

(1) Compute the pointwise limit of $\{f_n\}$, where

$$f_n(x) = \frac{x^n}{1+x^n} \quad (n \geq 1, x \geq 0).$$

Also prove that $\{f_n\}$ converges uniformly on $[0, \epsilon]$ for all $0 < \epsilon < 1$, but not on $[0, 1]$.

(2) Prove that the sequence $\{\frac{nx}{1+n^3x^2}\}$ converges uniformly on $[0, 1]$.
 (3) Prove that the sequence $\{\frac{n^2x}{1+n^3x^2}\}$ is not uniformly convergent on $[0, 1]$.
 (4) Let $f_n(x) = \frac{1}{n} \sin nx$ for all $x \in \mathbb{R}$ and $n \geq 1$. Prove that $f_n \rightarrow 0$ uniformly on \mathbb{R} .
 (5) Let $f(x) = \frac{1}{x} - \frac{x}{n}$, $x \in (0, 1]$. Prove that $\{f_n\}$ converges uniformly on $(0, 1]$ to the limit function $f(x) = \frac{1}{x}$, $x \in (0, 1]$.
 (6) Let $p, q > 0$, and let

$$f_n(x) = \frac{x^p}{n+x^q} \quad (n \geq 1, x \geq 0).$$

Prove that $f_n \rightarrow 0$ uniformly on $[0, \infty)$ if and only if $p < q$.

(7) Let $\{f_n\}$ and $\{g_n\}$ be sequences of functions on $S \subseteq \mathbb{R}$, and suppose $f_n \rightarrow f$ and $g_n \rightarrow g$ uniformly on S . Prove that $f_n \pm g_n \rightarrow f \pm g$ uniformly on S .
 (8) Let $\{f_n\}$ be a sequence of functions on $S \subseteq \mathbb{R}$, and suppose $f_n \rightarrow f$ uniformly on S . If $\{\frac{1}{f_n}\}$ is uniformly bounded on S , then prove that $\frac{1}{f_n} \rightarrow \frac{1}{f}$ uniformly on S .
 (9) Prove that the product of uniformly convergent sequences of functions may not converge uniformly.

[Hint: Consider $f_n(x) = x + \frac{1}{n}$, $n \geq 1$ and $x \in \mathbb{R}$. Then consider f_n^2 .]

(10) Prove that the sequence of functions defined by

$$f_n(x) = \frac{n+x}{4n+x}$$

converges uniformly on the interval $[0, r]$ for any $r > 0$, but does not converge uniformly on $[0, \infty)$.

(11) Let $\{f_n\}$ and $\{g_n\}$ be sequences of bounded functions on $S \subseteq \mathbb{R}$, and suppose $f_n \rightarrow f$ and $g_n \rightarrow g$ uniformly. Prove that $f_n g_n \rightarrow f g$ uniformly.
 (12) Prove that $\{\sin(x + \frac{1}{n})\}$ converges uniformly to $\sin x$ on \mathbb{R} .
 (13) Let f be uniformly continuous on \mathbb{R} and let $\{r_n\}$ be a convergent sequence of real numbers. Suppose

$$f_n(x) = f(x + r_n) \quad (n \geq 1, x \in \mathbb{R}).$$

Prove that $\{f_n\}$ converges uniformly on \mathbb{R} .