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» Reference for ‘Doubly stochastic matrices’:

» (i) Non-negative matrices and applications, R B Bapat and T
E S Raghavan

» (ii) Books on ‘Markov Chains'. (For stochastic matrices).
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Upper and lower triangular matrices

» Definition 4.1 : A matrix A = [aj] is said to be upper

triangular if
aj=0, Vi<;j<i<n

» A matrix A = [a;] is said to be lower triangular if
a; =0, V1<i<j<n

» So if Ais upper triangular, then it has the form:

d11 412 413 ... din
0 daz2 a3 ... aop

A= 0 0 d33 ... ain

0 0 0 ... am
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Determinants of upper/lower triangular matrices

» Theorem 4.2: If a matrix A = [aj;] is upper triangular or lower
triangular then the determinant of A is the product of its
diagonal entries:

det(A) = a1a2 - - - app.

» Proof. We have Liebnitz formula:

det(A) = Z 6(0‘)310(1)320(2) -+ dng(n)-
o€ES,
» Now assume that A is upper triangular. Then a; = 0 for i > j.
> Then a1,(1)320(2) - - - ano(n) = 0 unless i < o(i) for every i.
» But the only permutation o which satisfies i < (/) for all /,
is the identity permutation (Why?). Now the result follows.
> Alternatively, we may expand the determinant of A using first
column and use induction.
» A similar proof works for lower triangular matrices through
expansion using first row. W
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Partitioned vectors

» Fix m, n € N. Consider a vector z € R™*";

21
22

Zm+n

» We can view of the first m-coordinates of z as forming a
vector in R™ and the remaining n-coordinates as forming a

vector in R”.
» So we write
ZzZ =
y
z1 Zm+1

z2 Zm+-2

where

Zm Zm4-n
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Continuation

» Conversely, given any x € R™ and y € R", we get a vector

z € R a5
(y)
z= )
y

» So in a way, we can think of R™" as constructed out of R™
and R". We say that R™"" is direct sum of R™ and R".
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Partitioned matrices or block matrices

> Now consider a matrix P = [pj]i<;j j<(mn) considered as a
linear map on R™*7,

> We partition P as
A B
P=le 5]
where Anmxm, Bmxns Caxms Dnxn are given by

pi1 ... Pim Pi(m+1) -+ Pi(m+n)

Pmi -+ Pmm Pm(m+1) -+ Pm(m+n)



Continuation

P(m+1)1 -+ P(m+1)m

p(m+n)1 p(m+n)(m)



Continuation

>
P(m+1)1
C— .
P(m+n)1
>
P(m+1)(m+1)

D= :

P(m+n)(m+1)

P(m+1)m
P(m4n)(m)
P(m+1)(m+n)

P(m-+n)(m+n)
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The action of partitioned matrices on vectors

» Under notation as above, with

Py — A B x\ ([ Ax+ By

| C D y ) \ C+Dy )’
» Note that A: R™ — R™, B: R"” — R™, C: R™ — R" and
D:R" — R".
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Multiplication of partitioned matrices

» Theorem 4.3: Consider two partitioned matrices

A B
=¢8]
and
| 2
E F
o=l ¢kl

with matching sizes. Then

PQ:[AE+BG AF+BH}’

CE+ DG CF+ DH

» In other words, the multiplication is like the usual matrix
multiplication.

» Proof. The proof is by direct multiplication.
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Continuation

» For instance, for 1 <i,j < m,

m-+n m—+n
> piag = Zp,quj+ > Py
k=1 k=m+1

= (;E),-j+ (BG)ij

» Similar computations work for other coordinates. H

» More generally, if P = [Aj], Q = [Bu] are partitioned
matrices, with matching orders, then PQ is a partitioned

matrix [Cj;] with
Cj=>_ AuBy.
K

» Here, for the matrix multiplication to be meaningful, it is
necessary that for fixed i, k, j, if the order of Aj is a X b then
the order of By; should be b x ¢ for some c. This is what we
mean by ‘matching orders’.
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Transpose of block matrices

» With notation as before, for

A B
=lc o)
>
At Ct
raal

> This is easy to see by direct verification.

> More generally, if we have a partitioned matrix
P = [Aj]

then
Pt = (A7)
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Block upper triangular matrices

» Consider a block matrix
A B
P [ A B ]

» Then P is said to be block upper triangular if C = 0, that is,
C is the zero matrix.

> Note that a block upper triangular matrix need not be upper
triangular.

» Whether a given matrix is block upper triangular or not
depends on the chosen sizes of blocks.

» In a similar way one can define block lower triangular matrices.
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Determinants of block upper triangular matrices

» Theorem 4.4: Consider a block upper triangular matrix
A B
P-[e 5]
where A, D are square matrices and C = 0. Then

det(P) = det(A). det(D).

» Proof: Suppose P is of size (m+ n) x (m+ n) and A, B, D
are respectively of sizes m x m, m x n and n x n.

> Now

det(P) = Z G(O')Plg(l)Pzg(z) . P(m+n)a(m+n)'

chSm+n

» Now C =0, means that P;,(;) = 0 if (j,o(j)) are such that
(m+1)<j<(m+n)and 1 <o(j) < m.
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Continuation

» In other words the term in the expansion of the determinant
of P becomes 0 if o maps {m+1,m+2,...,(m+ n)} to
{1,2,..., m}.

» Therefore for the term to be non-zero, it is necessary that o
maps {m+1,...,(m+ n)} to itself. Consequently it also
maps {1,2,...,m} to itself.

» Such permutations are precisely permutations of the form
7 on where 7 is permutation of {1,2,..., m} considered as a
permutation of {1,2,...,(m+ n)} by taking 7(j) = j for
je{m+1,...(m+n)} and n is a permutation of
{m+1,....,m+ n} extended to {1,...,(m+ n)} by taking
nG)=jforl<j<m

» Note that the signature of a permutation does not change by
considering such extensions.
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Continuation

» Then it is clear that,
det(P)
Z 6(7—)'6(77)1317(1) -+ - Pmr(m)-Pm+1n(m+1) - - - Pm+nn(m+n)

det(A). det(D).1

T777

> Now by mathematical induction the determinant of a block
upper triangular matrices (with square blocks on the diagonal)
is the product of the determinants of diagonal blocks. That is,

[ P11 P12 P13
0 P Py
det(| 0 0 Ps3
0 0 0
if P11, P, ...

'Dln
P2n
P3n

'Dnn

) = det(P11)...det(Pp,).

, P are square blocks.
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Inverses of 2 X 2 upper triangular matrices.

» Theorem 4.5: Consider a block upper triangular matrix

A B
S
where A, D are square matrices and C = 0. Then P is
invertible if and only if A and D are invertible and in such a
case,
p-1_ A"l —A-lgD!
0 D! '
» From the formula det(P) = det(A). det(D), we know that if P
is invertible, then det(A) and det(D) are non-zero and hence
A, D are invertible.

» The formula for the inverse can be confirmed by verifying:

A B At —ATBDTY] [0
C D|| O D! Lo
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A special case
» Corollary 4.6: For any matrix B,
I B1" [1 nB
0 |/ o0

» Proof: The result is clear for n = 0,1. Now verify the formula
for n € N by induction. Taking inverses we have the result for
all n e Z.

for every n € Z.

» This is actually a consequence of

| B I c| | I B+C
o/ |"|]0 1| |O / ’
The matrix product becomes simple addition here.
» END OF LECTURE 4.



