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Lecture 1: Permutations

I Here is a well-known game, called fifteen puzzle:

I https://lorecioni.github.io/fifteen-puzzle-game/

I Information on the Wikipedia :
https://en.wikipedia.org/wiki/15_puzzle

I Question : Consider the initial configuration as:
1 2 3 4
5 6 7 8
9 10 11 12

13 15 14


I Can we re-arrange it to the natural order by moves permitted

by the game?
I Some rich man offered a lot of money for people to come up

with a solution.
I But there was no solution!
I The Rubik’s cube is a toy very you see a lot of ‘permutations’

in action.

 https://lorecioni.github.io/fifteen-puzzle-game/ 
https://en.wikipedia.org/wiki/15_puzzle
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Definition

I Definition 1.1: Let S be a finite set. Then a bijective function
σ : S → S is said to be a permutation of S .

I Example 1.2: Take S = {s1, s2, . . . , sn}.
I Define σ1 : S → S by

σ1(sj) =

{
sj+1 if 1 ≤ j < n
s1 if j = n.

I Assume n ≥ 3. Define σ2 : S → S by

σ2(sj) =


s3 if j = 1
s1 if j = 3
sj otherwise.

I Then σ1, σ2 are permutations.
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Notation

I One way to display the permutation is to write it down
explicitly:

I We may show σ1 above by:(
s1 s2 . . . sn−1 sn
s2 s3 . . . sn s1

)
I Similarly σ2 is displayed as:(

s1 s2 s3 s4 . . . sn
s3 s2 s1 s4 . . . sn

)
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Group property

I Theorem 1.3: Let S be a finite set. Let G be the collection of
all permutations of S .

I If σ, τ are elements of G , then σ ◦ τ is also an element of G
and the operation ◦ has the following properties:

I (i) Associativity: σ1 ◦ (σ2 ◦ σ3) = (σ1 ◦ σ2) ◦ σ3 for all
σ1, σ2, σ3 in G .

I (ii) Existence of identity: There exists ι ∈ G such that
ι ◦ σ = σ ◦ ι = σ for all σ ∈ G .

I (iii) Existence of inverse: For σ ∈ G , there exists σ−1 in G
such that σ−1 ◦ σ = σ ◦ σ−1 = ι.

I Proof. Take ι as the identity map and then properties (i) to
(iii) should be clear.
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cycles

I In the following we always take the finite set S under
consideration as {1, 2, . . . , n} for some fixed n ∈ N.

I Example 1.4: Suppose S = {1, 2, . . . 7}. Consider the
permutation: (

1 2 3 4 5 6 7
3 5 7 4 2 6 1

)
I We see 1 99K 3 99K 7 99K 1. This we call as a cycle. It is a

cycle of length 3.

I This permutation also has 2 99K 5 99K 2, a cycle of length 2.

I It also has 4 99K 4 and 6 99K 6, cycles of length 1.

I For distinct k1, k2, . . . , kr in {1, 2, . . . , n} (with r ∈ N) we
denote the cycle k1 99K k2 99K · · · 99K kr 99K k1 simply as
(k1, k2, . . . , kr ).
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Cycle decomposition of permutations

I For any permutation σ, σ2 denotes σ ◦ σ and more generally
for any natural number r , σr = σ ◦ σ ◦ · · · ◦ σ (r times).

I Lemma 1.5: Let S = {1, 2, . . . , n} for some n ∈ N and let σ
be a permutation of S . Then for any k1 ∈ S , there exists
r ∈ N such that σr (k1) = k1.

I Proof. Take k2 = σ(k1). If k2 = k1, we can take r = 1, and
we are done.

I If k2 6= k1, take k3 = σ(k2). If k3 = k1, we can take r = 2 and
we are done.

I k3 = k2 is not possible, as this would mean that
k2 = σ(k1) = σ(k2) and contradicting injectivity of σ.
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Continuation

I Continuing this way, by induction if we get distinct
k1, k2, . . . , ks with k1 99K k2 99K · · · 99K ks , we take
ks+1 = σ(ks). If ks+1 = k1, we can take r = s and we are
done.

I For any 2 ≤ t ≤ s, ks+1 = kt = σ(kt−1) is not possible due to
injectivity of σ.

I If k1, . . . , ks+1 are all distinct, we can continue the induction
process.

I This process has to terminate after some steps as the set S is
finite. In fact S has exactly n distinct elements and so we will
have r ≤ n.

I Exercise 1.6: Show that there exists some t ∈ N such that
σt(j) = j for all j ∈ S .
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I This process has to terminate after some steps as the set S is
finite. In fact S has exactly n distinct elements and so we will
have r ≤ n.

I Exercise 1.6: Show that there exists some t ∈ N such that
σt(j) = j for all j ∈ S .



Continuation

I Continuing this way, by induction if we get distinct
k1, k2, . . . , ks with k1 99K k2 99K · · · 99K ks , we take
ks+1 = σ(ks). If ks+1 = k1, we can take r = s and we are
done.

I For any 2 ≤ t ≤ s, ks+1 = kt = σ(kt−1) is not possible due to
injectivity of σ.

I If k1, . . . , ks+1 are all distinct, we can continue the induction
process.

I This process has to terminate after some steps as the set S is
finite. In fact S has exactly n distinct elements and so we will
have r ≤ n.

I Exercise 1.6: Show that there exists some t ∈ N such that
σt(j) = j for all j ∈ S .



Products of cycles

I We have seen that a permutation may have several cycles.

I We may write down the permutation by listing the cycles it
has.

I For instance, the permutation of Example 1.4, is written as
(1, 3, 7)(2, 5)(4)(6).

I We may also write it as (3, 7, 1)(4)(2, 5), (6) or as
(7, 1, 3)(5, 2)(6)(4). In other words, in what order we write
these cycles does not matter.

I Some authors do not write down 1-cycles at all. It is
understood that elements of S which are not written down
form 1-cycles.

I With this notation this permutation is simply (1, 3, 7), (2, 5) or
(3, 7, 1)(5, 2) etc.



Products of cycles

I We have seen that a permutation may have several cycles.

I We may write down the permutation by listing the cycles it
has.

I For instance, the permutation of Example 1.4, is written as
(1, 3, 7)(2, 5)(4)(6).

I We may also write it as (3, 7, 1)(4)(2, 5), (6) or as
(7, 1, 3)(5, 2)(6)(4). In other words, in what order we write
these cycles does not matter.

I Some authors do not write down 1-cycles at all. It is
understood that elements of S which are not written down
form 1-cycles.

I With this notation this permutation is simply (1, 3, 7), (2, 5) or
(3, 7, 1)(5, 2) etc.



Products of cycles

I We have seen that a permutation may have several cycles.

I We may write down the permutation by listing the cycles it
has.

I For instance, the permutation of Example 1.4, is written as
(1, 3, 7)(2, 5)(4)(6).

I We may also write it as (3, 7, 1)(4)(2, 5), (6) or as
(7, 1, 3)(5, 2)(6)(4). In other words, in what order we write
these cycles does not matter.

I Some authors do not write down 1-cycles at all. It is
understood that elements of S which are not written down
form 1-cycles.

I With this notation this permutation is simply (1, 3, 7), (2, 5) or
(3, 7, 1)(5, 2) etc.



Products of cycles

I We have seen that a permutation may have several cycles.

I We may write down the permutation by listing the cycles it
has.

I For instance, the permutation of Example 1.4, is written as
(1, 3, 7)(2, 5)(4)(6).

I We may also write it as (3, 7, 1)(4)(2, 5), (6) or as
(7, 1, 3)(5, 2)(6)(4). In other words, in what order we write
these cycles does not matter.

I Some authors do not write down 1-cycles at all. It is
understood that elements of S which are not written down
form 1-cycles.

I With this notation this permutation is simply (1, 3, 7), (2, 5) or
(3, 7, 1)(5, 2) etc.



Products of cycles

I We have seen that a permutation may have several cycles.

I We may write down the permutation by listing the cycles it
has.

I For instance, the permutation of Example 1.4, is written as
(1, 3, 7)(2, 5)(4)(6).

I We may also write it as (3, 7, 1)(4)(2, 5), (6) or as
(7, 1, 3)(5, 2)(6)(4). In other words, in what order we write
these cycles does not matter.

I Some authors do not write down 1-cycles at all. It is
understood that elements of S which are not written down
form 1-cycles.

I With this notation this permutation is simply (1, 3, 7), (2, 5) or
(3, 7, 1)(5, 2) etc.



Products of cycles

I We have seen that a permutation may have several cycles.

I We may write down the permutation by listing the cycles it
has.

I For instance, the permutation of Example 1.4, is written as
(1, 3, 7)(2, 5)(4)(6).

I We may also write it as (3, 7, 1)(4)(2, 5), (6) or as
(7, 1, 3)(5, 2)(6)(4). In other words, in what order we write
these cycles does not matter.

I Some authors do not write down 1-cycles at all. It is
understood that elements of S which are not written down
form 1-cycles.

I With this notation this permutation is simply (1, 3, 7), (2, 5) or
(3, 7, 1)(5, 2) etc.



Products of cycles continued

I Let S = {1, 2, . . . , n} for some n ∈ N.

I Then (k1, k2, . . . , kr ) denotes the permutation:

k1 99K k2 99K k3 99K . . . 99K kr 99K k1, j 99K j otherwise.

I More generally if k11, k12, . . . , k1r1 , k21, k22, . . . , k2r2 ,
k31, k32, . . . , k3r3 , . . . , km1, km2, . . . kmrm are distinct elements
of S , then

(k11, k12, . . . , k1r1)(k21, k22, . . . , k2r2) · · · (km1, km2, . . . , kmrm)

is a ‘product’ of cycles, with

σ(k11) = k12, σ(k12) = k13, . . . , σ(k1r1) = k11,

σ(k21) = k22, . . . , σ(k2r2) = k21, . . . ,

σ(km1) = km2 . . . , σ(kmrm) = km1, σ(j) = j , otherwise.
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Products of cycles theorem

I Theorem 1.7: Let S = {1, 2, . . . , n} for some n ∈ N Suppose
σ is a permutation of S . Then S decomposes uniquely as a
product of cycles.

I Proof. Take k1 = 1. Then by Lemma 1.3, and its proof, σ has
a cycle (k1, k2, . . . , kr ) with k1 = 1.

I If S = {k1, k2, . . . , kr}, we are done. If not, take any
j ∈ {k1, k2, . . . , kr}c , and we can get a cycle (j1, j2, . . .) with
elements distinct from {k1, k2, . . . , kr}. Continuing this way,
we can exhaust whole of S , as S is a finite set.

I Clearly then, the permutation σ is a product of cycles. The
uniqueness should also be clear as these cycles determine σ.

I For i , j in S , write i ∼ j if j = σr (i) for some r ∈ {0, 1, . . .}.
I Then ∼ is an equivalence relation. (Exercise).

I It maybe seen that i , j are in the same cycle if and only if
i ∼ j . In other words, the equivalence classes form different
cycles of the permutation.
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Signature of a permutation

I Definition 1.8: Let S = {1, 2, . . . , n} for some n ∈ N and let σ
be a permutation of S . Then the signature of σ is defined as
the number

ε(σ) = (−1)n−p

where p is the number of cycles (including cycles of length 1)
in the cycle decomposition of σ.

I For instance for the permutation σ of Example 1.3,
ε(σ) = (−1)7−4 = (−1)3 = −1.

I Note that the signature of identity permutation is always 1.
I A cycle (k1, k2, . . . , kr ) can be identified with the permutation
σ defined by

σ(k1) = k2, σ(k2) = k3, . . . , σ(kr ) = k1

and σ(j) = j for j /∈ {k1, k2, . . . , kr}.
I Therefore the signature of a cycle is defined as

(k1, k2, . . . , kr ) = (−1)n−(1+(n−r)) = (−1)r−1.
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Continuation

I Cycles of length two are known as transpositions. We see that
transpositions have signature (−1).

I Permutations with signature (+1) are known as even
permutations and those with signature (−1) are known as odd
permutations.

I END OF LECTURE 1.
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