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v

Recall:

Definition 1.1: Let S be a finite set. Then a bijective function
0 :S — S is said to be a permutation of S.

Example 1.4: Suppose S = {1,2,...7}. Consider the

permutation:
1 23 456 7
357 4261

We see 1 --+ 3 --»7 --» 1. This we call as a cycle. It is a
cycle of length 3.

This permutation also has 2 --+ 5 --» 2, a cycle of length 2.
It also has 4 --+ 4 and 6 --» 6, cycles of length 1.

For distinct ki, ko, ...,k in {1,2,...,n} (with r € N) we
denote the cycle ky --» kp —-» --- -=» k, -——» kg simply as
(ki, kay .oy k).
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Product of cycles theorem

» Theorem 1.7: Let S ={1,2,...,n} for some n € N. Suppose
o is a permutation of S. Then S decomposes uniquely as a
product of cycles.

> We may write down a permutation by listing the cycles it has.

» For instance, the permutation of Example 1.4, is written as
(1,3,7)(2,5)(4)(6).



Signature of a permutation

» Definition 1.8: Let S = {1,2,...,n} for some n € N and let o
be a permutation of S. Then the signature of ¢ is defined as

the number

e(o) =(=1)""
where p is the number of cycles (including cycles of length 1)
in the cycle decomposition of o.



Signature of a permutation

» Definition 1.8: Let S = {1,2,...,n} for some n € N and let o
be a permutation of S. Then the signature of ¢ is defined as
the number

(o) =(=1)""
where p is the number of cycles (including cycles of length 1)
in the cycle decomposition of o.

» For instance for the permutation o of Example 1.4,
(o) =(-1)""*=(-1)3=-1.



Signature of a permutation

» Definition 1.8: Let S = {1,2,...,n} for some n € N and let o
be a permutation of S. Then the signature of ¢ is defined as
the number

(o) =(=1)""
where p is the number of cycles (including cycles of length 1)
in the cycle decomposition of o.
» For instance for the permutation o of Example 1.4,
(o) = (-1)"* = (-1’ =-1.
» Note that the signature of identity permutation is always 1.



Signature of a permutation

» Definition 1.8: Let S = {1,2,...,n} for some n € N and let o
be a permutation of S. Then the signature of ¢ is defined as

the number
(o) = (-1 *

where p is the number of cycles (including cycles of length 1)
in the cycle decomposition of o.

» For instance for the permutation o of Example 1.4,
(o) =(-1)""*=(-1)3=-1.

» Note that the signature of identity permutation is always 1.

» A cycle (ki, k2, ..., k) can be identified with the permutation
o defined by

O'(k]_) = k270(k2) — k?,7 . ,O'(kr) = kl
and o(j) =j for j & {ki, ko, ..., ke }.



Signature of a permutation

» Definition 1.8: Let S = {1,2,...,n} for some n € N and let o
be a permutation of S. Then the signature of ¢ is defined as
the number

(o) =(=1)""
where p is the number of cycles (including cycles of length 1)
in the cycle decomposition of o.
» For instance for the permutation o of Example 1.4,
(o) = (-1)"* = (-1’ =-1.

» Note that the signature of identity permutation is always 1.

» A cycle (ki, k2, ..., k) can be identified with the permutation
o defined by

O'(k]_) = k270(k2) - k?,7 e ,O'(kr) = kl

and o(j) =j for j & {ki, ko, ..., ke }.
» Therefore the signature of a cycle is defined as
(ki, ko, k) = (=1)n=A+(=0) = (1)L,
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» Cycles of length two are known as transpositions. We see that
transpositions have signature (—1).

» Permutations with signature (+1) are known as even

permutations and those with signature (—1) are known as odd
permutations.
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Let o = (ki, ko, ..., k) beacycleon S ={1,2,..., n}. This
means that kq, ko, ..., k, are distinct elements in S and we are
looking at the permutation:

Ki == ko == - ko1 == ky == k.

To arrive at this permutation, we may first interchange ki, ko
and then interchange ki, k3, and then ki, k4 and so on and
finally k; and k,.

In other words, if 7; ; is the transposition between / and j, then

0 = Tkike © " Tha,ks © Tk, ko

Since every permutation is a product of disjoint cycles it
follows that every permutation is a product of transpositions.
In other words, given any permutation o there exist
transpositions 71,72, ..., Tk (for some k € {0,1,...}) such
that

O =TkKOTk_-10---0T20T].

Note that thic factorization 1€ not 1inidaie
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Homomorphism property of the signature

» Theorem 2.1: Let S ={1,2,...,n} for some n € N. Suppose
o, T are two permutations of S. Then

e(too) =¢(7).€(0).

» Proof. We first prove the theorem when 7 is a transposition.
So let 7 be transposition of two distinct indices in S.

> Let

o = (kit, k12, ..., kin )(kot, ka2, - - . s kary) - (Kp1, Kp2, - - - Kpr,)

be the cycle decomposition of o.

» By the definition of ¢, €(0) = (—1)""P and we have also seen
that ¢(7) = —1.

» Therefore our aim is to show that e(7 0 o) = (—1)""P+L,
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» Now there are two possibilities, the transposition 7 could be
of two indices of same cycle of ¢ or could be of different
cycles of o.

» Case (i): Suppose 7 is transposition of ki; and ky;.

> With out loss of generality we may take i < j.
» Then 7o acting on {ki1, k12, ..., ki } has two cycles,
namely

(k11,5 kgi—1)s kijs kegj41ys - - - Kin)

and
(kiis ki(iz1ys - - - ki—1))-
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» Case (ii): Suppose 7 is transposition of ky; and ko;.
» Then 7 o ¢ acting on these two cycles gives a single cycle:

(Ki1s -« s ki(im1)s k2j, Ka(j41), Karys ko1,

ceey kz(j_l), k]_,, k]_(,_;’_]_)7 ceey klf’l)‘

» In other words in both cases the number of cycles changes by
1 (either +1 or —1).

» Caution: We have written the proof above essentially
assuming that ri, r» > 2, as we have indices such as
(i—1),(j — 1) etc. You should verify that the result is true for
all ri, m.

» This proves that (7 0 o) = €(7).€(c) whenever 7 is a
transposition.

» Since every permutation is a product of transpositions, by
mathematical induction we get (7 o o) for every 7, 0.
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» Corollary 2.2: If a permutation 7 =711 01 0 -+ 0 7%, where
Ti,...,Tk are transpositions then

e(r) = (-1~

» Proof. This is clear from the previous theorem and
mathematical induction.

» Corollary 2.3: If a permutation
T=T107p0---0T =01 00p0---00, where
T, T2,...,Tk,01,02,...,0 are transpositions, then k — [ is
even. In particular, k is odd/even if and only if / is odd/even.

» Recall that a permutation o is called even if €(0c) =1 and is
called odd if €(0) = —1. These results tell us that
composition of two permutations is even if and only if either
both of them are even or both of them are odd.

» In the Fifteen Puzzle game, one can see that moves of the
game do not change the signature (It is an invariant.). This

proves why it is not possible to reach the natural permutation
An ctartine fram (15 14)
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Permutation matrices

» Definition 2.4: Fix n € N and let o be a permutation of
{1,2,...,n}. Then the n x n matrix P’ defined by
p7 = 1 if i=o())
v 0  otherwise.
is called the permutation matrix associated with the
permutation o. Note that every row or column of P? has
exactly one non-zero entry which is 1.
» We also consider the matrix P as the linear transformation
x — P%x on R". More explicitly, if x € R” has the expansion
X = Z}’Zl xjej in the standard basis {e1, e, ..., en},
(P7x)i = >_ P = X1,
J

> Note that P7¢; = e,(j). Therefore P? just permutes the basis
elements e1, e, ..., e,, sending ¢ to €s(j)- Hence for any two
permutations o, 7, P77 = P7.P°.
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Stochastic and doubly stochastic matrices

» Definition 2.5: A matrix D = [dij]lgijgn is said to be
stochastic if

» (i) dj > 0 forall 1 <i,j < n (entries are non-negative);

> (ii) -7y djj = 1 for every i (row sums of the matrix are equal
to 1.)

P A stochastic matrix is said to be doubly stochastic if it also
satisfies

> (i) Y7 ; dj = 1 (column sums are also equal to 1.)

» Clearly all permutation matrices are doubly stochastic
matrices.
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Extreme points of convex sets

> Let D be the set of all n x n doubly stochastic matrices.
Then D is a convex set, that is for D, E € D,

v

pD+(1—-p)EED, VO<p<1,

» that is, the line segment joining D, E is contained in D.

v

A matrix F € D is said to be an extreme point if
F=pD+(1-p)E

with 0 < p < 1, implies D =E = F.

» Simple Exercise: Permutation matrices are extreme points of
D.
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» END OF LECTURE 2.



