

LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

References

- ▶ Basic references:

References

- ▶ Basic references:
- ▶ Linear Algebra, A. Ramachandra Rao and P. Bhimasankaram.

References

- ▶ Basic references:
- ▶ Linear Algebra, A. Ramachandra Rao and P. Bhimasankaram.
- ▶ Algebra, Michael Artin.

References

- ▶ Basic references:
- ▶ Linear Algebra, A. Ramachandra Rao and P. Bhimasankaram.
- ▶ Algebra, Michael Artin.
- ▶ Linear Algebra, Henry Helson.

Lecture 1: Permutations

- ▶ Here is a well-known game, called fifteen puzzle:

Lecture 1: Permutations

- ▶ Here is a well-known game, called fifteen puzzle:
- ▶ <https://lorecioni.github.io/fifteen-puzzle-game/>

Lecture 1: Permutations

- ▶ Here is a well-known game, called fifteen puzzle:
- ▶ <https://lorecioni.github.io/fifteen-puzzle-game/>
- ▶ Information on the Wikipedia :
https://en.wikipedia.org/wiki/15_puzzle

Lecture 1: Permutations

- ▶ Here is a well-known game, called fifteen puzzle:
- ▶ <https://lorecioni.github.io/fifteen-puzzle-game/>
- ▶ Information on the Wikipedia :
https://en.wikipedia.org/wiki/15_puzzle
- ▶ Question : Consider the initial configuration as:

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 15 & 14 & \end{bmatrix}$$

Lecture 1: Permutations

- ▶ Here is a well-known game, called fifteen puzzle:
- ▶ <https://lorecioni.github.io/fifteen-puzzle-game/>
- ▶ Information on the Wikipedia :
https://en.wikipedia.org/wiki/15_puzzle
- ▶ Question : Consider the initial configuration as:

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 15 & 14 & \end{bmatrix}$$

- ▶ Can we re-arrange it to the natural order by moves permitted by the game?

Lecture 1: Permutations

- ▶ Here is a well-known game, called fifteen puzzle:
- ▶ <https://lorecioni.github.io/fifteen-puzzle-game/>
- ▶ Information on the Wikipedia :
https://en.wikipedia.org/wiki/15_puzzle
- ▶ Question : Consider the initial configuration as:

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 15 & 14 & \end{bmatrix}$$

- ▶ Can we re-arrange it to the natural order by moves permitted by the game?
- ▶ Some rich man offered a lot of money for people to come up with a solution.

Lecture 1: Permutations

- ▶ Here is a well-known game, called fifteen puzzle:
- ▶ <https://lorecioni.github.io/fifteen-puzzle-game/>
- ▶ Information on the Wikipedia :
https://en.wikipedia.org/wiki/15_puzzle
- ▶ Question : Consider the initial configuration as:

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 15 & 14 & \end{bmatrix}$$

- ▶ Can we re-arrange it to the natural order by moves permitted by the game?
- ▶ Some rich man offered a lot of money for people to come up with a solution.
- ▶ But there was no solution!

Lecture 1: Permutations

- ▶ Here is a well-known game, called fifteen puzzle:
- ▶ <https://lorecioni.github.io/fifteen-puzzle-game/>
- ▶ Information on the Wikipedia :
https://en.wikipedia.org/wiki/15_puzzle
- ▶ Question : Consider the initial configuration as:

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 15 & 14 & \end{bmatrix}$$

- ▶ Can we re-arrange it to the natural order by moves permitted by the game?
- ▶ Some rich man offered a lot of money for people to come up with a solution.
- ▶ But there was no solution!
- ▶ The Rubik's cube is a toy very you see a lot of 'permutations' in action.

Definition

- ▶ **Definition 1.1:** Let S be a finite set. Then a bijective function $\sigma : S \rightarrow S$ is said to be a **permutation** of S .

Definition

- ▶ **Definition 1.1:** Let S be a finite set. Then a bijective function $\sigma : S \rightarrow S$ is said to be a **permutation** of S .
- ▶ **Example 1.2:** Take $S = \{s_1, s_2, \dots, s_n\}$.

Definition

- ▶ **Definition 1.1:** Let S be a finite set. Then a bijective function $\sigma : S \rightarrow S$ is said to be a **permutation** of S .
- ▶ **Example 1.2:** Take $S = \{s_1, s_2, \dots, s_n\}$.
- ▶ Define $\sigma_1 : S \rightarrow S$ by

$$\sigma_1(s_j) = \begin{cases} s_{j+1} & \text{if } 1 \leq j < n \\ s_1 & \text{if } j = n. \end{cases}$$

Definition

- ▶ **Definition 1.1:** Let S be a finite set. Then a bijective function $\sigma : S \rightarrow S$ is said to be a **permutation** of S .
- ▶ **Example 1.2:** Take $S = \{s_1, s_2, \dots, s_n\}$.
- ▶ Define $\sigma_1 : S \rightarrow S$ by

$$\sigma_1(s_j) = \begin{cases} s_{j+1} & \text{if } 1 \leq j < n \\ s_1 & \text{if } j = n. \end{cases}$$

- ▶ Assume $n \geq 3$. Define $\sigma_2 : S \rightarrow S$ by

$$\sigma_2(s_j) = \begin{cases} s_3 & \text{if } j = 1 \\ s_1 & \text{if } j = 3 \\ s_j & \text{otherwise.} \end{cases}$$

Definition

- ▶ **Definition 1.1:** Let S be a finite set. Then a bijective function $\sigma : S \rightarrow S$ is said to be a **permutation** of S .
- ▶ **Example 1.2:** Take $S = \{s_1, s_2, \dots, s_n\}$.
- ▶ Define $\sigma_1 : S \rightarrow S$ by

$$\sigma_1(s_j) = \begin{cases} s_{j+1} & \text{if } 1 \leq j < n \\ s_1 & \text{if } j = n. \end{cases}$$

- ▶ Assume $n \geq 3$. Define $\sigma_2 : S \rightarrow S$ by

$$\sigma_2(s_j) = \begin{cases} s_3 & \text{if } j = 1 \\ s_1 & \text{if } j = 3 \\ s_j & \text{otherwise.} \end{cases}$$

- ▶ Then σ_1, σ_2 are permutations.

Notation

- ▶ One way to display the permutation is to write it down explicitly:

Notation

- ▶ One way to display the permutation is to write it down explicitly:
- ▶ We may show σ_1 above by:

$$\begin{pmatrix} s_1 & s_2 & \dots & s_{n-1} & s_n \\ s_2 & s_3 & \dots & s_n & s_1 \end{pmatrix}$$

Notation

- ▶ One way to display the permutation is to write it down explicitly:
- ▶ We may show σ_1 above by:

$$\begin{pmatrix} s_1 & s_2 & \dots & s_{n-1} & s_n \\ s_2 & s_3 & \dots & s_n & s_1 \end{pmatrix}$$

- ▶ Similarly σ_2 is displayed as:

$$\begin{pmatrix} s_1 & s_2 & s_3 & s_4 & \dots & s_n \\ s_3 & s_2 & s_1 & s_4 & \dots & s_n \end{pmatrix}$$

Group property

- ▶ **Theorem 1.3:** Let S be a finite set. Let G be the collection of all permutations of S .

Group property

- ▶ **Theorem 1.3:** Let S be a finite set. Let G be the collection of all permutations of S .
- ▶ If σ, τ are elements of G , then $\sigma \circ \tau$ is also an element of G and the operation \circ has the following properties:

Group property

- ▶ **Theorem 1.3:** Let S be a finite set. Let G be the collection of all permutations of S .
- ▶ If σ, τ are elements of G , then $\sigma \circ \tau$ is also an element of G and the operation \circ has the following properties:
- ▶ (i) **Associativity:** $\sigma_1 \circ (\sigma_2 \circ \sigma_3) = (\sigma_1 \circ \sigma_2) \circ \sigma_3$ for all $\sigma_1, \sigma_2, \sigma_3$ in G .

Group property

- ▶ **Theorem 1.3:** Let S be a finite set. Let G be the collection of all permutations of S .
- ▶ If σ, τ are elements of G , then $\sigma \circ \tau$ is also an element of G and the operation \circ has the following properties:
 - ▶ (i) **Associativity:** $\sigma_1 \circ (\sigma_2 \circ \sigma_3) = (\sigma_1 \circ \sigma_2) \circ \sigma_3$ for all $\sigma_1, \sigma_2, \sigma_3$ in G .
 - ▶ (ii) **Existence of identity:** There exists $\iota \in G$ such that $\iota \circ \sigma = \sigma \circ \iota = \sigma$ for all $\sigma \in G$.

Group property

- ▶ **Theorem 1.3:** Let S be a finite set. Let G be the collection of all permutations of S .
- ▶ If σ, τ are elements of G , then $\sigma \circ \tau$ is also an element of G and the operation \circ has the following properties:
 - ▶ (i) **Associativity:** $\sigma_1 \circ (\sigma_2 \circ \sigma_3) = (\sigma_1 \circ \sigma_2) \circ \sigma_3$ for all $\sigma_1, \sigma_2, \sigma_3$ in G .
 - ▶ (ii) **Existence of identity:** There exists $\iota \in G$ such that $\iota \circ \sigma = \sigma \circ \iota = \sigma$ for all $\sigma \in G$.
 - ▶ (iii) **Existence of inverse:** For $\sigma \in G$, there exists σ^{-1} in G such that $\sigma^{-1} \circ \sigma = \sigma \circ \sigma^{-1} = \iota$.

Group property

- ▶ **Theorem 1.3:** Let S be a finite set. Let G be the collection of all permutations of S .
- ▶ If σ, τ are elements of G , then $\sigma \circ \tau$ is also an element of G and the operation \circ has the following properties:
 - ▶ (i) **Associativity:** $\sigma_1 \circ (\sigma_2 \circ \sigma_3) = (\sigma_1 \circ \sigma_2) \circ \sigma_3$ for all $\sigma_1, \sigma_2, \sigma_3$ in G .
 - ▶ (ii) **Existence of identity:** There exists $\iota \in G$ such that $\iota \circ \sigma = \sigma \circ \iota = \sigma$ for all $\sigma \in G$.
 - ▶ (iii) **Existence of inverse:** For $\sigma \in G$, there exists σ^{-1} in G such that $\sigma^{-1} \circ \sigma = \sigma \circ \sigma^{-1} = \iota$.
- ▶ **Proof.** Take ι as the identity map and then properties (i) to (iii) should be clear.

cycles

- ▶ In the following we always take the finite set S under consideration as $\{1, 2, \dots, n\}$ for some fixed $n \in \mathbb{N}$.

cycles

- ▶ In the following we always take the finite set S under consideration as $\{1, 2, \dots, n\}$ for some fixed $n \in \mathbb{N}$.
- ▶ **Example 1.4:** Suppose $S = \{1, 2, \dots, 7\}$. Consider the permutation:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 4 & 2 & 6 & 1 \end{pmatrix}$$

cycles

- ▶ In the following we always take the finite set S under consideration as $\{1, 2, \dots, n\}$ for some fixed $n \in \mathbb{N}$.
- ▶ **Example 1.4:** Suppose $S = \{1, 2, \dots, 7\}$. Consider the permutation:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 4 & 2 & 6 & 1 \end{pmatrix}$$

- ▶ We see $1 \rightarrow 3 \rightarrow 7 \rightarrow 1$. This we call as a **cycle**. It is a cycle of **length 3**.

cycles

- ▶ In the following we always take the finite set S under consideration as $\{1, 2, \dots, n\}$ for some fixed $n \in \mathbb{N}$.
- ▶ **Example 1.4:** Suppose $S = \{1, 2, \dots, 7\}$. Consider the permutation:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 4 & 2 & 6 & 1 \end{pmatrix}$$

- ▶ We see $1 \rightarrow 3 \rightarrow 7 \rightarrow 1$. This we call as a **cycle**. It is a cycle of **length 3**.
- ▶ This permutation also has $2 \rightarrow 5 \rightarrow 2$, a cycle of length 2.

cycles

- ▶ In the following we always take the finite set S under consideration as $\{1, 2, \dots, n\}$ for some fixed $n \in \mathbb{N}$.
- ▶ **Example 1.4:** Suppose $S = \{1, 2, \dots, 7\}$. Consider the permutation:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 4 & 2 & 6 & 1 \end{pmatrix}$$

- ▶ We see $1 \rightarrow 3 \rightarrow 7 \rightarrow 1$. This we call as a **cycle**. It is a cycle of **length 3**.
- ▶ This permutation also has $2 \rightarrow 5 \rightarrow 2$, a cycle of length 2.
- ▶ It also has $4 \rightarrow 4$ and $6 \rightarrow 6$, cycles of length 1.

cycles

- ▶ In the following we always take the finite set S under consideration as $\{1, 2, \dots, n\}$ for some fixed $n \in \mathbb{N}$.
- ▶ **Example 1.4:** Suppose $S = \{1, 2, \dots, 7\}$. Consider the permutation:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 4 & 2 & 6 & 1 \end{pmatrix}$$

- ▶ We see $1 \rightarrow 3 \rightarrow 7 \rightarrow 1$. This we call as a **cycle**. It is a cycle of length 3.
- ▶ This permutation also has $2 \rightarrow 5 \rightarrow 2$, a cycle of length 2.
- ▶ It also has $4 \rightarrow 4$ and $6 \rightarrow 6$, cycles of length 1.
- ▶ For distinct k_1, k_2, \dots, k_r in $\{1, 2, \dots, n\}$ (with $r \in \mathbb{N}$) we denote the cycle $k_1 \rightarrow k_2 \rightarrow \dots \rightarrow k_r \rightarrow k_1$ simply as (k_1, k_2, \dots, k_r) .

Cycle decomposition of permutations

- ▶ For any permutation σ , σ^2 denotes $\sigma \circ \sigma$ and more generally for any natural number r , $\sigma^r = \sigma \circ \sigma \circ \cdots \circ \sigma$ (r times).

Cycle decomposition of permutations

- ▶ For any permutation σ , σ^2 denotes $\sigma \circ \sigma$ and more generally for any natural number r , $\sigma^r = \sigma \circ \sigma \circ \cdots \circ \sigma$ (r times).
- ▶ **Lemma 1.5:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$ and let σ be a permutation of S . Then for any $k_1 \in S$, there exists $r \in \mathbb{N}$ such that $\sigma^r(k_1) = k_1$.

Cycle decomposition of permutations

- ▶ For any permutation σ , σ^2 denotes $\sigma \circ \sigma$ and more generally for any natural number r , $\sigma^r = \sigma \circ \sigma \circ \cdots \circ \sigma$ (r times).
- ▶ **Lemma 1.5:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$ and let σ be a permutation of S . Then for any $k_1 \in S$, there exists $r \in \mathbb{N}$ such that $\sigma^r(k_1) = k_1$.
- ▶ **Proof.** Take $k_2 = \sigma(k_1)$. If $k_2 = k_1$, we can take $r = 1$, and we are done.

Cycle decomposition of permutations

- ▶ For any permutation σ , σ^2 denotes $\sigma \circ \sigma$ and more generally for any natural number r , $\sigma^r = \sigma \circ \sigma \circ \cdots \circ \sigma$ (r times).
- ▶ **Lemma 1.5:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$ and let σ be a permutation of S . Then for any $k_1 \in S$, there exists $r \in \mathbb{N}$ such that $\sigma^r(k_1) = k_1$.
- ▶ **Proof.** Take $k_2 = \sigma(k_1)$. If $k_2 = k_1$, we can take $r = 1$, and we are done.
- ▶ If $k_2 \neq k_1$, take $k_3 = \sigma(k_2)$. If $k_3 = k_1$, we can take $r = 2$ and we are done.

Cycle decomposition of permutations

- ▶ For any permutation σ , σ^2 denotes $\sigma \circ \sigma$ and more generally for any natural number r , $\sigma^r = \sigma \circ \sigma \circ \cdots \circ \sigma$ (r times).
- ▶ **Lemma 1.5:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$ and let σ be a permutation of S . Then for any $k_1 \in S$, there exists $r \in \mathbb{N}$ such that $\sigma^r(k_1) = k_1$.
- ▶ **Proof.** Take $k_2 = \sigma(k_1)$. If $k_2 = k_1$, we can take $r = 1$, and we are done.
- ▶ If $k_2 \neq k_1$, take $k_3 = \sigma(k_2)$. If $k_3 = k_1$, we can take $r = 2$ and we are done.
- ▶ $k_3 = k_2$ is not possible, as this would mean that $k_2 = \sigma(k_1) = \sigma(k_2)$ and contradicting injectivity of σ .

Continuation

- ▶ Continuing this way, by induction if we get distinct k_1, k_2, \dots, k_s with $k_1 \dashrightarrow k_2 \dashrightarrow \dots \dashrightarrow k_s$, we take $k_{s+1} = \sigma(k_s)$. If $k_{s+1} = k_1$, we can take $r = s$ and we are done.

Continuation

- ▶ Continuing this way, by induction if we get distinct k_1, k_2, \dots, k_s with $k_1 \dashrightarrow k_2 \dashrightarrow \dots \dashrightarrow k_s$, we take $k_{s+1} = \sigma(k_s)$. If $k_{s+1} = k_1$, we can take $r = s$ and we are done.
- ▶ For any $2 \leq t \leq s$, $k_{s+1} = k_t = \sigma(k_{t-1})$ is not possible due to injectivity of σ .

Continuation

- ▶ Continuing this way, by induction if we get distinct k_1, k_2, \dots, k_s with $k_1 \dashrightarrow k_2 \dashrightarrow \dots \dashrightarrow k_s$, we take $k_{s+1} = \sigma(k_s)$. If $k_{s+1} = k_1$, we can take $r = s$ and we are done.
- ▶ For any $2 \leq t \leq s$, $k_{s+1} = k_t = \sigma(k_{t-1})$ is not possible due to injectivity of σ .
- ▶ If k_1, \dots, k_{s+1} are all distinct, we can continue the induction process.

Continuation

- ▶ Continuing this way, by induction if we get distinct k_1, k_2, \dots, k_s with $k_1 \rightarrow k_2 \rightarrow \dots \rightarrow k_s$, we take $k_{s+1} = \sigma(k_s)$. If $k_{s+1} = k_1$, we can take $r = s$ and we are done.
- ▶ For any $2 \leq t \leq s$, $k_{s+1} = k_t = \sigma(k_{t-1})$ is not possible due to injectivity of σ .
- ▶ If k_1, \dots, k_{s+1} are all distinct, we can continue the induction process.
- ▶ This process has to terminate after some steps as the set S is finite. In fact S has exactly n distinct elements and so we will have $r \leq n$.

Continuation

- ▶ Continuing this way, by induction if we get distinct k_1, k_2, \dots, k_s with $k_1 \rightarrow k_2 \rightarrow \dots \rightarrow k_s$, we take $k_{s+1} = \sigma(k_s)$. If $k_{s+1} = k_1$, we can take $r = s$ and we are done.
- ▶ For any $2 \leq t \leq s$, $k_{s+1} = k_t = \sigma(k_{t-1})$ is not possible due to injectivity of σ .
- ▶ If k_1, \dots, k_{s+1} are all distinct, we can continue the induction process.
- ▶ This process has to terminate after some steps as the set S is finite. In fact S has exactly n distinct elements and so we will have $r \leq n$.
- ▶ **Exercise 1.6:** Show that there exists some $t \in \mathbb{N}$ such that $\sigma^t(j) = j$ for all $j \in S$.

Products of cycles

- We have seen that a permutation may have several cycles.

Products of cycles

- ▶ We have seen that a permutation may have several cycles.
- ▶ We may write down the permutation by listing the cycles it has.

Products of cycles

- ▶ We have seen that a permutation may have several cycles.
- ▶ We may write down the permutation by listing the cycles it has.
- ▶ For instance, the permutation of Example 1.4, is written as $(1, 3, 7)(2, 5)(4)(6)$.

Products of cycles

- ▶ We have seen that a permutation may have several cycles.
- ▶ We may write down the permutation by listing the cycles it has.
- ▶ For instance, the permutation of Example 1.4, is written as $(1, 3, 7)(2, 5)(4)(6)$.
- ▶ We may also write it as $(3, 7, 1)(4)(2, 5), (6)$ or as $(7, 1, 3)(5, 2)(6)(4)$. In other words, in what order we write these cycles does not matter.

Products of cycles

- ▶ We have seen that a permutation may have several cycles.
- ▶ We may write down the permutation by listing the cycles it has.
- ▶ For instance, the permutation of Example 1.4, is written as $(1, 3, 7)(2, 5)(4)(6)$.
- ▶ We may also write it as $(3, 7, 1)(4)(2, 5), (6)$ or as $(7, 1, 3)(5, 2)(6)(4)$. In other words, in what order we write these cycles does not matter.
- ▶ Some authors do not write down 1-cycles at all. It is understood that elements of S which are not written down form 1-cycles.

Products of cycles

- ▶ We have seen that a permutation may have several cycles.
- ▶ We may write down the permutation by listing the cycles it has.
- ▶ For instance, the permutation of Example 1.4, is written as $(1, 3, 7)(2, 5)(4)(6)$.
- ▶ We may also write it as $(3, 7, 1)(4)(2, 5), (6)$ or as $(7, 1, 3)(5, 2)(6)(4)$. In other words, in what order we write these cycles does not matter.
- ▶ Some authors do not write down 1-cycles at all. It is understood that elements of S which are not written down form 1-cycles.
- ▶ With this notation this permutation is simply $(1, 3, 7), (2, 5)$ or $(3, 7, 1)(5, 2)$ etc.

Products of cycles continued

- ▶ Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$.

Products of cycles continued

- ▶ Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$.
- ▶ Then (k_1, k_2, \dots, k_r) denotes the permutation:

$k_1 \dashrightarrow k_2 \dashrightarrow k_3 \dashrightarrow \dots \dashrightarrow k_r \dashrightarrow k_1, j \dashrightarrow j$ otherwise.

Products of cycles continued

- ▶ Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$.
- ▶ Then (k_1, k_2, \dots, k_r) denotes the permutation:

$k_1 \dashrightarrow k_2 \dashrightarrow k_3 \dashrightarrow \dots \dashrightarrow k_r \dashrightarrow k_1, j \dashrightarrow j$ otherwise.

Products of cycles continued

- ▶ Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$.
- ▶ Then (k_1, k_2, \dots, k_r) denotes the permutation:

$k_1 \dashrightarrow k_2 \dashrightarrow k_3 \dashrightarrow \dots \dashrightarrow k_r \dashrightarrow k_1, j \dashrightarrow j$ otherwise.

Products of cycles continued

- ▶ Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$.
- ▶ Then (k_1, k_2, \dots, k_r) denotes the permutation:

$k_1 \dashrightarrow k_2 \dashrightarrow k_3 \dashrightarrow \dots \dashrightarrow k_r \dashrightarrow k_1, j \dashrightarrow j$ otherwise.

- ▶ More generally if $k_{11}, k_{12}, \dots, k_{1r_1}, k_{21}, k_{22}, \dots, k_{2r_2}, k_{31}, k_{32}, \dots, k_{3r_3}, \dots, k_{m1}, k_{m2}, \dots, k_{mr_m}$ are distinct elements of S , then

$$(k_{11}, k_{12}, \dots, k_{1r_1})(k_{21}, k_{22}, \dots, k_{2r_2}) \cdots (k_{m1}, k_{m2}, \dots, k_{mr_m})$$

is a ‘product’ of cycles, with

$$\sigma(k_{11}) = k_{12}, \sigma(k_{12}) = k_{13}, \dots, \sigma(k_{1r_1}) = k_{11},$$

$$\sigma(k_{21}) = k_{22}, \dots, \sigma(k_{2r_2}) = k_{21}, \dots,$$

$$\sigma(k_{m1}) = k_{m2}, \dots, \sigma(k_{mr_m}) = k_{m1}, \sigma(j) = j, \text{ otherwise.}$$

Products of cycles theorem

- **Theorem 1.7:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$. Suppose σ is a permutation of S . Then S decomposes uniquely as a product of cycles.

Products of cycles theorem

- ▶ **Theorem 1.7:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$. Suppose σ is a permutation of S . Then S decomposes uniquely as a product of cycles.
- ▶ **Proof.** Take $k_1 = 1$. Then by Lemma 1.3, and its proof, σ has a cycle (k_1, k_2, \dots, k_r) with $k_1 = 1$.

Products of cycles theorem

- ▶ **Theorem 1.7:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$. Suppose σ is a permutation of S . Then S decomposes uniquely as a product of cycles.
- ▶ **Proof.** Take $k_1 = 1$. Then by Lemma 1.3, and its proof, σ has a cycle (k_1, k_2, \dots, k_r) with $k_1 = 1$.
- ▶ If $S = \{k_1, k_2, \dots, k_r\}$, we are done. If not, take any $j \in \{k_1, k_2, \dots, k_r\}^c$, and we can get a cycle (j_1, j_2, \dots) with elements distinct from $\{k_1, k_2, \dots, k_r\}$. Continuing this way, we can exhaust whole of S , as S is a finite set.

Products of cycles theorem

- ▶ **Theorem 1.7:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$. Suppose σ is a permutation of S . Then S decomposes uniquely as a product of cycles.
- ▶ **Proof.** Take $k_1 = 1$. Then by Lemma 1.3, and its proof, σ has a cycle (k_1, k_2, \dots, k_r) with $k_1 = 1$.
- ▶ If $S = \{k_1, k_2, \dots, k_r\}$, we are done. If not, take any $j \in \{k_1, k_2, \dots, k_r\}^c$, and we can get a cycle (j_1, j_2, \dots) with elements distinct from $\{k_1, k_2, \dots, k_r\}$. Continuing this way, we can exhaust whole of S , as S is a finite set.
- ▶ Clearly then, the permutation σ is a product of cycles. The uniqueness should also be clear as these cycles determine σ .

Products of cycles theorem

- ▶ **Theorem 1.7:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$. Suppose σ is a permutation of S . Then S decomposes uniquely as a product of cycles.
- ▶ **Proof.** Take $k_1 = 1$. Then by Lemma 1.3, and its proof, σ has a cycle (k_1, k_2, \dots, k_r) with $k_1 = 1$.
- ▶ If $S = \{k_1, k_2, \dots, k_r\}$, we are done. If not, take any $j \in \{k_1, k_2, \dots, k_r\}^c$, and we can get a cycle (j_1, j_2, \dots) with elements distinct from $\{k_1, k_2, \dots, k_r\}$. Continuing this way, we can exhaust whole of S , as S is a finite set.
- ▶ Clearly then, the permutation σ is a product of cycles. The uniqueness should also be clear as these cycles determine σ .
- ▶ For i, j in S , write $i \sim j$ if $j = \sigma^r(i)$ for some $r \in \{0, 1, \dots\}$.

Products of cycles theorem

- ▶ **Theorem 1.7:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$. Suppose σ is a permutation of S . Then S decomposes uniquely as a product of cycles.
- ▶ **Proof.** Take $k_1 = 1$. Then by Lemma 1.3, and its proof, σ has a cycle (k_1, k_2, \dots, k_r) with $k_1 = 1$.
- ▶ If $S = \{k_1, k_2, \dots, k_r\}$, we are done. If not, take any $j \in \{k_1, k_2, \dots, k_r\}^c$, and we can get a cycle (j_1, j_2, \dots) with elements distinct from $\{k_1, k_2, \dots, k_r\}$. Continuing this way, we can exhaust whole of S , as S is a finite set.
- ▶ Clearly then, the permutation σ is a product of cycles. The uniqueness should also be clear as these cycles determine σ .
- ▶ For i, j in S , write $i \sim j$ if $j = \sigma^r(i)$ for some $r \in \{0, 1, \dots\}$.
- ▶ Then \sim is an equivalence relation. ([Exercise](#)).

Products of cycles theorem

- ▶ **Theorem 1.7:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$. Suppose σ is a permutation of S . Then S decomposes uniquely as a product of cycles.
- ▶ **Proof.** Take $k_1 = 1$. Then by Lemma 1.3, and its proof, σ has a cycle (k_1, k_2, \dots, k_r) with $k_1 = 1$.
- ▶ If $S = \{k_1, k_2, \dots, k_r\}$, we are done. If not, take any $j \in \{k_1, k_2, \dots, k_r\}^c$, and we can get a cycle (j_1, j_2, \dots) with elements distinct from $\{k_1, k_2, \dots, k_r\}$. Continuing this way, we can exhaust whole of S , as S is a finite set.
- ▶ Clearly then, the permutation σ is a product of cycles. The uniqueness should also be clear as these cycles determine σ .
- ▶ For i, j in S , write $i \sim j$ if $j = \sigma^r(i)$ for some $r \in \{0, 1, \dots\}$.
- ▶ Then \sim is an equivalence relation. ([Exercise](#)).
- ▶ It maybe seen that i, j are in the same cycle if and only if $i \sim j$. In other words, the equivalence classes form different cycles of the permutation.

Signature of a permutation

- **Definition 1.8:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$ and let σ be a permutation of S . Then the **signature** of σ is defined as the number

$$\epsilon(\sigma) = (-1)^{n-p}$$

where p is the number of cycles (including cycles of length 1) in the cycle decomposition of σ .

Signature of a permutation

- ▶ **Definition 1.8:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$ and let σ be a permutation of S . Then the **signature** of σ is defined as the number

$$\epsilon(\sigma) = (-1)^{n-p}$$

where p is the number of cycles (including cycles of length 1) in the cycle decomposition of σ .

- ▶ For instance for the permutation σ of Example 1.3, $\epsilon(\sigma) = (-1)^{7-4} = (-1)^3 = -1$.

Signature of a permutation

- ▶ **Definition 1.8:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$ and let σ be a permutation of S . Then the **signature** of σ is defined as the number

$$\epsilon(\sigma) = (-1)^{n-p}$$

where p is the number of cycles (including cycles of length 1) in the cycle decomposition of σ .

- ▶ For instance for the permutation σ of Example 1.3, $\epsilon(\sigma) = (-1)^{7-4} = (-1)^3 = -1$.
- ▶ Note that the signature of identity permutation is always 1.

Signature of a permutation

- ▶ **Definition 1.8:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$ and let σ be a permutation of S . Then the **signature** of σ is defined as the number

$$\epsilon(\sigma) = (-1)^{n-p}$$

where p is the number of cycles (including cycles of length 1) in the cycle decomposition of σ .

- ▶ For instance for the permutation σ of Example 1.3, $\epsilon(\sigma) = (-1)^{7-4} = (-1)^3 = -1$.
- ▶ Note that the signature of identity permutation is always 1.
- ▶ A cycle (k_1, k_2, \dots, k_r) can be identified with the permutation σ defined by

$$\sigma(k_1) = k_2, \sigma(k_2) = k_3, \dots, \sigma(k_r) = k_1$$

and $\sigma(j) = j$ for $j \notin \{k_1, k_2, \dots, k_r\}$.

Signature of a permutation

- ▶ **Definition 1.8:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$ and let σ be a permutation of S . Then the **signature** of σ is defined as the number

$$\epsilon(\sigma) = (-1)^{n-p}$$

where p is the number of cycles (including cycles of length 1) in the cycle decomposition of σ .

- ▶ For instance for the permutation σ of Example 1.3, $\epsilon(\sigma) = (-1)^{7-4} = (-1)^3 = -1$.
- ▶ Note that the signature of identity permutation is always 1.
- ▶ A cycle (k_1, k_2, \dots, k_r) can be identified with the permutation σ defined by

$$\sigma(k_1) = k_2, \sigma(k_2) = k_3, \dots, \sigma(k_r) = k_1$$

and $\sigma(j) = j$ for $j \notin \{k_1, k_2, \dots, k_r\}$.

- ▶ Therefore the signature of a cycle is defined as $(k_1, k_2, \dots, k_r) = (-1)^{n-(1+(n-r))} = (-1)^{r-1}$.

Continuation

- ▶ Cycles of length two are known as transpositions. We see that transpositions have signature (-1) .

Continuation

- ▶ Cycles of length two are known as transpositions. We see that transpositions have signature (-1) .
- ▶ Permutations with signature $(+1)$ are known as **even** permutations and those with signature (-1) are known as **odd** permutations.

Continuation

- ▶ Cycles of length two are known as transpositions. We see that transpositions have signature (-1) .
- ▶ Permutations with signature $(+1)$ are known as **even** permutations and those with signature (-1) are known as **odd** permutations.
- ▶ **END OF LECTURE 1.**