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Lecture 3: Leibniz formula for determinants

I Recall:

I Definition 1.1: Let S be a finite set. Then a bijective function
σ : S → S is said to be a permutation of S .

I Example 1.4: Suppose S = {1, 2, . . . 7}. Consider the
permutation: (

1 2 3 4 5 6 7
3 5 7 4 2 6 1

)
I We see 1 99K 3 99K 7 99K 1. This we call as a cycle. It is a

cycle of length 3.

I This permutation also has 2 99K 5 99K 2, a cycle of length 2.

I It also has 4 99K 4 and 6 99K 6, cycles of length 1.

I For distinct k1, k2, . . . , kr in {1, 2, . . . , n} (with r ∈ N) we
denote the cycle k1 99K k2 99K · · · 99K kr 99K k1 simply as
(k1, k2, . . . , kr ).
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Product of cycles theorem

I Theorem 1.7: Let S = {1, 2, . . . , n} for some n ∈ N. Suppose
σ is a permutation of S . Then S decomposes uniquely as a
product of cycles.

I We may write down a permutation by listing the cycles it has.

I For instance, the permutation of Example 1.4, is written as
(1, 3, 7)(2, 5)(4)(6).



Product of cycles theorem

I Theorem 1.7: Let S = {1, 2, . . . , n} for some n ∈ N. Suppose
σ is a permutation of S . Then S decomposes uniquely as a
product of cycles.

I We may write down a permutation by listing the cycles it has.

I For instance, the permutation of Example 1.4, is written as
(1, 3, 7)(2, 5)(4)(6).



Product of cycles theorem

I Theorem 1.7: Let S = {1, 2, . . . , n} for some n ∈ N. Suppose
σ is a permutation of S . Then S decomposes uniquely as a
product of cycles.

I We may write down a permutation by listing the cycles it has.

I For instance, the permutation of Example 1.4, is written as
(1, 3, 7)(2, 5)(4)(6).



Signature of a permutation

I Definition 1.8: Let S = {1, 2, . . . , n} for some n ∈ N and let σ
be a permutation of S . Then the signature of σ is defined as
the number

ε(σ) = (−1)n−p

where p is the number of cycles (including cycles of length 1)
in the cycle decomposition of σ.

I For instance for the permutation σ of Example 1.4,
ε(σ) = (−1)7−4 = (−1)3 = −1.

I Note that the signature of identity permutation is always 1.
I A cycle (k1, k2, . . . , kr ) can be identified with the permutation
σ defined by

σ(k1) = k2, σ(k2) = k3, . . . , σ(kr ) = k1

and σ(j) = j for j /∈ {k1, k2, . . . , kr}.
I Therefore the signature of a cycle is defined as

(k1, k2, . . . , kr ) = (−1)n−(1+(n−r)) = (−1)r−1.



Signature of a permutation

I Definition 1.8: Let S = {1, 2, . . . , n} for some n ∈ N and let σ
be a permutation of S . Then the signature of σ is defined as
the number

ε(σ) = (−1)n−p

where p is the number of cycles (including cycles of length 1)
in the cycle decomposition of σ.

I For instance for the permutation σ of Example 1.4,
ε(σ) = (−1)7−4 = (−1)3 = −1.

I Note that the signature of identity permutation is always 1.
I A cycle (k1, k2, . . . , kr ) can be identified with the permutation
σ defined by

σ(k1) = k2, σ(k2) = k3, . . . , σ(kr ) = k1

and σ(j) = j for j /∈ {k1, k2, . . . , kr}.
I Therefore the signature of a cycle is defined as

(k1, k2, . . . , kr ) = (−1)n−(1+(n−r)) = (−1)r−1.



Signature of a permutation

I Definition 1.8: Let S = {1, 2, . . . , n} for some n ∈ N and let σ
be a permutation of S . Then the signature of σ is defined as
the number

ε(σ) = (−1)n−p

where p is the number of cycles (including cycles of length 1)
in the cycle decomposition of σ.

I For instance for the permutation σ of Example 1.4,
ε(σ) = (−1)7−4 = (−1)3 = −1.

I Note that the signature of identity permutation is always 1.

I A cycle (k1, k2, . . . , kr ) can be identified with the permutation
σ defined by

σ(k1) = k2, σ(k2) = k3, . . . , σ(kr ) = k1

and σ(j) = j for j /∈ {k1, k2, . . . , kr}.
I Therefore the signature of a cycle is defined as

(k1, k2, . . . , kr ) = (−1)n−(1+(n−r)) = (−1)r−1.



Signature of a permutation

I Definition 1.8: Let S = {1, 2, . . . , n} for some n ∈ N and let σ
be a permutation of S . Then the signature of σ is defined as
the number

ε(σ) = (−1)n−p

where p is the number of cycles (including cycles of length 1)
in the cycle decomposition of σ.

I For instance for the permutation σ of Example 1.4,
ε(σ) = (−1)7−4 = (−1)3 = −1.

I Note that the signature of identity permutation is always 1.
I A cycle (k1, k2, . . . , kr ) can be identified with the permutation
σ defined by

σ(k1) = k2, σ(k2) = k3, . . . , σ(kr ) = k1

and σ(j) = j for j /∈ {k1, k2, . . . , kr}.

I Therefore the signature of a cycle is defined as
(k1, k2, . . . , kr ) = (−1)n−(1+(n−r)) = (−1)r−1.



Signature of a permutation

I Definition 1.8: Let S = {1, 2, . . . , n} for some n ∈ N and let σ
be a permutation of S . Then the signature of σ is defined as
the number

ε(σ) = (−1)n−p

where p is the number of cycles (including cycles of length 1)
in the cycle decomposition of σ.

I For instance for the permutation σ of Example 1.4,
ε(σ) = (−1)7−4 = (−1)3 = −1.

I Note that the signature of identity permutation is always 1.
I A cycle (k1, k2, . . . , kr ) can be identified with the permutation
σ defined by

σ(k1) = k2, σ(k2) = k3, . . . , σ(kr ) = k1

and σ(j) = j for j /∈ {k1, k2, . . . , kr}.
I Therefore the signature of a cycle is defined as

(k1, k2, . . . , kr ) = (−1)n−(1+(n−r)) = (−1)r−1.



Continuation

I Cycles of length two are known as transpositions. We see that
transpositions have signature (−1).

I Permutations with signature (+1) are known as even
permutations and those with signature (−1) are known as odd
permutations.
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Permutations as products of transpositions

I Every permutation is a product of transpositions. In other
words, given any permutation σ there exist transpositions
τ1, τ2, . . . , τk (for some k ∈ {0, 1, . . .}) such that

σ = τk ◦ τk−1 ◦ · · · ◦ τ2 ◦ τ1.

I Note that this factorization is not unique.
I Theorem 2.1: Let S = {1, 2, . . . , n} for some n ∈ N. Suppose
σ, τ are two permutations of S . Then

ε(τ ◦ σ) = ε(τ).ε(σ).

I Corollary 2.2: If a permutation τ = τ1 ◦ τ2 ◦ · · · ◦ τk , where
τ1, . . . , τk are transpositions then

ε(τ) = (−1)k .

I Corollary 2.3: If a permutation
τ = τ1 ◦ τ2 ◦ · · · ◦ τk = σ1 ◦ σ2 ◦ · · · ◦ σl , where
τ1, τ2, . . . , τk , σ1, σ2, . . . , σl are transpositions, then k − l is
even. In particular, k is odd/even if and only if l is odd/even.

I Recall that a permutation σ is called even if ε(σ) = 1 and is
called odd if ε(σ) = −1. These results tell us that
composition of two permutations is even if and only if either
both of them are even or both of them are odd.
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Permutation matrices

I Definition 2.4: Fix n ∈ N and let σ be a permutation of
{1, 2, . . . , n}. Then the n × n matrix Pσ defined by

pσij =

{
1 if i = σ(j)
0 otherwise.

is called the permutation matrix associated with the
permutation σ. Note that every row or column of Pσ has
exactly one non-zero entry which is 1.

I We also consider the matrix Pσ as the linear transformation
x 7→ Pσx on Rn. More explicitly, if x ∈ Rn has the expansion
x =

∑n
j=1 xjej in the standard basis {e1, e2, . . . , en},

I
(Pσx)i =

∑
j

pσij xj = xσ−1(i).

I Note that Pσej = eσ(j). Therefore Pσ just permutes the basis
elements e1, e2, . . . , en, sending ej to eσ(j). Hence for any two
permutations σ, τ , Pτ◦σ = Pτ .Pσ.
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Determinants

I Notation: Let A be an n × n matrix. Then for any
1 ≤ i , j ≤ n, the matrix formed by dropping i-th row and j-th
column is known as (i , j)-th minor of A and is denoted by Aij .

I Now determinants of square matrices were defined inductively
as follows:

I If n = 1 and A = [a11], then det(A) = a11.

I For n ≥ 2,

det(A) = a11 det(A11)−a21 det(A21)+. . .+(−1)n−1an1 det(An1).

I This is known as Laplace formula/expansion for the
determinant.

I Here we have written the expansion using the first column.
But we could have used any row or column.
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determinant.
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Permutations and the determinant

I Let us look at the determinant for 2× 2 and 3× 3 matrices.

I We have,

det(

[
a11 a12
a21 a22

]
) = a11a22 − a12a21.

I

det(

 a11 a12 a13
a21 a22 a23
a31 a32 a33

)

= a11a22a33 − a11a23a32

−a12a21a33 + a12a23a31

+a13a21a32 − a13a22a31.

I You may note that there are 3! = 6 terms here and each term
is of the form (±)a1σ(1)a2σ(2)a3σ(3) for some permutation σ of
{1, 2, 3}.

I This suggests the following theorem.
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Leibniz formula for determinants

I In the following Sn denotes the set of all permutations of the
set S = {1, 2, . . . , n}.

I Theorem 3.1 (Leibniz formula): Let A = [aij ]1≤i ,j≤n be an
n × n matrix. Then

det(A) =
∑
σ∈Sn

ε(σ)a1σ(1)a2σ(2) . . . anσ(n).

I To prove this theorem we use the following characterization of
the determinant proved in Semester -I.
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A characterization of the determinant

I Let Mn(R) denote the vector space of n × n real matrices.

I Theorem I.?: Let f : Mn(R)→ R be a function satisfying:

I (i) f (I ) = 1.;

I (ii) f is linear in each row (keeping other rows fixed).

I (iii) If two adjacent rows of A are equal then f (A) = 0.

I Then f (A) = det(A) for every A ∈ Mn(R).

I The determinant satisfies (i) to (iii) and the word ‘adjacent’ in
(iii) can be dropped. The property (ii) is known as
‘multi-linearity’.
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Proof of Liebniz formula

I Define f : Mn(R)→ R by

f (A) =
∑
σ∈Sn

ε(σ)a1σ(1)a2σ(2) . . . anσ(n).

I We wish to show that f satisfies conditions (i) to (iii)
mentioned above.

I If A = I , then, aij = 0 if i 6= j , hence

a1σ(1)a2σ(2) . . . anσ(n) = 0

unless σ is the identity permutation.

I If σ is the identity permutation ε(σ) = 1. Hence
f (I ) = 1.1. . . . 1 = 1.
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Multi-linearity

I Consider i-th row of A. Suppose aij = sbij + tcij for some real
numbers s, t, bij , cij , 1 ≤ j ≤ n.

I Now

f (A) =
∑
σ∈Sn

ε(σ)a1σ(1)a2σ(2) . . . anσ(n)

=
∑
σ∈Sn

ε(σ)a1σ(1)a2σ(2) . . . aiσ(i) . . . anσ(n)

=
∑
σ∈Sn

ε(σ)a1σ(1)a2σ(2) . . . (sbiσ(i) + tciσ(i)) . . . anσ(n)

I Then it is clear that f satisfies (ii).
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Continuation

I Now suppose i-th row and j-th row of A are equal for some
1 ≤ i < j ≤ n, that is aik = ajk for all 1 ≤ k ≤ n.

I Let τ be the transposition of i and j .

I To begin with we observe that

{σ ◦ τ : σ ∈ Sn} = Sn.

I Since for any σ in Sn, σ ◦ τ ∈ Sn,

{σ ◦ τ : σ ∈ Sn} ⊆ Sn

is obvious. Now consider any permutation η in Sn. We can
write η as σ ◦ τ , where σ = η ◦ (τ)−1. This shows,

Sn ⊆ {σ ◦ τ : σ ∈ Sn}.
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Continuation

I Therefore,

f (A) =
∑
σ∈Sn

ε(σ◦τ)a1σ◦τ(1)a2σ◦τ(2) · · · aiσ◦τ(i) · · · ajσ◦τ(j) · · · anσ◦τ(n).

I We have ε(σ ◦ τ) = ε(σ).ε(τ) = −ε(σ).

I Also, τ(i) = j , τ(j) = i and τ(k) = k for k 6= i , j . Moreover,
since i-th row and j-th row of A are equal,

f (A) = −
∑
σ∈Sn

ε(σ)a1σ(1)a2σ(2) · · · aiσ(j) · · · ajσ(i) · · · anσ(n)

= −
∑
n∈Sn

ε(σ)a1σ(1)a2σ(2) · · · ajσ(j) · · · aiσ(i) · · · anσ(n)

= −f (A).

I Therefore, 2f (A) = 0 or f (A) = 0. This proves (iii) and hence
f (A) = det(A). �.



Continuation

I Therefore,

f (A) =
∑
σ∈Sn

ε(σ◦τ)a1σ◦τ(1)a2σ◦τ(2) · · · aiσ◦τ(i) · · · ajσ◦τ(j) · · · anσ◦τ(n).

I We have ε(σ ◦ τ) = ε(σ).ε(τ) = −ε(σ).

I Also, τ(i) = j , τ(j) = i and τ(k) = k for k 6= i , j . Moreover,
since i-th row and j-th row of A are equal,

f (A) = −
∑
σ∈Sn

ε(σ)a1σ(1)a2σ(2) · · · aiσ(j) · · · ajσ(i) · · · anσ(n)

= −
∑
n∈Sn

ε(σ)a1σ(1)a2σ(2) · · · ajσ(j) · · · aiσ(i) · · · anσ(n)

= −f (A).

I Therefore, 2f (A) = 0 or f (A) = 0. This proves (iii) and hence
f (A) = det(A). �.



Continuation

I Therefore,

f (A) =
∑
σ∈Sn

ε(σ◦τ)a1σ◦τ(1)a2σ◦τ(2) · · · aiσ◦τ(i) · · · ajσ◦τ(j) · · · anσ◦τ(n).

I We have ε(σ ◦ τ) = ε(σ).ε(τ) = −ε(σ).

I Also, τ(i) = j , τ(j) = i and τ(k) = k for k 6= i , j . Moreover,
since i-th row and j-th row of A are equal,

f (A) = −
∑
σ∈Sn

ε(σ)a1σ(1)a2σ(2) · · · aiσ(j) · · · ajσ(i) · · · anσ(n)

= −
∑
n∈Sn

ε(σ)a1σ(1)a2σ(2) · · · ajσ(j) · · · aiσ(i) · · · anσ(n)

= −f (A).

I Therefore, 2f (A) = 0 or f (A) = 0. This proves (iii) and hence
f (A) = det(A). �.



Continuation

I Therefore,

f (A) =
∑
σ∈Sn

ε(σ◦τ)a1σ◦τ(1)a2σ◦τ(2) · · · aiσ◦τ(i) · · · ajσ◦τ(j) · · · anσ◦τ(n).

I We have ε(σ ◦ τ) = ε(σ).ε(τ) = −ε(σ).

I Also, τ(i) = j , τ(j) = i and τ(k) = k for k 6= i , j . Moreover,
since i-th row and j-th row of A are equal,

f (A) = −
∑
σ∈Sn

ε(σ)a1σ(1)a2σ(2) · · · aiσ(j) · · · ajσ(i) · · · anσ(n)

= −
∑
n∈Sn

ε(σ)a1σ(1)a2σ(2) · · · ajσ(j) · · · aiσ(i) · · · anσ(n)

= −f (A).

I Therefore, 2f (A) = 0 or f (A) = 0. This proves (iii) and hence
f (A) = det(A). �.



Determinant of permutation matrices

I Recall that for a permutation σ ∈ Sn, we have defined the
associated ‘permutation matrix’ Pσ by

pσij =

{
1 if i = σ(j)
0 otherwise.

I Theorem 3.2: For σ ∈ Sn,

det(Pσ) = ε(σ).

I Proof: We have

det(Pσ) =
∑
η∈Sn

ε(η)Pσ1η(1)P
σ
2η(2) · · ·P

σ
nη(n).

I We see that for a term in this sum to be non-trivial we need
j = σ(η(j)) for every j , or η = (σ)−1.
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Continuation

I Therefore
det(Pσ) = ε(σ−1)

I Recall, ε(σ).ε(σ−1) = ε(ι) = 1.
I Hence ε(σ−1) = ε(σ) for every σ. �
I Definition 3.3: For a square matrix A = [aij ]1≤i ,j≤n, the

permanent of A is defined as:

per (A) =
∑
σ∈Sn

a1σ(1)a2σ(2) . . . anσ(n).

I The permanent of A does appear in some areas of
mathematics. However, it is not as useful as the determinant
and in general it is more difficult to compute.

I An interesting problem: Show that for any n × n doubly
stochastic matrix D,

per (D) ≥ n!

nn
.

In other words, the permanent on doubly stochastic matrices
attains its minimum value at the matrix whose entries are all
equal to 1

n .
END OF LECTURE 3.
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mathematics. However, it is not as useful as the determinant
and in general it is more difficult to compute.

I An interesting problem: Show that for any n × n doubly
stochastic matrix D,

per (D) ≥ n!

nn
.

In other words, the permanent on doubly stochastic matrices
attains its minimum value at the matrix whose entries are all
equal to 1

n .
END OF LECTURE 3.
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