

LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 3: Leibniz formula for determinants

- ▶ Recall:

Lecture 3: Leibniz formula for determinants

- ▶ Recall:
- ▶ **Definition 1.1:** Let S be a finite set. Then a bijective function $\sigma : S \rightarrow S$ is said to be a **permutation** of S .

Lecture 3: Leibniz formula for determinants

- ▶ Recall:
- ▶ **Definition 1.1:** Let S be a finite set. Then a bijective function $\sigma : S \rightarrow S$ is said to be a **permutation** of S .
- ▶ **Example 1.4:** Suppose $S = \{1, 2, \dots, 7\}$. Consider the permutation:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 4 & 2 & 6 & 1 \end{pmatrix}$$

Lecture 3: Leibniz formula for determinants

- ▶ Recall:
- ▶ **Definition 1.1:** Let S be a finite set. Then a bijective function $\sigma : S \rightarrow S$ is said to be a **permutation** of S .
- ▶ **Example 1.4:** Suppose $S = \{1, 2, \dots, 7\}$. Consider the permutation:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 4 & 2 & 6 & 1 \end{pmatrix}$$

- ▶ We see $1 \rightarrow 3 \rightarrow 7 \rightarrow 1$. This we call as a **cycle**. It is a cycle of **length 3**.

Lecture 3: Leibniz formula for determinants

- ▶ Recall:
- ▶ **Definition 1.1:** Let S be a finite set. Then a bijective function $\sigma : S \rightarrow S$ is said to be a **permutation** of S .
- ▶ **Example 1.4:** Suppose $S = \{1, 2, \dots, 7\}$. Consider the permutation:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 4 & 2 & 6 & 1 \end{pmatrix}$$

- ▶ We see $1 \rightarrow 3 \rightarrow 7 \rightarrow 1$. This we call as a **cycle**. It is a cycle of **length 3**.
- ▶ This permutation also has $2 \rightarrow 5 \rightarrow 2$, a cycle of length 2.

Lecture 3: Leibniz formula for determinants

- ▶ Recall:
- ▶ **Definition 1.1:** Let S be a finite set. Then a bijective function $\sigma : S \rightarrow S$ is said to be a **permutation** of S .
- ▶ **Example 1.4:** Suppose $S = \{1, 2, \dots, 7\}$. Consider the permutation:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 4 & 2 & 6 & 1 \end{pmatrix}$$

- ▶ We see $1 \rightarrow 3 \rightarrow 7 \rightarrow 1$. This we call as a **cycle**. It is a cycle of **length 3**.
- ▶ This permutation also has $2 \rightarrow 5 \rightarrow 2$, a cycle of length 2.
- ▶ It also has $4 \rightarrow 4$ and $6 \rightarrow 6$, cycles of length 1.

Lecture 3: Leibniz formula for determinants

- ▶ Recall:
- ▶ **Definition 1.1:** Let S be a finite set. Then a bijective function $\sigma : S \rightarrow S$ is said to be a **permutation** of S .
- ▶ **Example 1.4:** Suppose $S = \{1, 2, \dots, 7\}$. Consider the permutation:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 5 & 7 & 4 & 2 & 6 & 1 \end{pmatrix}$$

- ▶ We see $1 \rightarrow 3 \rightarrow 7 \rightarrow 1$. This we call as a **cycle**. It is a cycle of **length 3**.
- ▶ This permutation also has $2 \rightarrow 5 \rightarrow 2$, a cycle of length 2.
- ▶ It also has $4 \rightarrow 4$ and $6 \rightarrow 6$, cycles of length 1.
- ▶ For distinct k_1, k_2, \dots, k_r in $\{1, 2, \dots, n\}$ (with $r \in \mathbb{N}$) we denote the cycle $k_1 \rightarrow k_2 \rightarrow \dots \rightarrow k_r \rightarrow k_1$ simply as (k_1, k_2, \dots, k_r) .

Product of cycles theorem

- **Theorem 1.7:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$. Suppose σ is a permutation of S . Then S decomposes uniquely as a product of cycles.

Product of cycles theorem

- ▶ **Theorem 1.7:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$. Suppose σ is a permutation of S . Then S decomposes uniquely as a product of cycles.
- ▶ We may write down a permutation by listing the cycles it has.

Product of cycles theorem

- ▶ **Theorem 1.7:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$. Suppose σ is a permutation of S . Then S decomposes uniquely as a product of cycles.
- ▶ We may write down a permutation by listing the cycles it has.
- ▶ For instance, the permutation of Example 1.4, is written as $(1, 3, 7)(2, 5)(4)(6)$.

Signature of a permutation

► **Definition 1.8:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$ and let σ be a permutation of S . Then the **signature** of σ is defined as the number

$$\epsilon(\sigma) = (-1)^{n-p}$$

where p is the number of cycles (including cycles of length 1) in the cycle decomposition of σ .

Signature of a permutation

- ▶ **Definition 1.8:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$ and let σ be a permutation of S . Then the **signature** of σ is defined as the number

$$\epsilon(\sigma) = (-1)^{n-p}$$

where p is the number of cycles (including cycles of length 1) in the cycle decomposition of σ .

- ▶ For instance for the permutation σ of Example 1.4, $\epsilon(\sigma) = (-1)^{7-4} = (-1)^3 = -1$.

Signature of a permutation

- ▶ **Definition 1.8:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$ and let σ be a permutation of S . Then the **signature** of σ is defined as the number

$$\epsilon(\sigma) = (-1)^{n-p}$$

where p is the number of cycles (including cycles of length 1) in the cycle decomposition of σ .

- ▶ For instance for the permutation σ of Example 1.4, $\epsilon(\sigma) = (-1)^{7-4} = (-1)^3 = -1$.
- ▶ Note that the signature of identity permutation is always 1.

Signature of a permutation

- ▶ **Definition 1.8:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$ and let σ be a permutation of S . Then the **signature** of σ is defined as the number

$$\epsilon(\sigma) = (-1)^{n-p}$$

where p is the number of cycles (including cycles of length 1) in the cycle decomposition of σ .

- ▶ For instance for the permutation σ of Example 1.4, $\epsilon(\sigma) = (-1)^{7-4} = (-1)^3 = -1$.
- ▶ Note that the signature of identity permutation is always 1.
- ▶ A cycle (k_1, k_2, \dots, k_r) can be identified with the permutation σ defined by

$$\sigma(k_1) = k_2, \sigma(k_2) = k_3, \dots, \sigma(k_r) = k_1$$

and $\sigma(j) = j$ for $j \notin \{k_1, k_2, \dots, k_r\}$.

Signature of a permutation

- ▶ **Definition 1.8:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$ and let σ be a permutation of S . Then the **signature** of σ is defined as the number

$$\epsilon(\sigma) = (-1)^{n-p}$$

where p is the number of cycles (including cycles of length 1) in the cycle decomposition of σ .

- ▶ For instance for the permutation σ of Example 1.4, $\epsilon(\sigma) = (-1)^{7-4} = (-1)^3 = -1$.
- ▶ Note that the signature of identity permutation is always 1.
- ▶ A cycle (k_1, k_2, \dots, k_r) can be identified with the permutation σ defined by

$$\sigma(k_1) = k_2, \sigma(k_2) = k_3, \dots, \sigma(k_r) = k_1$$

and $\sigma(j) = j$ for $j \notin \{k_1, k_2, \dots, k_r\}$.

- ▶ Therefore the signature of a cycle is defined as $(k_1, k_2, \dots, k_r) = (-1)^{n-(1+(n-r))} = (-1)^{r-1}$.

Continuation

- ▶ Cycles of length two are known as transpositions. We see that transpositions have signature (-1) .

Continuation

- ▶ Cycles of length two are known as transpositions. We see that transpositions have signature (-1) .
- ▶ Permutations with signature $(+1)$ are known as **even** permutations and those with signature (-1) are known as **odd** permutations.

Permutations as products of transpositions

- ▶ Every permutation is a product of transpositions. In other words, given any permutation σ there exist transpositions $\tau_1, \tau_2, \dots, \tau_k$ (for some $k \in \{0, 1, \dots\}$) such that

$$\sigma = \tau_k \circ \tau_{k-1} \circ \cdots \circ \tau_2 \circ \tau_1.$$

Permutations as products of transpositions

- ▶ Every permutation is a product of transpositions. In other words, given any permutation σ there exist transpositions $\tau_1, \tau_2, \dots, \tau_k$ (for some $k \in \{0, 1, \dots\}$) such that

$$\sigma = \tau_k \circ \tau_{k-1} \circ \dots \circ \tau_2 \circ \tau_1.$$

- ▶ Note that this factorization is not unique.

Permutations as products of transpositions

- ▶ Every permutation is a product of transpositions. In other words, given any permutation σ there exist transpositions $\tau_1, \tau_2, \dots, \tau_k$ (for some $k \in \{0, 1, \dots\}$) such that

$$\sigma = \tau_k \circ \tau_{k-1} \circ \cdots \circ \tau_2 \circ \tau_1.$$

- ▶ Note that this factorization is not unique.
- ▶ **Theorem 2.1:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$. Suppose σ, τ are two permutations of S . Then

$$\epsilon(\tau \circ \sigma) = \epsilon(\tau) \cdot \epsilon(\sigma).$$

Permutations as products of transpositions

- ▶ Every permutation is a product of transpositions. In other words, given any permutation σ there exist transpositions $\tau_1, \tau_2, \dots, \tau_k$ (for some $k \in \{0, 1, \dots\}$) such that

$$\sigma = \tau_k \circ \tau_{k-1} \circ \cdots \circ \tau_2 \circ \tau_1.$$

- ▶ Note that this factorization is not unique.
- ▶ **Theorem 2.1:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$. Suppose σ, τ are two permutations of S . Then

$$\epsilon(\tau \circ \sigma) = \epsilon(\tau) \cdot \epsilon(\sigma).$$

- ▶ **Corollary 2.2:** If a permutation $\tau = \tau_1 \circ \tau_2 \circ \cdots \circ \tau_k$, where τ_1, \dots, τ_k are transpositions then

$$\epsilon(\tau) = (-1)^k.$$

Permutations as products of transpositions

- ▶ Every permutation is a product of transpositions. In other words, given any permutation σ there exist transpositions $\tau_1, \tau_2, \dots, \tau_k$ (for some $k \in \{0, 1, \dots\}$) such that

$$\sigma = \tau_k \circ \tau_{k-1} \circ \dots \circ \tau_2 \circ \tau_1.$$

- ▶ Note that this factorization is not unique.
- ▶ **Theorem 2.1:** Let $S = \{1, 2, \dots, n\}$ for some $n \in \mathbb{N}$. Suppose σ, τ are two permutations of S . Then

$$\epsilon(\tau \circ \sigma) = \epsilon(\tau) \cdot \epsilon(\sigma).$$

- ▶ **Corollary 2.2:** If a permutation $\tau = \tau_1 \circ \tau_2 \circ \dots \circ \tau_k$, where τ_1, \dots, τ_k are transpositions then

$$\epsilon(\tau) = (-1)^k.$$

- ▶ **Corollary 2.3:** If a permutation

$$\tau = \tau_1 \circ \tau_2 \circ \dots \circ \tau_k = \sigma_1 \circ \sigma_2 \circ \dots \circ \sigma_l, \text{ where}$$

$\tau_1, \tau_2, \dots, \tau_k, \sigma_1, \sigma_2, \dots, \sigma_l$ are transpositions, then $k - l$ is even. In particular, k is odd/even if and only if l is odd/even.

Permutation matrices

► **Definition 2.4:** Fix $n \in \mathbb{N}$ and let σ be a permutation of $\{1, 2, \dots, n\}$. Then the $n \times n$ matrix P^σ defined by

$$p_{ij}^\sigma = \begin{cases} 1 & \text{if } i = \sigma(j) \\ 0 & \text{otherwise.} \end{cases}$$

is called the **permutation** matrix associated with the permutation σ . Note that every row or column of P^σ has exactly one non-zero entry which is 1.

Permutation matrices

► **Definition 2.4:** Fix $n \in \mathbb{N}$ and let σ be a permutation of $\{1, 2, \dots, n\}$. Then the $n \times n$ matrix P^σ defined by

$$p_{ij}^\sigma = \begin{cases} 1 & \text{if } i = \sigma(j) \\ 0 & \text{otherwise.} \end{cases}$$

is called the **permutation** matrix associated with the permutation σ . Note that every row or column of P^σ has exactly one non-zero entry which is 1.

Permutation matrices

► **Definition 2.4:** Fix $n \in \mathbb{N}$ and let σ be a permutation of $\{1, 2, \dots, n\}$. Then the $n \times n$ matrix P^σ defined by

$$p_{ij}^\sigma = \begin{cases} 1 & \text{if } i = \sigma(j) \\ 0 & \text{otherwise.} \end{cases}$$

is called the **permutation** matrix associated with the permutation σ . Note that every row or column of P^σ has exactly one non-zero entry which is 1.

► We also consider the matrix P^σ as the linear transformation $x \mapsto P^\sigma x$ on \mathbb{R}^n . More explicitly, if $x \in \mathbb{R}^n$ has the expansion $x = \sum_{j=1}^n x_j e_j$ in the standard basis $\{e_1, e_2, \dots, e_n\}$,

Permutation matrices

- ▶ **Definition 2.4:** Fix $n \in \mathbb{N}$ and let σ be a permutation of $\{1, 2, \dots, n\}$. Then the $n \times n$ matrix P^σ defined by

$$p_{ij}^\sigma = \begin{cases} 1 & \text{if } i = \sigma(j) \\ 0 & \text{otherwise.} \end{cases}$$

is called the **permutation** matrix associated with the permutation σ . Note that every row or column of P^σ has exactly one non-zero entry which is 1.

- ▶ We also consider the matrix P^σ as the linear transformation $x \mapsto P^\sigma x$ on \mathbb{R}^n . More explicitly, if $x \in \mathbb{R}^n$ has the expansion $x = \sum_{j=1}^n x_j e_j$ in the standard basis $\{e_1, e_2, \dots, e_n\}$,

$$(P^\sigma x)_i = \sum_j p_{ij}^\sigma x_j = x_{\sigma^{-1}(i)}.$$

Permutation matrices

- ▶ **Definition 2.4:** Fix $n \in \mathbb{N}$ and let σ be a permutation of $\{1, 2, \dots, n\}$. Then the $n \times n$ matrix P^σ defined by

$$p_{ij}^\sigma = \begin{cases} 1 & \text{if } i = \sigma(j) \\ 0 & \text{otherwise.} \end{cases}$$

is called the **permutation** matrix associated with the permutation σ . Note that every row or column of P^σ has exactly one non-zero entry which is 1.

- ▶ We also consider the matrix P^σ as the linear transformation $x \mapsto P^\sigma x$ on \mathbb{R}^n . More explicitly, if $x \in \mathbb{R}^n$ has the expansion $x = \sum_{j=1}^n x_j e_j$ in the standard basis $\{e_1, e_2, \dots, e_n\}$,

$$(P^\sigma x)_i = \sum_j p_{ij}^\sigma x_j = x_{\sigma^{-1}(i)}.$$

- ▶ Note that $P^\sigma e_j = e_{\sigma(j)}$. Therefore P^σ just permutes the basis elements e_1, e_2, \dots, e_n , sending e_j to $e_{\sigma(j)}$. Hence for any two permutations σ, τ , $P^{\tau \circ \sigma} = P^\tau \cdot P^\sigma$.

Determinants

- ▶ Notation: Let A be an $n \times n$ matrix. Then for any $1 \leq i, j \leq n$, the matrix formed by dropping i -th row and j -th column is known as (i, j) -th minor of A and is denoted by A_{ij} .

Determinants

- ▶ Notation: Let A be an $n \times n$ matrix. Then for any $1 \leq i, j \leq n$, the matrix formed by dropping i -th row and j -th column is known as (i, j) -th minor of A and is denoted by A_{ij} .
- ▶ Now determinants of square matrices were defined inductively as follows:

Determinants

- ▶ Notation: Let A be an $n \times n$ matrix. Then for any $1 \leq i, j \leq n$, the matrix formed by dropping i -th row and j -th column is known as (i, j) -th minor of A and is denoted by A_{ij} .
- ▶ Now determinants of square matrices were defined inductively as follows:
- ▶ If $n = 1$ and $A = [a_{11}]$, then $\det(A) = a_{11}$.

Determinants

- ▶ Notation: Let A be an $n \times n$ matrix. Then for any $1 \leq i, j \leq n$, the matrix formed by dropping i -th row and j -th column is known as (i, j) -th minor of A and is denoted by A_{ij} .
- ▶ Now determinants of square matrices were defined inductively as follows:
- ▶ If $n = 1$ and $A = [a_{11}]$, then $\det(A) = a_{11}$.
- ▶ For $n \geq 2$,

$$\det(A) = a_{11} \det(A_{11}) - a_{21} \det(A_{21}) + \dots + (-1)^{n-1} a_{n1} \det(A_{n1}).$$

Determinants

- ▶ Notation: Let A be an $n \times n$ matrix. Then for any $1 \leq i, j \leq n$, the matrix formed by dropping i -th row and j -th column is known as (i, j) -th minor of A and is denoted by A_{ij} .
- ▶ Now determinants of square matrices were defined inductively as follows:
- ▶ If $n = 1$ and $A = [a_{11}]$, then $\det(A) = a_{11}$.
- ▶ For $n \geq 2$,

$$\det(A) = a_{11} \det(A_{11}) - a_{21} \det(A_{21}) + \dots + (-1)^{n-1} a_{n1} \det(A_{n1}).$$

- ▶ This is known as Laplace formula/expansion for the determinant.

Determinants

- ▶ Notation: Let A be an $n \times n$ matrix. Then for any $1 \leq i, j \leq n$, the matrix formed by dropping i -th row and j -th column is known as (i, j) -th minor of A and is denoted by A_{ij} .
- ▶ Now determinants of square matrices were defined inductively as follows:
- ▶ If $n = 1$ and $A = [a_{11}]$, then $\det(A) = a_{11}$.
- ▶ For $n \geq 2$,

$$\det(A) = a_{11} \det(A_{11}) - a_{21} \det(A_{21}) + \dots + (-1)^{n-1} a_{n1} \det(A_{n1}).$$

- ▶ This is known as Laplace formula/expansion for the determinant.
- ▶ Here we have written the expansion using the first column. But we could have used any row or column.

Permutations and the determinant

- ▶ Let us look at the determinant for 2×2 and 3×3 matrices.

Permutations and the determinant

- ▶ Let us look at the determinant for 2×2 and 3×3 matrices.
- ▶ We have,

$$\det\left(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}\right) = a_{11}a_{22} - a_{12}a_{21}.$$

Permutations and the determinant

- ▶ Let us look at the determinant for 2×2 and 3×3 matrices.
- ▶ We have,

$$\det\left(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}\right) = a_{11}a_{22} - a_{12}a_{21}.$$

- ▶

$$\begin{aligned} \det\left(\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}\right) \\ = a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} \\ - a_{12}a_{21}a_{33} + a_{12}a_{23}a_{31} \\ + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31}. \end{aligned}$$

Permutations and the determinant

- ▶ Let us look at the determinant for 2×2 and 3×3 matrices.
- ▶ We have,

$$\det\left(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}\right) = a_{11}a_{22} - a_{12}a_{21}.$$

- ▶

$$\begin{aligned} \det\left(\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}\right) \\ = a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} \\ - a_{12}a_{21}a_{33} + a_{12}a_{23}a_{31} \\ + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31}. \end{aligned}$$

- ▶ You may note that there are $3! = 6$ terms here and each term is of the form $(\pm)a_{1\sigma(1)}a_{2\sigma(2)}a_{3\sigma(3)}$ for some permutation σ of $\{1, 2, 3\}$.

Permutations and the determinant

- ▶ Let us look at the determinant for 2×2 and 3×3 matrices.
- ▶ We have,

$$\det\left(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}\right) = a_{11}a_{22} - a_{12}a_{21}.$$

- ▶

$$\begin{aligned} \det\left(\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}\right) \\ = a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} \\ - a_{12}a_{21}a_{33} + a_{12}a_{23}a_{31} \\ + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31}. \end{aligned}$$

- ▶ You may note that there are $3! = 6$ terms here and each term is of the form $(\pm)a_{1\sigma(1)}a_{2\sigma(2)}a_{3\sigma(3)}$ for some permutation σ of $\{1, 2, 3\}$.
- ▶ This suggests the following theorem.

Leibniz formula for determinants

- ▶ In the following S_n denotes the set of all permutations of the set $S = \{1, 2, \dots, n\}$.

Leibniz formula for determinants

- ▶ In the following S_n denotes the set of all permutations of the set $S = \{1, 2, \dots, n\}$.
- ▶ **Theorem 3.1 (Leibniz formula):** Let $A = [a_{ij}]_{1 \leq i, j \leq n}$ be an $n \times n$ matrix. Then

$$\det(A) = \sum_{\sigma \in S_n} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}.$$

Leibniz formula for determinants

- ▶ In the following S_n denotes the set of all permutations of the set $S = \{1, 2, \dots, n\}$.
- ▶ **Theorem 3.1 (Leibniz formula):** Let $A = [a_{ij}]_{1 \leq i, j \leq n}$ be an $n \times n$ matrix. Then

$$\det(A) = \sum_{\sigma \in S_n} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}.$$

- ▶ To prove this theorem we use the following characterization of the determinant proved in Semester -I.

A characterization of the determinant

- ▶ Let $M_n(\mathbb{R})$ denote the vector space of $n \times n$ real matrices.

A characterization of the determinant

- ▶ Let $M_n(\mathbb{R})$ denote the vector space of $n \times n$ real matrices.
- ▶ **Theorem I.?**: Let $f : M_n(\mathbb{R}) \rightarrow \mathbb{R}$ be a function satisfying:

A characterization of the determinant

- ▶ Let $M_n(\mathbb{R})$ denote the vector space of $n \times n$ real matrices.
- ▶ **Theorem I.?**: Let $f : M_n(\mathbb{R}) \rightarrow \mathbb{R}$ be a function satisfying:
 - ▶ (i) $f(I) = 1.$;

A characterization of the determinant

- ▶ Let $M_n(\mathbb{R})$ denote the vector space of $n \times n$ real matrices.
- ▶ **Theorem I.?**: Let $f : M_n(\mathbb{R}) \rightarrow \mathbb{R}$ be a function satisfying:
 - ▶ (i) $f(I) = 1.$;
 - ▶ (ii) f is linear in each row (keeping other rows fixed).

A characterization of the determinant

- ▶ Let $M_n(\mathbb{R})$ denote the vector space of $n \times n$ real matrices.
- ▶ **Theorem 1.7:** Let $f : M_n(\mathbb{R}) \rightarrow \mathbb{R}$ be a function satisfying:
 - ▶ (i) $f(I) = 1$;
 - ▶ (ii) f is linear in each row (keeping other rows fixed).
 - ▶ (iii) If two adjacent rows of A are equal then $f(A) = 0$.

A characterization of the determinant

- ▶ Let $M_n(\mathbb{R})$ denote the vector space of $n \times n$ real matrices.
- ▶ **Theorem 1.7:** Let $f : M_n(\mathbb{R}) \rightarrow \mathbb{R}$ be a function satisfying:
 - ▶ (i) $f(I) = 1$;
 - ▶ (ii) f is linear in each row (keeping other rows fixed).
 - ▶ (iii) If two adjacent rows of A are equal then $f(A) = 0$.
 - ▶ Then $f(A) = \det(A)$ for every $A \in M_n(\mathbb{R})$.

A characterization of the determinant

- ▶ Let $M_n(\mathbb{R})$ denote the vector space of $n \times n$ real matrices.
- ▶ **Theorem 1.7:** Let $f : M_n(\mathbb{R}) \rightarrow \mathbb{R}$ be a function satisfying:
 - ▶ (i) $f(I) = 1$;
 - ▶ (ii) f is linear in each row (keeping other rows fixed).
 - ▶ (iii) If two adjacent rows of A are equal then $f(A) = 0$.
- ▶ Then $f(A) = \det(A)$ for every $A \in M_n(\mathbb{R})$.
- ▶ The determinant satisfies (i) to (iii) and the word 'adjacent' in (iii) can be dropped. The property (ii) is known as 'multi-linearity'.

Proof of Liebniz formula

- ▶ Define $f : M_n(\mathbb{R}) \rightarrow \mathbb{R}$ by

$$f(A) = \sum_{\sigma \in S_n} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}.$$

Proof of Liebniz formula

- ▶ Define $f : M_n(\mathbb{R}) \rightarrow \mathbb{R}$ by

$$f(A) = \sum_{\sigma \in S_n} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}.$$

- ▶ We wish to show that f satisfies conditions (i) to (iii) mentioned above.

Proof of Liebniz formula

- ▶ Define $f : M_n(\mathbb{R}) \rightarrow \mathbb{R}$ by

$$f(A) = \sum_{\sigma \in S_n} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}.$$

- ▶ We wish to show that f satisfies conditions (i) to (iii) mentioned above.
- ▶ If $A = I$, then, $a_{ij} = 0$ if $i \neq j$, hence

$$a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)} = 0$$

unless σ is the identity permutation.

Proof of Liebniz formula

- ▶ Define $f : M_n(\mathbb{R}) \rightarrow \mathbb{R}$ by

$$f(A) = \sum_{\sigma \in S_n} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}.$$

- ▶ We wish to show that f satisfies conditions (i) to (iii) mentioned above.
- ▶ If $A = I$, then, $a_{ij} = 0$ if $i \neq j$, hence

$$a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)} = 0$$

unless σ is the identity permutation.

- ▶ If σ is the identity permutation $\epsilon(\sigma) = 1$. Hence $f(I) = 1.1 \dots 1 = 1$.

Multi-linearity

- ▶ Consider i -th row of A . Suppose $a_{ij} = sb_{ij} + tc_{ij}$ for some real numbers $s, t, b_{ij}, c_{ij}, 1 \leq j \leq n$.

Multi-linearity

- ▶ Consider i -th row of A . Suppose $a_{ij} = sb_{ij} + tc_{ij}$ for some real numbers $s, t, b_{ij}, c_{ij}, 1 \leq j \leq n$.
- ▶ Now

$$\begin{aligned} f(A) &= \sum_{\sigma \in S_n} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)} \\ &= \sum_{\sigma \in S_n} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{i\sigma(i)} \dots a_{n\sigma(n)} \\ &= \sum_{\sigma \in S_n} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \dots (sb_{i\sigma(i)} + tc_{i\sigma(i)}) \dots a_{n\sigma(n)} \end{aligned}$$

Multi-linearity

- ▶ Consider i -th row of A . Suppose $a_{ij} = sb_{ij} + tc_{ij}$ for some real numbers s, t, b_{ij}, c_{ij} , $1 \leq j \leq n$.
- ▶ Now

$$\begin{aligned}f(A) &= \sum_{\sigma \in S_n} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)} \\&= \sum_{\sigma \in S_n} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{i\sigma(i)} \cdots a_{n\sigma(n)} \\&= \sum_{\sigma \in S_n} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots (sb_{i\sigma(i)} + tc_{i\sigma(i)}) \cdots a_{n\sigma(n)}\end{aligned}$$

- ▶ Then it is clear that f satisfies (ii).

Continuation

- ▶ Now suppose i -th row and j -th row of A are equal for some $1 \leq i < j \leq n$, that is $a_{ik} = a_{jk}$ for all $1 \leq k \leq n$.

Continuation

- ▶ Now suppose i -th row and j -th row of A are equal for some $1 \leq i < j \leq n$, that is $a_{ik} = a_{jk}$ for all $1 \leq k \leq n$.
- ▶ Let τ be the transposition of i and j .

Continuation

- ▶ Now suppose i -th row and j -th row of A are equal for some $1 \leq i < j \leq n$, that is $a_{ik} = a_{jk}$ for all $1 \leq k \leq n$.
- ▶ Let τ be the transposition of i and j .
- ▶ To begin with we observe that

$$\{\sigma \circ \tau : \sigma \in S_n\} = S_n.$$

Continuation

- ▶ Now suppose i -th row and j -th row of A are equal for some $1 \leq i < j \leq n$, that is $a_{ik} = a_{jk}$ for all $1 \leq k \leq n$.
- ▶ Let τ be the transposition of i and j .
- ▶ To begin with we observe that

$$\{\sigma \circ \tau : \sigma \in S_n\} = S_n.$$

- ▶ Since for any σ in S_n , $\sigma \circ \tau \in S_n$,

$$\{\sigma \circ \tau : \sigma \in S_n\} \subseteq S_n$$

is obvious. Now consider any permutation η in S_n . We can write η as $\sigma \circ \tau$, where $\sigma = \eta \circ (\tau)^{-1}$. This shows,

$$S_n \subseteq \{\sigma \circ \tau : \sigma \in S_n\}.$$

Continuation

► Therefore,

$$f(A) = \sum_{\sigma \in S_n} \epsilon(\sigma \circ \tau) a_{1\sigma \circ \tau(1)} a_{2\sigma \circ \tau(2)} \cdots a_{i\sigma \circ \tau(i)} \cdots a_{j\sigma \circ \tau(j)} \cdots a_{n\sigma \circ \tau(n)}.$$

Continuation

- ▶ Therefore,

$$f(A) = \sum_{\sigma \in S_n} \epsilon(\sigma \circ \tau) a_{1\sigma \circ \tau(1)} a_{2\sigma \circ \tau(2)} \cdots a_{i\sigma \circ \tau(i)} \cdots a_{j\sigma \circ \tau(j)} \cdots a_{n\sigma \circ \tau(n)}.$$

- ▶ We have $\epsilon(\sigma \circ \tau) = \epsilon(\sigma) \cdot \epsilon(\tau) = -\epsilon(\sigma)$.

Continuation

- ▶ Therefore,

$$f(A) = \sum_{\sigma \in S_n} \epsilon(\sigma \circ \tau) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{i\sigma(i)} \cdots a_{j\sigma(j)} \cdots a_{n\sigma(n)}.$$

- ▶ We have $\epsilon(\sigma \circ \tau) = \epsilon(\sigma) \cdot \epsilon(\tau) = -\epsilon(\sigma)$.
- ▶ Also, $\tau(i) = j, \tau(j) = i$ and $\tau(k) = k$ for $k \neq i, j$. Moreover, since i -th row and j -th row of A are equal,

$$\begin{aligned} f(A) &= - \sum_{\sigma \in S_n} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{i\sigma(j)} \cdots a_{j\sigma(i)} \cdots a_{n\sigma(n)} \\ &= - \sum_{n \in S_n} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{j\sigma(j)} \cdots a_{i\sigma(i)} \cdots a_{n\sigma(n)} \\ &= -f(A). \end{aligned}$$

Continuation

- ▶ Therefore,

$$f(A) = \sum_{\sigma \in S_n} \epsilon(\sigma \circ \tau) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{i\sigma(i)} \cdots a_{j\sigma(j)} \cdots a_{n\sigma(n)}.$$

- ▶ We have $\epsilon(\sigma \circ \tau) = \epsilon(\sigma) \cdot \epsilon(\tau) = -\epsilon(\sigma)$.
- ▶ Also, $\tau(i) = j, \tau(j) = i$ and $\tau(k) = k$ for $k \neq i, j$. Moreover, since i -th row and j -th row of A are equal,

$$\begin{aligned} f(A) &= - \sum_{\sigma \in S_n} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{i\sigma(j)} \cdots a_{j\sigma(i)} \cdots a_{n\sigma(n)} \\ &= - \sum_{\sigma \in S_n} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{j\sigma(j)} \cdots a_{i\sigma(i)} \cdots a_{n\sigma(n)} \\ &= -f(A). \end{aligned}$$

- ▶ Therefore, $2f(A) = 0$ or $f(A) = 0$. This proves (iii) and hence $f(A) = \det(A)$. ■.

Determinant of permutation matrices

- ▶ Recall that for a permutation $\sigma \in S_n$, we have defined the associated ‘permutation matrix’ P^σ by

$$p_{ij}^\sigma = \begin{cases} 1 & \text{if } i = \sigma(j) \\ 0 & \text{otherwise.} \end{cases}$$

Determinant of permutation matrices

- ▶ Recall that for a permutation $\sigma \in S_n$, we have defined the associated ‘permutation matrix’ P^σ by

$$p_{ij}^\sigma = \begin{cases} 1 & \text{if } i = \sigma(j) \\ 0 & \text{otherwise.} \end{cases}$$

- ▶ **Theorem 3.2:** For $\sigma \in S_n$,

$$\det(P^\sigma) = \epsilon(\sigma).$$

Determinant of permutation matrices

- ▶ Recall that for a permutation $\sigma \in S_n$, we have defined the associated ‘permutation matrix’ P^σ by

$$p_{ij}^\sigma = \begin{cases} 1 & \text{if } i = \sigma(j) \\ 0 & \text{otherwise.} \end{cases}$$

- ▶ **Theorem 3.2:** For $\sigma \in S_n$,

$$\det(P^\sigma) = \epsilon(\sigma).$$

- ▶ **Proof:** We have

$$\det(P^\sigma) = \sum_{\eta \in S^n} \epsilon(\eta) P_{1\eta(1)}^\sigma P_{2\eta(2)}^\sigma \cdots P_{n\eta(n)}^\sigma.$$

Determinant of permutation matrices

- ▶ Recall that for a permutation $\sigma \in S_n$, we have defined the associated 'permutation matrix' P^σ by

$$p_{ij}^\sigma = \begin{cases} 1 & \text{if } i = \sigma(j) \\ 0 & \text{otherwise.} \end{cases}$$

- ▶ **Theorem 3.2:** For $\sigma \in S_n$,

$$\det(P^\sigma) = \epsilon(\sigma).$$

- ▶ **Proof:** We have

$$\det(P^\sigma) = \sum_{\eta \in S^n} \epsilon(\eta) P_{1\eta(1)}^\sigma P_{2\eta(2)}^\sigma \cdots P_{n\eta(n)}^\sigma.$$

- ▶ We see that for a term in this sum to be non-trivial we need $j = \sigma(\eta(j))$ for every j , or $\eta = (\sigma)^{-1}$.

Continuation

► Therefore

$$\det(P^\sigma) = \epsilon(\sigma^{-1})$$

Continuation

- ▶ Therefore

$$\det(P^\sigma) = \epsilon(\sigma^{-1})$$

- ▶ Recall, $\epsilon(\sigma).\epsilon(\sigma^{-1}) = \epsilon(\iota) = 1$.

Continuation

- ▶ Therefore

$$\det(P^\sigma) = \epsilon(\sigma^{-1})$$

- ▶ Recall, $\epsilon(\sigma).\epsilon(\sigma^{-1}) = \epsilon(\iota) = 1$.
- ▶ Hence $\epsilon(\sigma^{-1}) = \epsilon(\sigma)$ for every σ . ■

Continuation

- ▶ Therefore

$$\det(P^\sigma) = \epsilon(\sigma^{-1})$$

- ▶ Recall, $\epsilon(\sigma) \cdot \epsilon(\sigma^{-1}) = \epsilon(\iota) = 1$.
- ▶ Hence $\epsilon(\sigma^{-1}) = \epsilon(\sigma)$ for every σ . ■
- ▶ **Definition 3.3:** For a square matrix $A = [a_{ij}]_{1 \leq i,j \leq n}$, the **permanent** of A is defined as:

$$\text{per}(A) = \sum_{\sigma \in S_n} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}.$$

Continuation

- ▶ Therefore

$$\det(P^\sigma) = \epsilon(\sigma^{-1})$$

- ▶ Recall, $\epsilon(\sigma) \cdot \epsilon(\sigma^{-1}) = \epsilon(\iota) = 1$.
- ▶ Hence $\epsilon(\sigma^{-1}) = \epsilon(\sigma)$ for every σ . ■
- ▶ **Definition 3.3:** For a square matrix $A = [a_{ij}]_{1 \leq i,j \leq n}$, the **permanent** of A is defined as:

$$\text{per}(A) = \sum_{\sigma \in S_n} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}.$$

- ▶ The permanent of A does appear in some areas of mathematics. However, it is not as useful as the determinant and in general it is more difficult to compute.

Continuation

- ▶ Therefore

$$\det(P^\sigma) = \epsilon(\sigma^{-1})$$

- ▶ Recall, $\epsilon(\sigma) \cdot \epsilon(\sigma^{-1}) = \epsilon(\iota) = 1$.
- ▶ Hence $\epsilon(\sigma^{-1}) = \epsilon(\sigma)$ for every σ . ■
- ▶ **Definition 3.3:** For a square matrix $A = [a_{ij}]_{1 \leq i,j \leq n}$, the **permanent** of A is defined as:

$$\text{per}(A) = \sum_{\sigma \in S_n} a_{1\sigma(1)} a_{2\sigma(2)} \dots a_{n\sigma(n)}.$$

- ▶ The permanent of A does appear in some areas of mathematics. However, it is not as useful as the determinant and in general it is more difficult to compute.
- ▶ **An interesting problem:** Show that for any $n \times n$ doubly stochastic matrix D ,

$$\text{per}(D) \geq \frac{n!}{n^n}.$$

In other words, the permanent on doubly stochastic matrices