

(1) Let $f \in C[0, 1]$, and let

$$f_n(x) = f(x^n) \quad (n \geq 1, x \in [0, 1]).$$

Verify whether $\{\int_0^1 f_n\}_{n \geq 1}$ converges to $f(0)$.

(2) Prove that $\sum_{n=1}^{\infty} x^2 e^{-nx}$ converges uniformly on $(0, \infty)$.

(3) Prove that $\sum_{n=1}^{\infty} n e^{-nx}$ converges uniformly on $[\epsilon, \infty)$ for any $\epsilon > 0$, but does not converge uniformly on $(0, \infty)$.

(4) Prove that $\sum_{n=1}^{\infty} \frac{x^n}{n}$ does not converge uniformly on $(0, 1)$.

(5) Prove that the series $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges uniformly on $[-R, R]$ for all $R > 0$. Also, prove that

$$\frac{d}{dx} \left(\sum_{n=0}^{\infty} \frac{x^n}{n!} \right) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \quad (x \in \mathbb{R}).$$

(6) Examine the uniform convergence of the following series:

$$(i) \sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)}, x \in \mathbb{R}, \quad (ii) \sum_{n=1}^{\infty} \frac{1}{(n+x)^2}, x \geq 0, \quad (iii) \sum_{n=1}^{\infty} \frac{\sin nx}{e^n}, x \in \mathbb{R}.$$

(7) Prove that the series

$$\sum_{n=0}^{\infty} \left(\frac{x^{2n+1}}{2n+1} - \frac{x^{n+1}}{2n+2} \right),$$

converges pointwise but not uniformly on $[0, 1]$.

(8) Let $\sum f_n$ converges uniformly on $S \subseteq \mathbb{R}$. True or false?

- (i) $\{f_n\}$ is pointwise convergent on S .
- (ii) $\{f_n\}$ is uniformly convergent on S .

(9) Let $\{f_n\}$ converges uniformly on each S_1, \dots, S_m . Prove that $\{f_n\}$ converges uniformly on $\bigcup_{k=1}^m S_k$.

(10) Give an example where $\{f_n\}$ converges uniformly on each of an infinite sequence of sets S_1, S_2, \dots , but not on $\bigcup_{k=1}^{\infty} S_k$.