

Indian Statistical Institute, Bangalore

B. Math.

First Year, Second Semester

Linear Algebra-II

Home Assignment III

Due Date : 11 April 2022

Instructor: B V Rajarama Bhat

Remark: Standard inner product is considered on \mathbb{R}^n and \mathbb{C}^n unless some other inner product is explicitly mentioned.

- (1) A matrix A is said to be **nilpotent** if $A^k = 0$ for some $k \in \mathbb{N}$. Show that if a normal matrix A is nilpotent then $A = 0$.
- (2) A matrix S is said to be **skew-hermitian** if $S^* = -S$. Show that S is skew-hermitian iff iS is self-adjoint. Show that S is skew-hermitian iff S is normal and all its eigenvalues are purely imaginary, that is, they are of the form it where $t \in \mathbb{R}$.
- (3) Show that a matrix is normal if and only if its real and imaginary parts commute.
- (4) Show that sum of two normal matrices need not be normal. Show that product of two normal matrices need not be normal.
- (5) Write down the spectral decomposition of the following matrices:

$$A = \begin{bmatrix} 5 & 2 \\ 2 & 5 \end{bmatrix}, B = \begin{bmatrix} 5 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 4 \end{bmatrix}.$$

- (6) Let A be a self-adjoint matrix. Show that there exist two positive matrices A_+, A_- such that

$$A = A_+ - A_-, A_+ \cdot A_- = A_- \cdot A_+ = 0.$$

(Hint: Use spectral theorem)

- (7) Suppose d_1, d_2, \dots, d_n are n -complex numbers and $\sigma : \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}$ is a permutation. Show that diagonal matrices D and E with diagonal entries:

$$d_{ii} = d_i, e_{ii} = d_{\sigma(i)}, 1 \leq i \leq n$$

are unitarily equivalent. Show that if two normal matrices A, B are similar then they are unitarily equivalent.

- (8) If A is an $m \times m$ matrix and B is an $n \times n$ matrix, their **direct sum** is defined as the block matrix

$$A \oplus B = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}.$$

Show that $A \oplus B$ is normal (respectively unitary, self-adjoint, projection, positive) if and only if both A and B are normal (respectively unitary, self-adjoint, projection, positive).

- (9) If A is a normal matrix show that rank of A is same as the number of non-zero eigenvalues of A .

- (10) Suppose N is a normal matrix. Show that

$$|\text{trace}(N)|^2 \leq \text{rank}(N) \cdot \text{trace}(N^*N).$$

(Hint: Spectral theorem and Cauchy-Schwarz inequality)