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Upper and lower triangular matrices

I Definition 4.1 : A matrix A = [aij ] is said to be upper
triangular if

aij = 0, ∀1 ≤ j < i ≤ n.

I A matrix A = [aij ] is said to be lower triangular if

aij = 0, ∀1 ≤ i < j ≤ n.

I So if A is upper triangular, then it has the form:

A =


a11 a12 a13 . . . a1n
0 a22 a23 . . . a2n
0 0 a33 . . . a3n
...

...
...

. . .
...

0 0 0 . . . ann

 .
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Determinants of upper/lower triangular matrices

I Theorem 4.2: If a matrix A = [aij ] is upper triangular or lower
triangular then the determinant of A is the product of its
diagonal entries:

det(A) = a11a22 · · · ann.

I Proof. We have Liebnitz formula:

det(A) =
∑
σ∈Sn

ε(σ)a1σ(1)a2σ(2) . . . anσ(n).

I Now assume that A is upper triangular. Then aij = 0 for i > j .
I Then a1σ(1)a2σ(2) . . . anσ(n) = 0 unless i ≤ σ(i) for every i .
I But the only permutation σ which satisfies i ≤ σ(i) for all i ,

is the identity permutation (Why?). Now the result follows.
I Alternatively, we may expand the determinant of A using first

column and use induction.
I A similar proof works for lower triangular matrices through

expansion using first row. �
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Partitioned vectors

I Fix m, n ∈ N. Consider a vector z ∈ Rm+n:

z =


z1
z2
...

zm+n

 .

I We can view of the first m-coordinates of z as forming a
vector in Rm and the remaining n-coordinates as forming a
vector in Rn.

I So we write

z =

(
x
y

)
where

x =


z1
z2
...
zm

 , y =


zm+1

zm+2
...

zm+n

 .
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Continuation

I Conversely, given any x ∈ Rm and y ∈ Rn, we get a vector
z ∈ Rm+n as

z =

(
x
y

)
.

I So in a way, we can think of Rm+n as constructed out of Rm

and Rn. We say that Rm+n is direct sum of Rm and Rn.
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Partitioned matrices or block matrices

I Now consider a matrix P = [pij ]1≤i ,j≤(m+n) considered as a
linear map on Rm+n.

I We partition P as

P =

[
A B
C D

]
,

where Am×m,Bm×n,Cn×m,Dn×n are given by

A =

 p11 . . . p1m
...

. . .
...

pm1 . . . pmm

 , B =

 p1(m+1) . . . p1(m+n)
...

. . .
...

pm(m+1) . . . pm(m+n)

 .
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Continuation

I

C =

 p(m+1)1 . . . p(m+1)m
...

. . .
...

p(m+n)1 . . . p(m+n)(m)

 ,

I

D =

 p(m+1)(m+1) . . . p(m+1)(m+n)
...

. . .
...

p(m+n)(m+1) . . . p(m+n)(m+n)
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I
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The action of partitioned matrices on vectors

I Under notation as above, with

Pz =

[
A B
C D

](
x
y

)
=

(
Ax + By
Cx + Dy

)
.

I Note that A : Rm → Rm, B : Rn → Rm, C : Rm → Rn and
D : Rn → Rn.
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Multiplication of partitioned matrices

I Theorem 4.3: Consider two partitioned matrices

P =

[
A B
C D

]
,

and

I

Q =

[
E F
G H

]
,

with matching sizes. Then

I

PQ =

[
AE + BG AF + BH
CE + DG CF + DH

]
,

I In other words, the multiplication is like the usual matrix
multiplication.

I Proof. The proof is by direct multiplication.
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Continuation

I For instance, for 1 ≤ i , j ≤ m,

(PQ)ij =
m+n∑
k=1

pikqkj =
m∑

k=1

pikqkj +
m+n∑

k=m+1

pikqkj

= (AE )ij + (BG )ij

I Similar computations work for other coordinates. �
I More generally, if P = [Aij ], Q = [Bkl ] are partitioned

matrices, with matching orders, then PQ is a partitioned
matrix [Cij ] with

Cij =
∑
k

AikBkj .

I Here, for the matrix multiplication to be meaningful, it is
necessary that for fixed i , k, j , if the order of Aik is a× b then
the order of Bkj should be b × c for some c . This is what we
mean by ‘matching orders’.
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Transpose of block matrices

I With notation as before, for

P =

[
A B
C D

]
,

I

Pt =

[
At C t

Bt Dt

]
,

I This is easy to see by direct verification.

I More generally, if we have a partitioned matrix

P = [Aij ]

then
Pt = [(Aji )

t ].
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Block upper triangular matrices

I Consider a block matrix

P =

[
A B
C D

]
.

I Then P is said to be block upper triangular if C = 0, that is,
C is the zero matrix.

I Note that a block upper triangular matrix need not be upper
triangular.

I Whether a given matrix is block upper triangular or not
depends on the chosen sizes of blocks.

I In a similar way one can define block lower triangular matrices.
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Determinants of block upper triangular matrices

I Theorem 4.4: Consider a block upper triangular matrix

P =

[
A B
C D

]
where A,D are square matrices and C = 0. Then

det(P) = det(A). det(D).

I Proof: Suppose P is of size (m + n)× (m + n) and A,B,D
are respectively of sizes m ×m, m × n and n × n.

I Now

det(P) =
∑

σ∈Sm+n

ε(σ)P1σ(1)P2σ(2) . . .P(m+n)σ(m+n).

I Now C = 0, means that Pjσ(j) = 0 if (j , σ(j)) are such that
(m + 1) ≤ j ≤ (m + n) and 1 ≤ σ(j) ≤ m.
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ε(σ)P1σ(1)P2σ(2) . . .P(m+n)σ(m+n).

I Now C = 0, means that Pjσ(j) = 0 if (j , σ(j)) are such that
(m + 1) ≤ j ≤ (m + n) and 1 ≤ σ(j) ≤ m.



Determinants of block upper triangular matrices
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Continuation

I In other words the term in the expansion of the determinant
of P becomes 0 if σ maps {m + 1,m + 2, . . . , (m + n)} to
{1, 2, . . . ,m}.

I Therefore for the term to be non-zero, it is necessary that σ
maps {m + 1, . . . , (m + n)} to itself. Consequently it also
maps {1, 2, . . . ,m} to itself.

I Such permutations are precisely permutations of the form
τ ◦ η where τ is permutation of {1, 2, . . . ,m} considered as a
permutation of {1, 2, . . . , (m + n)} by taking τ(j) = j for
j ∈ {m + 1, . . . (m + n)} and η is a permutation of
{m + 1, . . . ,m + n} extended to {1, . . . , (m + n)} by taking
η(j) = j for 1 ≤ j ≤ m.

I Note that the signature of a permutation does not change by
considering such extensions.
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Continuation

I Then it is clear that,

det(P)

=
∑
τ,η

ε(τ).ε(η)p1τ(1) . . . pmτ(m).pm+1η(m+1) . . . pm+nη(m+n)

= det(A). det(D).�

I Now by mathematical induction the determinant of a block
upper triangular matrices (with square blocks on the diagonal)
is the product of the determinants of diagonal blocks. That is,

det(


P11 P12 P13 . . . P1n

0 P22 P23 . . . P2n

0 0 P33 . . . P3n
...

...
...

. . .
...

0 0 0 . . . Pnn

) = det(P11) . . . det(Pnn).

if P11,P22, . . . ,Pnn are square blocks.
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Inverses of 2× 2 upper triangular matrices.

I Theorem 4.5: Consider a block upper triangular matrix

P =

[
A B
0 D

]
where A,D are square matrices and C = 0. Then P is
invertible if and only if A and D are invertible and in such a
case,

P−1 =

[
A−1 −A−1BD−1

0 D−1

]
.

I From the formula det(P) = det(A). det(D), we know that if P
is invertible, then det(A) and det(D) are non-zero and hence
A,D are invertible.

I The formula for the inverse can be confirmed by verifying:[
A B
C D

]
.

[
A−1 −A−1BD−1

0 D−1

]
=

[
I 0
0 I

]
.
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A special case

I Corollary 4.6: For any matrix B,[
I B
0 I

]n
=

[
I nB
0 I

]
for every n ∈ Z.

I Proof: The result is clear for n = 0, 1. Now verify the formula
for n ∈ N by induction. Taking inverses we have the result for
all n ∈ Z.

I This is actually a consequence of[
I B
0 I

]
.

[
I C
0 I

]
=

[
I B + C
0 I

]
.

The matrix product becomes simple addition here.

I END OF LECTURE 4.
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