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v

Recall:

Definition 1.1: Let S be a finite set. Then a bijective function
0 :S — S is said to be a permutation of S.

Example 1.4: Suppose S = {1,2,...7}. Consider the

permutation:
1 23 456 7
357 4261

We see 1 --+ 3 --»7 --» 1. This we call as a cycle. It is a
cycle of length 3.

This permutation also has 2 --+ 5 --» 2, a cycle of length 2.
It also has 4 --+ 4 and 6 --» 6, cycles of length 1.

For distinct ki, ko, ...,k in {1,2,...,n} (with r € N) we
denote the cycle ky --» kp —-» --- -=» k, -——» kg simply as
(ki, kay .oy k).
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Product of cycles theorem

» Theorem 1.7: Let S ={1,2,...,n} for some n € N. Suppose
o is a permutation of S. Then S decomposes uniquely as a
product of cycles.

> We may write down a permutation by listing the cycles it has.

» For instance, the permutation of Example 1.4, is written as
(1,3,7)(2,5)(4)(6).
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Signature of a permutation

» Definition 1.8: Let S = {1,2,...,n} for some n € N and let o
be a permutation of S. Then the signature of ¢ is defined as
the number

(o) =(=1)""
where p is the number of cycles (including cycles of length 1)
in the cycle decomposition of o.
» For instance for the permutation o of Example 1.4,
(o) = (-1)"* = (-1’ =-1.

» Note that the signature of identity permutation is always 1.

» A cycle (ki, k2, ..., k) can be identified with the permutation
o defined by

O'(k]_) = k270(k2) - k?,7 e ,O'(kr) = kl

and o(j) =j for j & {ki, ko, ..., ke }.
» Therefore the signature of a cycle is defined as
(ki, ko, k) = (=1)n=A+(=0) = (1)L,
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» Cycles of length two are known as transpositions. We see that
transpositions have signature (—1).

» Permutations with signature (+1) are known as even

permutations and those with signature (—1) are known as odd
permutations.
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Permutations as products of transpositions

» Every permutation is a product of transpositions. In other
words, given any permutation o there exist transpositions
T1,72,...,Tk (for some k € {0,1,...}) such that

O =TkOTk—10---0T20T].

» Note that this factorization is not unique.
» Theorem 2.1: Let S ={1,2,...,n} for some n € N. Suppose
o, T are two permutations of S. Then

e(ro0) =€(1).€(0).

» Corollary 2.2: If a permutation 7 =73 07 0--- 0 7%, Where
Ti,...,Tk are transpositions then

e(t) = (1),
» Corollary 2.3: If a permutation
T=T10Tp0---0Tg =01000---00), where
T1,T2,...,Tk,01,02,...,0 are transpositions, then k — [ is
even. In particular, k is odd/even if and only if / is odd /even.
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Permutation matrices

» Definition 2.4: Fix n € N and let o be a permutation of
{1,2,...,n}. Then the n x n matrix P’ defined by
p7 = 1 if i=o())
v 0  otherwise.
is called the permutation matrix associated with the
permutation o. Note that every row or column of P? has
exactly one non-zero entry which is 1.
» We also consider the matrix P as the linear transformation
x — P%x on R". More explicitly, if x € R” has the expansion
X = Z}’Zl xjej in the standard basis {e1, e, ..., en},
(P7x)i = >_ P = X1,
J

> Note that P7¢; = e,(j). Therefore P? just permutes the basis
elements e1, e, ..., e,, sending ¢ to €s(j)- Hence for any two
permutations o, 7, P77 = P7.P°.
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Determinants

» Notation: Let A be an n x n matrix. Then for any
1 < i,j < n, the matrix formed by dropping i-th row and j-th
column is known as (7, j)-th minor of A and is denoted by Aj;.

> Now determinants of square matrices were defined inductively
as follows:

» If n =1 and A = [a11], then det(A) = a11.
» For n> 2,

det(A) = a1 det(All)—321 det(A21)+. . .—l—(—l)n_lanl det(A,,l).

» This is known as Laplace formula/expansion for the
determinant.

» Here we have written the expansion using the first column.
But we could have used any row or column.
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Permutations and the determinant

> Let us look at the determinant for 2 x 2 and 3 x 3 matrices.
> We have,

a1l 412
det( ) = ai1ax — aasi.
a1 ax»

di1 412 413
det( ar1 ay asz )

a31 432 433

= d114822433 — 411423432
—a12a21a33 + 212323331
+ai13azi1a32 — a13a22a31-

> You may note that there are 3! = 6 terms here and each term

is of the form (£)a;4(1)225(2)330(3) for some permutation o of
{1,2,3}.

» This suggests the following theorem.
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» In the following S, denotes the set of all permutations of the
set S ={1,2,...,n}.

» Theorem 3.1 (Leibniz formula): Let A = [ajj]i<i j<n be an
n X n matrix. Then

det(A) = Z 6(0’)310(1)320(2) -+ ang(n)-
o€Sy

» To prove this theorem we use the following characterization of
the determinant proved in Semester -I.
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A characterization of the determinant

Let M,(IR) denote the vector space of n x n real matrices.
Theorem 1.7: Let f : M,(R) — R be a function satisfying:
(i) f(1)=1,

(i) f is linear in each row (keeping other rows fixed).

(iii) If two adjacent rows of A are equal then f(A) = 0.
Then f(A) = det(A) for every A € M,(R).
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A characterization of the determinant

Let M,(IR) denote the vector space of n x n real matrices.
Theorem 1.7: Let f : M,(R) — R be a function satisfying:

(i) f(H) =1,

(i) f is linear in each row (keeping other rows fixed).

(iii) If two adjacent rows of A are equal then f(A) = 0.

Then f(A) = det(A) for every A € M,(R).

The determinant satisfies (i) to (iii) and the word ‘adjacent’ in

(iii) can be dropped. The property (ii) is known as
‘multi-linearity’.

vVvVvvyVvVvVvVvyyy
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Proof of Liebniz formula

» Define f : M,(R) — R by

f(A) = Z 6(O-)31¢7(1)320(2) -+ dno(n)-

g€S,

» We wish to show that f satisfies conditions (i) to (iii)
mentioned above.

> If A=, then, a; = 0if i # j, hence

316(1)320(2) - - - no(n) = 0

unless o is the identity permutation.

» If o is the identity permutation €(c) = 1. Hence
f()=11....1=1.
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Multi-linearity

» Consider i-th row of A. Suppose aj; = sbj; + tc;; for some real
numbers s, t, bj,cj, 1 <j < n.

> Now
f(A) = Z 6(0)310(1)320(2) -+ dna(n)
0€Sy
= ) €(0)a15(1)320(2) - - - (i) - - - Anr(n)
o€ES,
= > €0)a10(1)3202) - - - (Bio(i) T tio(i)) - - - Ano(n)
€S,

» Then it is clear that f satisfies (ii).
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Continuation

» Now suppose i-th row and j-th row of A are equal for some
1<i<j<n, thatis ay = aj forall 1 < k < n.

» Let 7 be the transposition of / and j.
» To begin with we observe that

{ooT:0€5,} =5,
» Since forany oin S,, coT €S,
{ooT:0€5,} CS,

is obvious. Now consider any permutation 7 in S,. We can
write ) as 0 o 7, where o = 10 (7). This shows,

SpC{ooT:0€S,}.
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» Therefore,
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og€S,

» We have €(0 o7) = ¢(0).€(T) = —¢(0).
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» Therefore,

f(A) = Z 6(0-07—)31007—(1)‘32007-(2) digor(i) """ djoor(j) " " noor(n)-
O'GSn
» We have ¢(0 o 7) = €(0).€(17) = —¢(0).
» Also, 7(i) =j,7(j) =i and 7(k) = k for k # i, j. Moreover,
since i-th row and j-th row of A are equal,

F(A) = = €(0)ar(1)2200) o) (i) * Ano(n)
o€ES,

= = Z a10(1)320'(2) "djo(j) " Qie(i) " qno(n)
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Continuation

» Therefore,

f(A) = Z 6(0-07—)‘91007—(1)‘32007-(2) digor(i) """ djoor(j) " " noor(n)-
O'GSn
» We have ¢(0 o 7) = €(0).€(17) = —¢(0).
» Also, 7(i) =j,7(j) =i and 7(k) = k for k # i, j. Moreover,
since i-th row and j-th row of A are equal,

F(A) = = €(0)ar(1)2200) o) (i) * Ano(n)
o€ES,

= - Z alU(l)a20'(2) T ajU(j) T aia(i) to ana(n)
neS,
— —f(A).

» Therefore, 2f(A) =0 or f(A) = 0. This proves (iii) and hence
f(A) = det(A). B
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Determinant of permutation matrices

» Recall that for a permutation o € S,,, we have defined the
associated ‘permutation matrix’ P? by

i 1 i ol
pij:{ if i=o0o(j)

0  otherwise.
» Theorem 3.2: For o € S,
det(P?) = €(o).
» Proof: We have

det(P?) = > em)Pf )Py Ponin)-
nesn

» We see that for a term in this sum to be non-trivial we need
Jj = a(n(j)) for every j, or n = (o)1,
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» Therefore
det(P?) = ¢(c71)
> Recall, e(0).e(c7) = €(1) = 1.
» Hence e(071) = ¢(o) for every 0. B
» Definition 3.3: For a square matrix A = [ajj]i<ij<n, the
permanent of A is defined as:
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Continuation

» Therefore
det(P?) = ¢(c71)
> Recall, e(0).e(c7) = €(1) = 1.
» Hence e¢(c7!) = ¢(o) for every . B
» Definition 3.3: For a square matrix A = [ajj]i<ij<n, the
permanent of A is defined as:

per ( Z 105(1)920(2) - - - 9no(n)-
0E€Sy
» The permanent of A does appear in some areas of
mathematics. However, it is not as useful as the determinant
and in general it is more difficult to compute.
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Therefore

det(P?) = ¢(c71)
Recall, €(c).e(c™!) = e(1) = 1.
Hence e(c71) = ¢(o) for every . B

Definition 3.3: For a square matrix A = [aji]i<i j<n, the
permanent of A is defined as:
per ( Z A15(1)20(2) - - - Ano(n)-
G'GSn

The permanent of A does appear in some areas of
mathematics. However, it is not as useful as the determinant
and in general it is more difficult to compute.

An interesting problem: Show that for any n x n doubly
stochastic matrix D,
n!
per (D) = pey

In other Words the permanent on doubly stochastlc matrices



