

Indian Statistical Institute, Bangalore

B. Math.

First Year, Second Semester

Linear Algebra-II

Home Assignment II

Due Date : 20 March 2022

Instructor: B V Rajarama Bhat

Remark: Standard inner product is considered on \mathbb{R}^n and \mathbb{C}^n unless some other inner product is explicitly mentioned.

(1) Define ‘ l^1 -norm’ on \mathbb{C}^n by

$$\|x\|_1 = \sum_{j=1}^n |x_j|, \quad \forall x \in \mathbb{C}^n.$$

Show that (i) $\|x+y\|_1 \leq \|x\|_1 + \|y\|_1$, $\forall x, y \in \mathbb{C}^n$. (ii) $\|x\|_1 = 0$ if and only if $x = 0$. (iii) $\|ax\|_1 = |a|\|x\|_1$ for all $a \in \mathbb{C}$, $x \in \mathbb{C}^n$. (iv) For $n \geq 2$ there is no inner product $\langle \cdot, \cdot \rangle$ on \mathbb{C}^n such that

$$\|x\|_1 = (\langle x, x \rangle)^{\frac{1}{2}}, \quad \forall x \in \mathbb{C}^n.$$

(2) Let V be a finite dimensional inner product space with inner product $\langle \cdot, \cdot \rangle$. Let $B : V \rightarrow V$ be an invertible linear map. Show that

$$\langle x, y \rangle_B := \langle Bx, By \rangle, \quad \forall x, y \in V,$$

defines an inner product on V .

(3) (i) Let $A : \mathbb{C}^n \rightarrow \mathbb{C}^n$ be a linear map. Show that $\langle v, Av \rangle = 0$ for all $v \in \mathbb{C}^n$ implies $A = 0$. (ii) Show that in general the result in (i) is not true if \mathbb{C}^n is replaced by \mathbb{R}^n . (Hint: Get a counter example with $n = 2$.)

(4) Let V, W be finite dimensional inner product spaces and let $A : V \rightarrow W$ be a linear map. Show that

$$\ker(A) = (\text{range}(A^*))^\perp.$$

(Here ‘ker’ stands for kernel.)

(5) Let S be a non-empty subset of a finite dimensional inner product space V .
 (i) Show that

$$(S^\perp)^\perp = \text{span}(S).$$

(ii) Show that $((S^\perp)^\perp)^\perp = S^\perp$.

(6) Let U be an $n \times n$ unitary matrix. Define $D = [d_{ij}]_{1 \leq i, j \leq n}$ by

$$d_{ij} = |u_{ij}|^2, \quad 1 \leq i, j \leq n.$$

Show that D is a doubly stochastic matrix. Such matrices are known as ‘unitary stochastic’ matrices. Show that not every doubly stochastic matrix is a unitary stochastic matrix.

(7) Let λ be an eigen value of a unitary matrix. Show that $|\lambda| = 1$.
 (8) Suppose $\{a_1, a_2, \dots, a_n\}$ are eigenvalues of a matrix A . Suppose $\{b_1, \dots, b_n\}$ are eigenvalues of a matrix B . Show that in general eigenvalues of $A + B$ are not given by $\{a_1 + b_1, \dots, a_n + b_n\}$. However, this is the case if $B = bI$ for some $b \in \mathbb{C}$.

(9) Let V_0 be the subspace

$$V_0 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} : x_1 + x_2 = 0 \right\}$$

of \mathbb{C}^3 . Write down the matrix of the projection map on to V_0 in standard basis.

(10) Suppose $\mathcal{B} = \{b_1, b_2, \dots, b_n\}$ and $\mathcal{C} = \{c_1, c_2, \dots, c_n\}$ are two ortho-normal bases of \mathbb{C}^n . Then \mathcal{B} and \mathcal{C} are said to be **mutually unbiased** if

$$|\langle b_i, c_j \rangle| = \gamma, \quad \forall 1 \leq i, j \leq n.$$

for some fixed $\gamma \in \mathbb{C}$. (i) Show that if \mathcal{B} and \mathcal{C} are mutually unbiased orthonormal bases and γ is above, then $\gamma = \frac{1}{\sqrt{d}}$. (ii) Obtain three mutually unbiased orthonormal bases $\mathcal{B}, \mathcal{C}, \mathcal{D}$ for \mathbb{C}^2 (any two of them should be mutually unbiased).

(Hint: You may take $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ and $\mathcal{C} = \left\{ \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \right\}$.

(11) **Challenge Problem (Optional):** Get seven mutually unbiased bases for \mathbb{C}^6 or show that it is not possible to get that many.