

LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 4: Determinants of partitioned matrices

- ▶ Reference for 'Doubly stochastic matrices':

Lecture 4: Determinants of partitioned matrices

- ▶ Reference for 'Doubly stochastic matrices':
- ▶ (i) Non-negative matrices and applications, R B Bapat and T E S Raghavan

Lecture 4: Determinants of partitioned matrices

- ▶ Reference for 'Doubly stochastic matrices':
- ▶ (i) Non-negative matrices and applications, R B Bapat and T E S Raghavan
- ▶ (ii) Books on 'Markov Chains'. (For stochastic matrices).

Upper and lower triangular matrices

- ▶ Definition 4.1 : A matrix $A = [a_{ij}]$ is said to be **upper triangular** if

$$a_{ij} = 0, \quad \forall 1 \leq j < i \leq n.$$

Upper and lower triangular matrices

- ▶ **Definition 4.1** : A matrix $A = [a_{ij}]$ is said to be **upper triangular** if

$$a_{ij} = 0, \quad \forall 1 \leq j < i \leq n.$$

- ▶ A matrix $A = [a_{ij}]$ is said to be **lower triangular** if

$$a_{ij} = 0, \quad \forall 1 \leq i < j \leq n.$$

Upper and lower triangular matrices

- ▶ Definition 4.1 : A matrix $A = [a_{ij}]$ is said to be **upper triangular** if

$$a_{ij} = 0, \quad \forall 1 \leq j < i \leq n.$$

- ▶ A matrix $A = [a_{ij}]$ is said to be **lower triangular** if

$$a_{ij} = 0, \quad \forall 1 \leq i < j \leq n.$$

Upper and lower triangular matrices

- ▶ Definition 4.1 : A matrix $A = [a_{ij}]$ is said to be **upper triangular** if

$$a_{ij} = 0, \quad \forall 1 \leq j < i \leq n.$$

- ▶ A matrix $A = [a_{ij}]$ is said to be **lower triangular** if

$$a_{ij} = 0, \quad \forall 1 \leq i < j \leq n.$$

- ▶ So if A is upper triangular, then it has the form:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{bmatrix}.$$

Determinants of upper/lower triangular matrices

- **Theorem 4.2:** If a matrix $A = [a_{ij}]$ is upper triangular or lower triangular then the determinant of A is the product of its diagonal entries:

$$\det(A) = a_{11}a_{22} \cdots a_{nn}.$$

- **Proof.** We have Liebnitz formula:

$$\det(A) = \sum_{\sigma \in S_n} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}.$$

Determinants of upper/lower triangular matrices

- **Theorem 4.2:** If a matrix $A = [a_{ij}]$ is upper triangular or lower triangular then the determinant of A is the product of its diagonal entries:

$$\det(A) = a_{11}a_{22} \cdots a_{nn}.$$

- **Proof.** We have Liebnitz formula:

$$\det(A) = \sum_{\sigma \in S_n} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}.$$

- Now assume that A is upper triangular. Then $a_{ij} = 0$ for $i > j$.

Determinants of upper/lower triangular matrices

- **Theorem 4.2:** If a matrix $A = [a_{ij}]$ is upper triangular or lower triangular then the determinant of A is the product of its diagonal entries:

$$\det(A) = a_{11}a_{22} \cdots a_{nn}.$$

- **Proof.** We have Liebnitz formula:

$$\det(A) = \sum_{\sigma \in S_n} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}.$$

- Now assume that A is upper triangular. Then $a_{ij} = 0$ for $i > j$.
- Then $a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)} = 0$ unless $i \leq \sigma(i)$ for every i .

Determinants of upper/lower triangular matrices

- **Theorem 4.2:** If a matrix $A = [a_{ij}]$ is upper triangular or lower triangular then the determinant of A is the product of its diagonal entries:

$$\det(A) = a_{11}a_{22} \cdots a_{nn}.$$

- **Proof.** We have Liebnitz formula:

$$\det(A) = \sum_{\sigma \in S_n} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}.$$

- Now assume that A is upper triangular. Then $a_{ij} = 0$ for $i > j$.
- Then $a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)} = 0$ unless $i \leq \sigma(i)$ for every i .
- But the only permutation σ which satisfies $i \leq \sigma(i)$ for all i , is the identity permutation (Why?). Now the result follows.

Determinants of upper/lower triangular matrices

- **Theorem 4.2:** If a matrix $A = [a_{ij}]$ is upper triangular or lower triangular then the determinant of A is the product of its diagonal entries:

$$\det(A) = a_{11}a_{22} \cdots a_{nn}.$$

- **Proof.** We have Liebnitz formula:

$$\det(A) = \sum_{\sigma \in S_n} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}.$$

- Now assume that A is upper triangular. Then $a_{ij} = 0$ for $i > j$.
- Then $a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)} = 0$ unless $i \leq \sigma(i)$ for every i .
- But the only permutation σ which satisfies $i \leq \sigma(i)$ for all i , is the identity permutation (Why?). Now the result follows.
- Alternatively, we may expand the determinant of A using first column and use induction.

Determinants of upper/lower triangular matrices

- **Theorem 4.2:** If a matrix $A = [a_{ij}]$ is upper triangular or lower triangular then the determinant of A is the product of its diagonal entries:

$$\det(A) = a_{11}a_{22} \cdots a_{nn}.$$

- **Proof.** We have Liebnitz formula:

$$\det(A) = \sum_{\sigma \in S_n} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}.$$

- Now assume that A is upper triangular. Then $a_{ij} = 0$ for $i > j$.
- Then $a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)} = 0$ unless $i \leq \sigma(i)$ for every i .
- But the only permutation σ which satisfies $i \leq \sigma(i)$ for all i , is the identity permutation (Why?). Now the result follows.
- Alternatively, we may expand the determinant of A using first column and use induction.

Determinants of upper/lower triangular matrices

- **Theorem 4.2:** If a matrix $A = [a_{ij}]$ is upper triangular or lower triangular then the determinant of A is the product of its diagonal entries:

$$\det(A) = a_{11}a_{22} \cdots a_{nn}.$$

- **Proof.** We have Liebnitz formula:

$$\det(A) = \sum_{\sigma \in S_n} \epsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}.$$

- Now assume that A is upper triangular. Then $a_{ij} = 0$ for $i > j$.
- Then $a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)} = 0$ unless $i \leq \sigma(i)$ for every i .
- But the only permutation σ which satisfies $i \leq \sigma(i)$ for all i , is the identity permutation (Why?). Now the result follows.
- Alternatively, we may expand the determinant of A using first column and use induction.
- A similar proof works for lower triangular matrices through expansion using first row. ■

Partitioned vectors

- ▶ Fix $m, n \in \mathbb{N}$. Consider a vector $z \in \mathbb{R}^{m+n}$:

$$z = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_{m+n} \end{pmatrix}.$$

Partitioned vectors

- ▶ Fix $m, n \in \mathbb{N}$. Consider a vector $z \in \mathbb{R}^{m+n}$:

$$z = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_{m+n} \end{pmatrix}.$$

- ▶ We can view of the first m -coordinates of z as forming a vector in \mathbb{R}^m and the remaining n -coordinates as forming a vector in \mathbb{R}^n .

Partitioned vectors

- ▶ Fix $m, n \in \mathbb{N}$. Consider a vector $z \in \mathbb{R}^{m+n}$:

$$z = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_{m+n} \end{pmatrix}.$$

- ▶ We can view of the first m -coordinates of z as forming a vector in \mathbb{R}^m and the remaining n -coordinates as forming a vector in \mathbb{R}^n .
- ▶ So we write

$$z = \begin{pmatrix} x \\ y \end{pmatrix}$$

where

$$x = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_m \end{pmatrix}, \quad y = \begin{pmatrix} z_{m+1} \\ z_{m+2} \\ \vdots \\ z_{m+n} \end{pmatrix}.$$

Continuation

- ▶ Conversely, given any $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$, we get a vector $z \in \mathbb{R}^{m+n}$ as

$$z = \begin{pmatrix} x \\ y \end{pmatrix}.$$

Continuation

- ▶ Conversely, given any $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$, we get a vector $z \in \mathbb{R}^{m+n}$ as

$$z = \begin{pmatrix} x \\ y \end{pmatrix}.$$

- ▶ So in a way, we can think of \mathbb{R}^{m+n} as constructed out of \mathbb{R}^m and \mathbb{R}^n . We say that \mathbb{R}^{m+n} is direct sum of \mathbb{R}^m and \mathbb{R}^n .

Partitioned matrices or block matrices

- ▶ Now consider a matrix $P = [p_{ij}]_{1 \leq i,j \leq (m+n)}$ considered as a linear map on \mathbb{R}^{m+n} .

Partitioned matrices or block matrices

- ▶ Now consider a matrix $P = [p_{ij}]_{1 \leq i,j \leq (m+n)}$ considered as a linear map on \mathbb{R}^{m+n} .
- ▶ We partition P as

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix},$$

where $A_{m \times m}, B_{m \times n}, C_{n \times m}, D_{n \times n}$ are given by

$$A = \begin{bmatrix} p_{11} & \dots & p_{1m} \\ \vdots & \ddots & \vdots \\ p_{m1} & \dots & p_{mm} \end{bmatrix}, \quad B = \begin{bmatrix} p_{1(m+1)} & \dots & p_{1(m+n)} \\ \vdots & \ddots & \vdots \\ p_{m(m+1)} & \dots & p_{m(m+n)} \end{bmatrix}.$$

Continuation

$$C = \begin{bmatrix} p_{(m+1)1} & \cdots & p_{(m+1)m} \\ \vdots & \ddots & \vdots \\ p_{(m+n)1} & \cdots & p_{(m+n)(m)} \end{bmatrix},$$

Continuation

$$C = \begin{bmatrix} p_{(m+1)1} & \cdots & p_{(m+1)m} \\ \vdots & \ddots & \vdots \\ p_{(m+n)1} & \cdots & p_{(m+n)(m)} \end{bmatrix},$$

$$D = \begin{bmatrix} p_{(m+1)(m+1)} & \cdots & p_{(m+1)(m+n)} \\ \vdots & \ddots & \vdots \\ p_{(m+n)(m+1)} & \cdots & p_{(m+n)(m+n)} \end{bmatrix}$$

The action of partitioned matrices on vectors

- ▶ Under notation as above, with

$$Pz = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} Ax + By \\ Cx + Dy \end{pmatrix}.$$

The action of partitioned matrices on vectors

- ▶ Under notation as above, with

$$Pz = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} Ax + By \\ Cx + Dy \end{pmatrix}.$$

- ▶ Note that $A : \mathbb{R}^m \rightarrow \mathbb{R}^m$, $B : \mathbb{R}^n \rightarrow \mathbb{R}^m$, $C : \mathbb{R}^m \rightarrow \mathbb{R}^n$ and $D : \mathbb{R}^n \rightarrow \mathbb{R}^n$.

Multiplication of partitioned matrices

- Theorem 4.3: Consider two partitioned matrices

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix},$$

and

Multiplication of partitioned matrices

- Theorem 4.3: Consider two partitioned matrices

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix},$$

and

-

$$Q = \begin{bmatrix} E & F \\ G & H \end{bmatrix},$$

with matching sizes. Then

Multiplication of partitioned matrices

- Theorem 4.3: Consider two partitioned matrices

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix},$$

and

-

$$Q = \begin{bmatrix} E & F \\ G & H \end{bmatrix},$$

with matching sizes. Then

-

$$PQ = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix},$$

Multiplication of partitioned matrices

- Theorem 4.3: Consider two partitioned matrices

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix},$$

and

-

$$Q = \begin{bmatrix} E & F \\ G & H \end{bmatrix},$$

with matching sizes. Then

-

$$PQ = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix},$$

- In other words, the multiplication is like the usual matrix multiplication.

Multiplication of partitioned matrices

- Theorem 4.3: Consider two partitioned matrices

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix},$$

and

$$Q = \begin{bmatrix} E & F \\ G & H \end{bmatrix},$$

with matching sizes. Then

$$PQ = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix},$$

- ▶ In other words, the multiplication is like the usual matrix multiplication.
- ▶ **Proof.** The proof is by direct multiplication.

Continuation

- ▶ For instance, for $1 \leq i, j \leq m$,

$$\begin{aligned}(PQ)_{ij} &= \sum_{k=1}^{m+n} p_{ik} q_{kj} = \sum_{k=1}^m p_{ik} q_{kj} + \sum_{k=m+1}^{m+n} p_{ik} q_{kj} \\ &= (AE)_{ij} + (BG)_{ij}\end{aligned}$$

Continuation

- ▶ For instance, for $1 \leq i, j \leq m$,

$$\begin{aligned}(PQ)_{ij} &= \sum_{k=1}^{m+n} p_{ik} q_{kj} = \sum_{k=1}^m p_{ik} q_{kj} + \sum_{k=m+1}^{m+n} p_{ik} q_{kj} \\ &= (AE)_{ij} + (BG)_{ij}\end{aligned}$$

Continuation

- ▶ For instance, for $1 \leq i, j \leq m$,

$$\begin{aligned}(PQ)_{ij} &= \sum_{k=1}^{m+n} p_{ik} q_{kj} = \sum_{k=1}^m p_{ik} q_{kj} + \sum_{k=m+1}^{m+n} p_{ik} q_{kj} \\ &= (AE)_{ij} + (BG)_{ij}\end{aligned}$$

- ▶ Similar computations work for other coordinates. ■

Continuation

- ▶ For instance, for $1 \leq i, j \leq m$,

$$\begin{aligned}(PQ)_{ij} &= \sum_{k=1}^{m+n} p_{ik} q_{kj} = \sum_{k=1}^m p_{ik} q_{kj} + \sum_{k=m+1}^{m+n} p_{ik} q_{kj} \\ &= (AE)_{ij} + (BG)_{ij}\end{aligned}$$

- ▶ Similar computations work for other coordinates. ■
- ▶ More generally, if $P = [A_{ij}]$, $Q = [B_{kl}]$ are partitioned matrices, with matching orders, then PQ is a partitioned matrix $[C_{ij}]$ with

$$C_{ij} = \sum_k A_{ik} B_{kj}.$$

Continuation

- ▶ For instance, for $1 \leq i, j \leq m$,

$$\begin{aligned}(PQ)_{ij} &= \sum_{k=1}^{m+n} p_{ik} q_{kj} = \sum_{k=1}^m p_{ik} q_{kj} + \sum_{k=m+1}^{m+n} p_{ik} q_{kj} \\ &= (AE)_{ij} + (BG)_{ij}\end{aligned}$$

- ▶ Similar computations work for other coordinates. ■
- ▶ More generally, if $P = [A_{ij}]$, $Q = [B_{kl}]$ are partitioned matrices, with matching orders, then PQ is a partitioned matrix $[C_{ij}]$ with

$$C_{ij} = \sum_k A_{ik} B_{kj}.$$

- ▶ Here, for the matrix multiplication to be meaningful, it is necessary that for fixed i, k, j , if the order of A_{ik} is $a \times b$ then the order of B_{kj} should be $b \times c$ for some c . This is what we mean by 'matching orders'.

Transpose of block matrices

- ▶ With notation as before, for

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix},$$

Transpose of block matrices

- With notation as before, for

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix},$$

-

$$P^t = \begin{bmatrix} A^t & C^t \\ B^t & D^t \end{bmatrix},$$

Transpose of block matrices

- With notation as before, for

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix},$$

-

$$P^t = \begin{bmatrix} A^t & C^t \\ B^t & D^t \end{bmatrix},$$

- This is easy to see by direct verification.

Transpose of block matrices

- ▶ With notation as before, for

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix},$$

- ▶

$$P^t = \begin{bmatrix} A^t & C^t \\ B^t & D^t \end{bmatrix},$$

- ▶ This is easy to see by direct verification.
- ▶ More generally, if we have a partitioned matrix

$$P = [A_{ij}]$$

then

$$P^t = [(A_{ji})^t].$$

Block upper triangular matrices

- ▶ Consider a block matrix

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}.$$

Block upper triangular matrices

- ▶ Consider a block matrix

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}.$$

- ▶ Then P is said to be block upper triangular if $C = 0$, that is, C is the zero matrix.

Block upper triangular matrices

- ▶ Consider a block matrix

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}.$$

- ▶ Then P is said to be block upper triangular if $C = 0$, that is, C is the zero matrix.
- ▶ Note that a block upper triangular matrix need not be upper triangular.

Block upper triangular matrices

- ▶ Consider a block matrix

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}.$$

- ▶ Then P is said to be block upper triangular if $C = 0$, that is, C is the zero matrix.
- ▶ Note that a block upper triangular matrix need not be upper triangular.
- ▶ Whether a given matrix is block upper triangular or not depends on the chosen sizes of blocks.

Block upper triangular matrices

- ▶ Consider a block matrix

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}.$$

- ▶ Then P is said to be block upper triangular if $C = 0$, that is, C is the zero matrix.
- ▶ Note that a block upper triangular matrix need not be upper triangular.
- ▶ Whether a given matrix is block upper triangular or not depends on the chosen sizes of blocks.
- ▶ In a similar way one can define block lower triangular matrices.

Determinants of block upper triangular matrices

- **Theorem 4.4:** Consider a block upper triangular matrix

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices and $C = 0$. Then

$$\det(P) = \det(A) \cdot \det(D).$$

Determinants of block upper triangular matrices

- **Theorem 4.4:** Consider a block upper triangular matrix

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices and $C = 0$. Then

$$\det(P) = \det(A) \cdot \det(D).$$

- **Proof:** Suppose P is of size $(m+n) \times (m+n)$ and A, B, D are respectively of sizes $m \times m$, $m \times n$ and $n \times n$.

Determinants of block upper triangular matrices

- **Theorem 4.4:** Consider a block upper triangular matrix

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices and $C = 0$. Then

$$\det(P) = \det(A) \cdot \det(D).$$

- **Proof:** Suppose P is of size $(m+n) \times (m+n)$ and A, B, D are respectively of sizes $m \times m$, $m \times n$ and $n \times n$.
- Now

$$\det(P) = \sum_{\sigma \in S_{m+n}} \epsilon(\sigma) P_{1\sigma(1)} P_{2\sigma(2)} \cdots P_{(m+n)\sigma(m+n)}.$$

Determinants of block upper triangular matrices

- **Theorem 4.4:** Consider a block upper triangular matrix

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices and $C = 0$. Then

$$\det(P) = \det(A) \cdot \det(D).$$

- **Proof:** Suppose P is of size $(m+n) \times (m+n)$ and A, B, D are respectively of sizes $m \times m$, $m \times n$ and $n \times n$.
- Now

$$\det(P) = \sum_{\sigma \in S_{m+n}} \epsilon(\sigma) P_{1\sigma(1)} P_{2\sigma(2)} \cdots P_{(m+n)\sigma(m+n)}.$$

- Now $C = 0$, means that $P_{j\sigma(j)} = 0$ if $(j, \sigma(j))$ are such that $(m+1) \leq j \leq (m+n)$ and $1 \leq \sigma(j) \leq m$.

Continuation

- ▶ In other words the term in the expansion of the determinant of P becomes 0 if σ maps $\{m + 1, m + 2, \dots, (m + n)\}$ to $\{1, 2, \dots, m\}$.

Continuation

- ▶ In other words the term in the expansion of the determinant of P becomes 0 if σ maps $\{m + 1, m + 2, \dots, (m + n)\}$ to $\{1, 2, \dots, m\}$.
- ▶ Therefore for the term to be non-zero, it is necessary that σ maps $\{m + 1, \dots, (m + n)\}$ to itself. Consequently it also maps $\{1, 2, \dots, m\}$ to itself.

Continuation

- ▶ In other words the term in the expansion of the determinant of P becomes 0 if σ maps $\{m + 1, m + 2, \dots, (m + n)\}$ to $\{1, 2, \dots, m\}$.
- ▶ Therefore for the term to be non-zero, it is necessary that σ maps $\{m + 1, \dots, (m + n)\}$ to itself. Consequently it also maps $\{1, 2, \dots, m\}$ to itself.
- ▶ Such permutations are precisely permutations of the form $\tau \circ \eta$ where τ is permutation of $\{1, 2, \dots, m\}$ considered as a permutation of $\{1, 2, \dots, (m + n)\}$ by taking $\tau(j) = j$ for $j \in \{m + 1, \dots, (m + n)\}$ and η is a permutation of $\{m + 1, \dots, m + n\}$ extended to $\{1, \dots, (m + n)\}$ by taking $\eta(j) = j$ for $1 \leq j \leq m$.

Continuation

- ▶ In other words the term in the expansion of the determinant of P becomes 0 if σ maps $\{m + 1, m + 2, \dots, (m + n)\}$ to $\{1, 2, \dots, m\}$.
- ▶ Therefore for the term to be non-zero, it is necessary that σ maps $\{m + 1, \dots, (m + n)\}$ to itself. Consequently it also maps $\{1, 2, \dots, m\}$ to itself.
- ▶ Such permutations are precisely permutations of the form $\tau \circ \eta$ where τ is permutation of $\{1, 2, \dots, m\}$ considered as a permutation of $\{1, 2, \dots, (m + n)\}$ by taking $\tau(j) = j$ for $j \in \{m + 1, \dots, (m + n)\}$ and η is a permutation of $\{m + 1, \dots, m + n\}$ extended to $\{1, \dots, (m + n)\}$ by taking $\eta(j) = j$ for $1 \leq j \leq m$.
- ▶ Note that the signature of a permutation does not change by considering such extensions.

Continuation

- ▶ Then it is clear that,

$$\begin{aligned} & \det(P) \\ &= \sum_{\tau, \eta} \epsilon(\tau) \cdot \epsilon(\eta) p_{1\tau(1)} \cdots p_{m\tau(m)} \cdot p_{m+1\eta(m+1)} \cdots p_{m+n\eta(m+n)} \\ &= \det(A) \cdot \det(D). \blacksquare \end{aligned}$$

Continuation

- ▶ Then it is clear that,

$$\begin{aligned} & \det(P) \\ &= \sum_{\tau, \eta} \epsilon(\tau) \cdot \epsilon(\eta) p_{1\tau(1)} \cdots p_{m\tau(m)} \cdot p_{m+1\eta(m+1)} \cdots p_{m+n\eta(m+n)} \\ &= \det(A) \cdot \det(D). \blacksquare \end{aligned}$$

- ▶ Now by mathematical induction the determinant of a block upper triangular matrices (with square blocks on the diagonal) is the product of the determinants of diagonal blocks. That is,

$$\det \begin{bmatrix} P_{11} & P_{12} & P_{13} & \dots & P_{1n} \\ 0 & P_{22} & P_{23} & \dots & P_{2n} \\ 0 & 0 & P_{33} & \dots & P_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & P_{nn} \end{bmatrix} = \det(P_{11}) \dots \det(P_{nn}).$$

if $P_{11}, P_{22}, \dots, P_{nn}$ are square blocks.

Inverses of 2×2 upper triangular matrices.

- **Theorem 4.5:** Consider a block upper triangular matrix

$$P = \begin{bmatrix} A & B \\ 0 & D \end{bmatrix}$$

where A, D are square matrices and $C = 0$. Then P is invertible if and only if A and D are invertible and in such a case,

$$P^{-1} = \begin{bmatrix} A^{-1} & -A^{-1}BD^{-1} \\ 0 & D^{-1} \end{bmatrix}.$$

Inverses of 2×2 upper triangular matrices.

- **Theorem 4.5:** Consider a block upper triangular matrix

$$P = \begin{bmatrix} A & B \\ 0 & D \end{bmatrix}$$

where A, D are square matrices and $C = 0$. Then P is invertible if and only if A and D are invertible and in such a case,

$$P^{-1} = \begin{bmatrix} A^{-1} & -A^{-1}BD^{-1} \\ 0 & D^{-1} \end{bmatrix}.$$

- From the formula $\det(P) = \det(A) \cdot \det(D)$, we know that if P is invertible, then $\det(A)$ and $\det(D)$ are non-zero and hence A, D are invertible.

Inverses of 2×2 upper triangular matrices.

- **Theorem 4.5:** Consider a block upper triangular matrix

$$P = \begin{bmatrix} A & B \\ 0 & D \end{bmatrix}$$

where A, D are square matrices and $C = 0$. Then P is invertible if and only if A and D are invertible and in such a case,

$$P^{-1} = \begin{bmatrix} A^{-1} & -A^{-1}BD^{-1} \\ 0 & D^{-1} \end{bmatrix}.$$

- From the formula $\det(P) = \det(A) \cdot \det(D)$, we know that if P is invertible, then $\det(A)$ and $\det(D)$ are non-zero and hence A, D are invertible.
- The formula for the inverse can be confirmed by verifying:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \cdot \begin{bmatrix} A^{-1} & -A^{-1}BD^{-1} \\ 0 & D^{-1} \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}.$$

A special case

- Corollary 4.6: For any matrix B ,

$$\begin{bmatrix} I & B \\ 0 & I \end{bmatrix}^n = \begin{bmatrix} I & nB \\ 0 & I \end{bmatrix}$$

for every $n \in \mathbb{Z}$.

A special case

- **Corollary 4.6:** For any matrix B ,

$$\begin{bmatrix} I & B \\ 0 & I \end{bmatrix}^n = \begin{bmatrix} I & nB \\ 0 & I \end{bmatrix}$$

for every $n \in \mathbb{Z}$.

- **Proof:** The result is clear for $n = 0, 1$. Now verify the formula for $n \in \mathbb{N}$ by induction. Taking inverses we have the result for all $n \in \mathbb{Z}$.

A special case

- **Corollary 4.6:** For any matrix B ,

$$\begin{bmatrix} I & B \\ 0 & I \end{bmatrix}^n = \begin{bmatrix} I & nB \\ 0 & I \end{bmatrix}$$

for every $n \in \mathbb{Z}$.

- **Proof:** The result is clear for $n = 0, 1$. Now verify the formula for $n \in \mathbb{N}$ by induction. Taking inverses we have the result for all $n \in \mathbb{Z}$.
- This is actually a consequence of

$$\begin{bmatrix} I & B \\ 0 & I \end{bmatrix} \cdot \begin{bmatrix} I & C \\ 0 & I \end{bmatrix} = \begin{bmatrix} I & B + C \\ 0 & I \end{bmatrix}.$$

The matrix product becomes simple addition here.

A special case

- Corollary 4.6: For any matrix B ,

$$\begin{bmatrix} I & B \\ 0 & I \end{bmatrix}^n = \begin{bmatrix} I & nB \\ 0 & I \end{bmatrix}$$

for every $n \in \mathbb{Z}$.

- Proof: The result is clear for $n = 0, 1$. Now verify the formula for $n \in \mathbb{N}$ by induction. Taking inverses we have the result for all $n \in \mathbb{Z}$.
- This is actually a consequence of

$$\begin{bmatrix} I & B \\ 0 & I \end{bmatrix} \cdot \begin{bmatrix} I & C \\ 0 & I \end{bmatrix} = \begin{bmatrix} I & B + C \\ 0 & I \end{bmatrix}.$$

The matrix product becomes simple addition here.

- END OF LECTURE 4.