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Lecture 2: Permutations -2

I Recall:

I Definition 1.1: Let S be a finite set. Then a bijective function
σ : S → S is said to be a permutation of S .

I Example 1.4: Suppose S = {1, 2, . . . 7}. Consider the
permutation: (

1 2 3 4 5 6 7
3 5 7 4 2 6 1

)
I We see 1 99K 3 99K 7 99K 1. This we call as a cycle. It is a

cycle of length 3.

I This permutation also has 2 99K 5 99K 2, a cycle of length 2.

I It also has 4 99K 4 and 6 99K 6, cycles of length 1.

I For distinct k1, k2, . . . , kr in {1, 2, . . . , n} (with r ∈ N) we
denote the cycle k1 99K k2 99K · · · 99K kr 99K k1 simply as
(k1, k2, . . . , kr ).
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Product of cycles theorem

I Theorem 1.7: Let S = {1, 2, . . . , n} for some n ∈ N. Suppose
σ is a permutation of S . Then S decomposes uniquely as a
product of cycles.

I We may write down a permutation by listing the cycles it has.

I For instance, the permutation of Example 1.4, is written as
(1, 3, 7)(2, 5)(4)(6).
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Signature of a permutation

I Definition 1.8: Let S = {1, 2, . . . , n} for some n ∈ N and let σ
be a permutation of S . Then the signature of σ is defined as
the number

ε(σ) = (−1)n−p

where p is the number of cycles (including cycles of length 1)
in the cycle decomposition of σ.

I For instance for the permutation σ of Example 1.4,
ε(σ) = (−1)7−4 = (−1)3 = −1.

I Note that the signature of identity permutation is always 1.
I A cycle (k1, k2, . . . , kr ) can be identified with the permutation
σ defined by

σ(k1) = k2, σ(k2) = k3, . . . , σ(kr ) = k1

and σ(j) = j for j /∈ {k1, k2, . . . , kr}.
I Therefore the signature of a cycle is defined as

(k1, k2, . . . , kr ) = (−1)n−(1+(n−r)) = (−1)r−1.



Signature of a permutation

I Definition 1.8: Let S = {1, 2, . . . , n} for some n ∈ N and let σ
be a permutation of S . Then the signature of σ is defined as
the number

ε(σ) = (−1)n−p

where p is the number of cycles (including cycles of length 1)
in the cycle decomposition of σ.

I For instance for the permutation σ of Example 1.4,
ε(σ) = (−1)7−4 = (−1)3 = −1.

I Note that the signature of identity permutation is always 1.
I A cycle (k1, k2, . . . , kr ) can be identified with the permutation
σ defined by

σ(k1) = k2, σ(k2) = k3, . . . , σ(kr ) = k1

and σ(j) = j for j /∈ {k1, k2, . . . , kr}.
I Therefore the signature of a cycle is defined as

(k1, k2, . . . , kr ) = (−1)n−(1+(n−r)) = (−1)r−1.



Signature of a permutation

I Definition 1.8: Let S = {1, 2, . . . , n} for some n ∈ N and let σ
be a permutation of S . Then the signature of σ is defined as
the number

ε(σ) = (−1)n−p

where p is the number of cycles (including cycles of length 1)
in the cycle decomposition of σ.

I For instance for the permutation σ of Example 1.4,
ε(σ) = (−1)7−4 = (−1)3 = −1.

I Note that the signature of identity permutation is always 1.

I A cycle (k1, k2, . . . , kr ) can be identified with the permutation
σ defined by

σ(k1) = k2, σ(k2) = k3, . . . , σ(kr ) = k1

and σ(j) = j for j /∈ {k1, k2, . . . , kr}.
I Therefore the signature of a cycle is defined as

(k1, k2, . . . , kr ) = (−1)n−(1+(n−r)) = (−1)r−1.



Signature of a permutation

I Definition 1.8: Let S = {1, 2, . . . , n} for some n ∈ N and let σ
be a permutation of S . Then the signature of σ is defined as
the number

ε(σ) = (−1)n−p

where p is the number of cycles (including cycles of length 1)
in the cycle decomposition of σ.

I For instance for the permutation σ of Example 1.4,
ε(σ) = (−1)7−4 = (−1)3 = −1.

I Note that the signature of identity permutation is always 1.
I A cycle (k1, k2, . . . , kr ) can be identified with the permutation
σ defined by

σ(k1) = k2, σ(k2) = k3, . . . , σ(kr ) = k1

and σ(j) = j for j /∈ {k1, k2, . . . , kr}.

I Therefore the signature of a cycle is defined as
(k1, k2, . . . , kr ) = (−1)n−(1+(n−r)) = (−1)r−1.



Signature of a permutation

I Definition 1.8: Let S = {1, 2, . . . , n} for some n ∈ N and let σ
be a permutation of S . Then the signature of σ is defined as
the number

ε(σ) = (−1)n−p

where p is the number of cycles (including cycles of length 1)
in the cycle decomposition of σ.

I For instance for the permutation σ of Example 1.4,
ε(σ) = (−1)7−4 = (−1)3 = −1.

I Note that the signature of identity permutation is always 1.
I A cycle (k1, k2, . . . , kr ) can be identified with the permutation
σ defined by

σ(k1) = k2, σ(k2) = k3, . . . , σ(kr ) = k1

and σ(j) = j for j /∈ {k1, k2, . . . , kr}.
I Therefore the signature of a cycle is defined as

(k1, k2, . . . , kr ) = (−1)n−(1+(n−r)) = (−1)r−1.



Continuation

I Cycles of length two are known as transpositions. We see that
transpositions have signature (−1).

I Permutations with signature (+1) are known as even
permutations and those with signature (−1) are known as odd
permutations.
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Permutations as products of transpositions

I Let σ = (k1, k2, . . . , kr ) be a cycle on S = {1, 2, . . . , n}. This
means that k1, k2, . . . , kr are distinct elements in S and we are
looking at the permutation:

k1 99K k2 99K · · · kr−1 99K kr 99K k1.

I To arrive at this permutation, we may first interchange k1, k2
and then interchange k1, k3, and then k1, k4 and so on and
finally k1 and kr .

I In other words, if τi ,j is the transposition between i and j , then

σ = τk1,kr ◦ · · · τk1,k3 ◦ τk1,k2 .
I Since every permutation is a product of disjoint cycles it

follows that every permutation is a product of transpositions.
In other words, given any permutation σ there exist
transpositions τ1, τ2, . . . , τk (for some k ∈ {0, 1, . . .}) such
that

σ = τk ◦ τk−1 ◦ · · · ◦ τ2 ◦ τ1.
I Note that this factorization is not unique.
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Homomorphism property of the signature

I Theorem 2.1: Let S = {1, 2, . . . , n} for some n ∈ N. Suppose
σ, τ are two permutations of S . Then

ε(τ ◦ σ) = ε(τ).ε(σ).

I Proof. We first prove the theorem when τ is a transposition.
So let τ be transposition of two distinct indices in S .

I Let

σ = (k11, k12, . . . , k1r1)(k21, k22, . . . , k2r2) · · · (kp1, kp2, . . . , kprp)

be the cycle decomposition of σ.

I By the definition of ε, ε(σ) = (−1)n−p and we have also seen
that ε(τ) = −1.

I Therefore our aim is to show that ε(τ ◦ σ) = (−1)n−p+1.
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Continuation

I Now there are two possibilities, the transposition τ could be
of two indices of same cycle of σ or could be of different
cycles of σ.

I Case (i): Suppose τ is transposition of k1i and k1j .

I With out loss of generality we may take i < j .

I Then τ ◦ σ acting on {k11, k12, . . . , k1r1} has two cycles,
namely

(k11, . . . , k1(i−1), k1j , k1(j+1), . . . , k1r1)

and
(k1i , k1(i+1), . . . , k1(j−1)).
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Continuation

I Case (ii): Suppose τ is transposition of k1i and k2j .

I Then τ ◦ σ acting on these two cycles gives a single cycle:

(k11, . . . , k1(i−1), k2j , k2(j+1), k2r2 , k21,

. . . , k2(j−1), k1i , k1(i+1), . . . , k1r1).

I In other words in both cases the number of cycles changes by
1 (either +1 or −1).

I Caution: We have written the proof above essentially
assuming that r1, r2 ≥ 2, as we have indices such as
(i − 1), (j − 1) etc. You should verify that the result is true for
all r1, r2.

I This proves that ε(τ ◦ σ) = ε(τ).ε(σ) whenever τ is a
transposition.

I Since every permutation is a product of transpositions, by
mathematical induction we get ε(τ ◦ σ) for every τ, σ.
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I Caution: We have written the proof above essentially
assuming that r1, r2 ≥ 2, as we have indices such as
(i − 1), (j − 1) etc. You should verify that the result is true for
all r1, r2.

I This proves that ε(τ ◦ σ) = ε(τ).ε(σ) whenever τ is a
transposition.

I Since every permutation is a product of transpositions, by
mathematical induction we get ε(τ ◦ σ) for every τ, σ.
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Consequences

I Corollary 2.2: If a permutation τ = τ1 ◦ τ2 ◦ · · · ◦ τk , where
τ1, . . . , τk are transpositions then

ε(τ) = (−1)k .

I Proof. This is clear from the previous theorem and
mathematical induction.

I Corollary 2.3: If a permutation
τ = τ1 ◦ τ2 ◦ · · · ◦ τk = σ1 ◦ σ2 ◦ · · · ◦ σl , where
τ1, τ2, . . . , τk , σ1, σ2, . . . , σl are transpositions, then k − l is
even. In particular, k is odd/even if and only if l is odd/even.

I Recall that a permutation σ is called even if ε(σ) = 1 and is
called odd if ε(σ) = −1. These results tell us that
composition of two permutations is even if and only if either
both of them are even or both of them are odd.

I In the Fifteen Puzzle game, one can see that moves of the
game do not change the signature (It is an invariant.). This
proves why it is not possible to reach the natural permutation
on starting from (15, 14).
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Permutation matrices

I Definition 2.4: Fix n ∈ N and let σ be a permutation of
{1, 2, . . . , n}. Then the n × n matrix Pσ defined by

pσij =

{
1 if i = σ(j)
0 otherwise.

is called the permutation matrix associated with the
permutation σ. Note that every row or column of Pσ has
exactly one non-zero entry which is 1.

I We also consider the matrix Pσ as the linear transformation
x 7→ Pσx on Rn. More explicitly, if x ∈ Rn has the expansion
x =

∑n
j=1 xjej in the standard basis {e1, e2, . . . , en},

I
(Pσx)i =

∑
j

pσij xj = xσ−1(i).

I Note that Pσej = eσ(j). Therefore Pσ just permutes the basis
elements e1, e2, . . . , en, sending ej to eσ(j). Hence for any two
permutations σ, τ , Pτ◦σ = Pτ .Pσ.
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Stochastic and doubly stochastic matrices

I Definition 2.5: A matrix D = [dij ]1≤i ,j≤n is said to be
stochastic if

I (i) dij ≥ 0 for all 1 ≤ i , j ≤ n (entries are non-negative);

I (ii)
∑n

j=1 dij = 1 for every i (row sums of the matrix are equal
to 1.)

I A stochastic matrix is said to be doubly stochastic if it also
satisfies

I (iii)
∑n

i=1 dij = 1 (column sums are also equal to 1.)

I Clearly all permutation matrices are doubly stochastic
matrices.
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Extreme points of convex sets

I Let D be the set of all n × n doubly stochastic matrices.

I Then D is a convex set, that is for D,E ∈ D,

pD + (1− p)E ∈ D, ∀ 0 ≤ p ≤ 1,

I that is, the line segment joining D,E is contained in D.
I A matrix F ∈ D is said to be an extreme point if

F = pD + (1− p)E

with 0 < p < 1, implies D = E = F .

I Simple Exercise: Permutation matrices are extreme points of
D.



Extreme points of convex sets

I Let D be the set of all n × n doubly stochastic matrices.

I Then D is a convex set, that is for D,E ∈ D,

pD + (1− p)E ∈ D, ∀ 0 ≤ p ≤ 1,

I that is, the line segment joining D,E is contained in D.
I A matrix F ∈ D is said to be an extreme point if

F = pD + (1− p)E

with 0 < p < 1, implies D = E = F .

I Simple Exercise: Permutation matrices are extreme points of
D.



Extreme points of convex sets

I Let D be the set of all n × n doubly stochastic matrices.

I Then D is a convex set, that is for D,E ∈ D,

pD + (1− p)E ∈ D, ∀ 0 ≤ p ≤ 1,

I that is, the line segment joining D,E is contained in D.

I A matrix F ∈ D is said to be an extreme point if

F = pD + (1− p)E

with 0 < p < 1, implies D = E = F .

I Simple Exercise: Permutation matrices are extreme points of
D.



Extreme points of convex sets

I Let D be the set of all n × n doubly stochastic matrices.

I Then D is a convex set, that is for D,E ∈ D,

pD + (1− p)E ∈ D, ∀ 0 ≤ p ≤ 1,

I that is, the line segment joining D,E is contained in D.
I A matrix F ∈ D is said to be an extreme point if

F = pD + (1− p)E

with 0 < p < 1, implies D = E = F .

I Simple Exercise: Permutation matrices are extreme points of
D.



Extreme points of convex sets

I Let D be the set of all n × n doubly stochastic matrices.

I Then D is a convex set, that is for D,E ∈ D,

pD + (1− p)E ∈ D, ∀ 0 ≤ p ≤ 1,

I that is, the line segment joining D,E is contained in D.
I A matrix F ∈ D is said to be an extreme point if

F = pD + (1− p)E

with 0 < p < 1, implies D = E = F .

I Simple Exercise: Permutation matrices are extreme points of
D.



Birkhoff-von Neumann theorem

I Theorem 2.6: A doubly stochastic matrix is an extreme point
of the convex set of doubly stochastic matrices if and only if it
is a permutation matrix.

I Proof. Difficult exercise. (Omitted).

I END OF LECTURE 2.
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