

**Indian Statistical Institute, Bangalore**

B. Math.

First Year, Second Semester

Linear Algebra-II

Home Assignment IV

Due Date : 10 May 2022

Instructor: B V Rajarama Bhat

**Remark:** Standard inner product is considered on  $\mathbb{R}^n$  and  $\mathbb{C}^n$  unless some other inner product is explicitly mentioned.

(1) (**Hadamard's inequality**). Suppose  $A$  is a positive matrix then

$$\det(A) \leq \prod_{i=1}^n a_{ii}.$$

(Hint: First consider the case  $a_{ii} = 1$  for every  $i$ . Use AM-GM inequality on eigenvalues. The general case should follow by considering  $A$  as a Gram matrix and suitably re-scaling the vectors.)

(2) State and present a proof of Sylvester's law of inertia (Hint: See Wikipedia and other sources).  
 (3) Obtain polar decompositions and singular value decompositions for following matrices:

$$A = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}, B = \begin{bmatrix} 2 & 5 & 0 \\ 5 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}.$$

(4) Obtain Jordan Canonical form for following matrices:

$$C = \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix}, D = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}.$$

(5) Obtain simultaneous diagonalization for the following commuting matrices:

$$E = \begin{bmatrix} 5 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 3 \end{bmatrix}, F = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}.$$

(6) Write  $E, F$  of previous exercise as polynomials of a single matrix  $G$ .  
 (7) Use Cayley-Hamilton theorem to find eigenvalues, eigenvectors and inverses of the following matrices:

$$A = \begin{bmatrix} 5 & 2 \\ 2 & 5 \end{bmatrix}, B = \begin{bmatrix} 5 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 4 \end{bmatrix}.$$

(8) Suppose  $B = [b_{ij}]$  is an  $n \times n$  positive rank one matrix. Show that there exist  $b_1, \dots, b_n$  such that  $b_{ij} = b_i \bar{b}_j$ .  
 (9) Suppose  $A$  is a positive matrix. Show that  $A$  is a sum of positive rank one matrices. (Hint: Use spectral theorem).  
 (10) (**Schur product**) Given two square matrices  $A = [a_{ij}], B = [b_{ij}]$ , their Schur product  $A \circ B$  is defined as the matrix  $C = [c_{ij}]$ , where

$$c_{ij} = a_{ij} \cdot b_{ij}.$$

(It is the entrywise product of matrices.) Show that if  $A, B$  are positive then  $C = A \circ B$  is positive. (Hint: First prove it for rank one matrices. Use exercises 8 and 9.)