1] \rightarrow \mathbb{R}$ be an even, continuous function, and suppose $f(0) \neq 0$. Prove that

$$\int_{-1}^0 \frac{f(x)}{x} dx \text{ and } \int_0^1 \frac{f(x)}{x} dx,$$

diverge, and conclude that we cannot define

$$\int_{-1}^1 \frac{f(x)}{x} dx.$$

Also compute

$$\lim_{\epsilon \rightarrow 0} \left(\int_{-1}^{-\epsilon} \frac{f(x)}{x} dx + \int_\epsilon^1 \frac{f(x)}{x} dx \right).$$

(8) Prove that $\int_0^1 \frac{(\sin x)^m}{x^n} dx$ converges if and only if $m < 1 + n$.

(9) Let $a \in \mathbb{R}$, and let $f : [a, \infty) \rightarrow \mathbb{R}$ be an increasing function. Suppose $f \in R[a, b]$ for all $b > a$. Prove that f is improperly integrable on $[a, \infty)$ if and only if $f(x) = 0$ for all $x \geq a$.