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» Here is a well-known game, called fifteen puzzle:

> https://lorecioni.github.io/fifteen-puzzle-game/

» Information on the Wikipedia :
https://en.wikipedia.org/wiki/15_puzzle

» Question : Consider the initial configuration as:

1 2 3 4
5 6 7 8
9 10 11 12
13 15 14

» Can we re-arrange it to the natural order by moves permitted
by the game?

» Some rich man offered a lot of money for people to come up
with a solution.

» But there was no solution!

» The Rubik’s cube is a toy very you see a lot of ‘permutations’
in action.
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» Definition 1.1: Let S be a finite set. Then a bijective function
o0 :S — S is said to be a permutation of S.

Example 1.2: Take S = {s1,52,...,5n}.
Define 01 : S — S by

vy

Sit+1 if 1<j<n
“1(51):{ s ifj—n

» Assume n > 3. Define oy : S — S by

s3 if j=1
02(Sj) = 51 if j: 3
S otherwise.

» Then 01,0, are permutations.
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Notation

» One way to display the permutation is to write it down
explicitly:
> We may show o1 above by:

S1 S2 ... Sp—-1 Sp
So S3 ... Sn S1
» Similarly o5 is displayed as:

S51 S S3 S4 ... Sp
S3 S S1 S4 ... Sp
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Group property

» Theorem 1.3: Let S be a finite set. Let G be the collection of
all permutations of S.

» If 0,7 are elements of G, then o o 7 is also an element of G
and the operation o has the following properties:

» (i) Associativity: o1 o (02 003) = (01 0 02) 0 o3 for all
01,02,03 in G.

» (ii) Existence of identity: There exists ¢ € G such that
too=cotr=oc forall o € G.

» (iii) Existence of inverse: For o € G, there exists 0~ in G
such that o oo =000t = ..

» Proof. Take ¢ as the identity map and then properties (/) to
(iii) should be clear.
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In the following we always take the finite set S under
consideration as {1,2,..., n} for some fixed n € N.

Example 1.4: Suppose S = {1,2,...7}. Consider the

permutation:
1 23 45 67
357 4261

We see 1 --+ 3 --» 7 --» 1. This we call as a cycle. It is a
cycle of length 3.

This permutation also has 2 --» 5 --» 2, a cycle of length 2.
It also has 4 --+ 4 and 6 --» 6, cycles of length 1.

For distinct ki, ko,..., kr in {1,2,...,n} (with r € N) we
denote the cycle ky --» ko ==+ -+~ -=3 k, -—» kg simply as
(ki, kay .oy k).
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Cycle decomposition of permutations

» For any permutation o, o> denotes o o o and more generally
for any natural number r, 6" =coco---00 (r times).

» Lemma 1.5: Let S ={1,2,...,n} for some n € N and let
be a permutation of S. Then for any k; € S, there exists
r € N such that 0" (k1) = k.

» Proof. Take ko = o(ky). If ko = ki, we can take r = 1, and
we are done.

» If kp # ki, take k3 = o(ka). If k3 = ki, we can take r = 2 and
we are done.

> k3 = ko is not possible, as this would mean that
ko = o(ki) = o(kz) and contradicting injectivity of o.
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Continuation

» Continuing this way, by induction if we get distinct

ki, ko, ..., ks with ky --» ko -=» - -+ -3 kg, we take
kst1 = o(ks). If ksy1 = ki, we can take r = s and we are
done.

» Forany 2 <t <s, kst1 = kt = o(k¢—1) is not possible due to
injectivity of o.

> If ki,..., kst1 are all distinct, we can continue the induction
process.

» This process has to terminate after some steps as the set S is
finite. In fact S has exactly n distinct elements and so we will
have r < n.

» Exercise 1.6: Show that there exists some t € N such that
ot(j)=jforallj€S.



Products of cycles

> We have seen that a permutation may have several cycles.



Products of cycles

> We have seen that a permutation may have several cycles.

» We may write down the permutation by listing the cycles it
has.



Products of cycles

> We have seen that a permutation may have several cycles.

» We may write down the permutation by listing the cycles it
has.

» For instance, the permutation of Example 1.4, is written as

(1,3,7)(2,5)(4)(6).



Products of cycles

> We have seen that a permutation may have several cycles.

» We may write down the permutation by listing the cycles it
has.

» For instance, the permutation of Example 1.4, is written as
(1,3,7)(2,5)(4)(6).

» We may also write it as (3,7,1)(4)(2,5), (6) or as
(7,1,3)(5,2)(6)(4). In other words, in what order we write
these cycles does not matter.



Products of cycles

> We have seen that a permutation may have several cycles.

» We may write down the permutation by listing the cycles it
has.

» For instance, the permutation of Example 1.4, is written as
(1,3,7)(2,5)(4)(6).

» We may also write it as (3,7,1)(4)(2,5), (6) or as
(7,1,3)(5,2)(6)(4). In other words, in what order we write
these cycles does not matter.

» Some authors do not write down 1-cycles at all. It is
understood that elements of S which are not written down
form 1-cycles.



Products of cycles

> We have seen that a permutation may have several cycles.

» We may write down the permutation by listing the cycles it
has.

» For instance, the permutation of Example 1.4, is written as
(1,3,7)(2,5)(4)(6).

» We may also write it as (3,7,1)(4)(2,5), (6) or as
(7,1,3)(5,2)(6)(4). In other words, in what order we write
these cycles does not matter.

» Some authors do not write down 1-cycles at all. It is
understood that elements of S which are not written down
form 1-cycles.

» With this notation this permutation is simply (1,3,7),(2,5) or
(3,7,1)(5,2) etc.
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Products of cycles continued
» Let S={1,2,...,n} for some n € N.
» Then (ki, ko, ..., k,) denotes the permutation:
ki --» ko —-> ks --» ... -—» k, -—» ky,j --» j otherwise.

> More generally if k11, k12, ey k1r17 k21, k22, ey k2r2,
k31, k32, ..., k3, ...y kmi, km2, . . . kmr,, are distinct elements
of S, then

(k117 k127 R klrl)(k21, k227 ey k2r2) tee (km17 km2; ey kmrm)
is a ‘product’ of cycles, with
U(kll) = k1210—(k12) = k]_3, e 70'(/(1’,1) = kll;

O'(k21) = k22,. . .,O’(k2r2) = kgl,...,

o(km1) = km2 ..., 0(kmr,,) = km1,0(j) =j, otherwise.
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Theorem 1.7: Let S = {1,2,...,n} for some n € N Suppose
o is a permutation of S. Then S decomposes uniquely as a
product of cycles.

Proof. Take k; = 1. Then by Lemma 1.3, and its proof, o has
a cycle (ki, ko, ..., k;) with ky = 1.

If S = {ki, ko,...,k/}, we are done. If not, take any

J €{ki, ka,..., k}€, and we can get a cycle (j1, jo,...) with
elements distinct from {ki, ko, ..., k. }. Continuing this way,
we can exhaust whole of S, as S is a finite set.

Clearly then, the permutation o is a product of cycles. The
uniqueness should also be clear as these cycles determine o.
For i,jin S, write i ~ j if j = o"(i) for some r € {0,1,...}.
Then ~ is an equivalence relation. (Exercise).

It maybe seen that i, are in the same cycle if and only if

i ~ j. In other words, the equivalence classes form different
cycles of the permutation.
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Signature of a permutation

» Definition 1.8: Let S = {1,2,...,n} for some n € N and let o
be a permutation of S. Then the signature of ¢ is defined as
the number

(o) =(=1)""
where p is the number of cycles (including cycles of length 1)
in the cycle decomposition of o.
» For instance for the permutation o of Example 1.3,
(o) = (-1)"* = (-1’ =-1.

» Note that the signature of identity permutation is always 1.

» A cycle (ki, k2, ..., k) can be identified with the permutation
o defined by

O'(k]_) = k270(k2) - k?,7 e ,O'(kr) = kl

and o(j) =j for j & {ki, ko, ..., ke }.
» Therefore the signature of a cycle is defined as
(ki, ko, k) = (=1)n=A+(=0) = (1)L,
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Continuation

» Cycles of length two are known as transpositions. We see that
transpositions have signature (—1).

» Permutations with signature (+1) are known as even
permutations and those with signature (—1) are known as odd
permutations.

» END OF LECTURE 1.



