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Lecture 5: Determinant and inverses of block matrices

I We recall: Fix m, n ∈ N. Consider a vector z ∈ Rm+n:

z =


z1
z2
...

zm+n

 .

I We can view of the first m-coordinates of z as forming a
vector in Rm and the remaining n-coordinates as forming a
vector in Rn.

I So we write

z =

(
x
y

)
where

x =


z1
z2
...
zm

 , y =


zm+1

zm+2
...

zm+n

 .
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Continuation

I Conversely, given any x ∈ Rm and y ∈ Rn, we get a vector
z ∈ Rm+n as

z =

(
x
y

)
.

I So in a way, we can think of Rm+n as constructed out of Rm

and Rn. We say that Rm+n is direct sum of Rm and Rn.
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Partitioned matrices or block matrices

I Now consider a matrix P = [pij ]1≤i ,j≤(m+n) considered as a
linear map on Rm+n.

I We partition P as

P =

[
A B
C D

]
,

where Am×m,Bm×n,Cn×m,Dn×n are given by

A =

 p11 . . . p1m
...

. . .
...

pm1 . . . pmm

 , B =

 p1(m+1) . . . p1(m+n)
...

. . .
...

pm(m+1) . . . pm(m+n)

 .
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Continuation

I

C =

 p(m+1)1 . . . p(m+1)m
...

. . .
...

p(m+n)1 . . . p(m+n)(m)

 ,

I

D =

 p(m+1)(m+1) . . . p(m+1)(m+n)
...

. . .
...

p(m+n)(m+1) . . . p(m+n)(m+n)





Continuation

I

C =

 p(m+1)1 . . . p(m+1)m
...

. . .
...

p(m+n)1 . . . p(m+n)(m)

 ,
I

D =

 p(m+1)(m+1) . . . p(m+1)(m+n)
...

. . .
...

p(m+n)(m+1) . . . p(m+n)(m+n)
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The action of partitioned matrices on vectors

I Under notation as above, with

Pz =

[
A B
C D

](
x
y

)
=

(
Ax + By
Cx + Dy

)
.

I Note that A : Rm → Rm, B : Rn → Rm, C : Rm → Rn and
D : Rn → Rn.
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Multiplication of partitioned matrices

I Theorem 4.3: Consider two partitioned matrices

P =

[
A B
C D

]
,

and

I

Q =

[
E F
G H

]
,

with matching sizes. Then

I

PQ =

[
AE + BG AF + BH
CE + DG CF + DH

]
,

I In other words, the multiplication is like the usual matrix
multiplication.

I Proof. The proof is by direct multiplication.
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Continuation

I For instance, for 1 ≤ i , j ≤ m,

(PQ)ij =
m+n∑
k=1

pikqkj =
m∑

k=1

pikqkj +
m+n∑

k=m+1

pikqkj

= (AE )ij + (BG )ij

I Similar computations work for other coordinates. �
I More generally, if P = [Aij ], Q = [Bkl ] are partitioned

matrices, with matching orders, then PQ is a partitioned
matrix [Cij ] with

Cij =
∑
k

AikBkj .

I Here, for the matrix multiplication to be meaningful, it is
necessary that for fixed i , k, j , if the order of Aik is a× b then
the order of Bkj should be b × c for some c . This is what we
mean by ‘matching orders’.
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Determinants of block upper triangular matrices

I Theorem 4.4: Consider a block upper triangular matrix

P =

[
A B
0 D

]
where A,D are square matrices. Then

det(P) = det(A). det(D).



Inverses of 2× 2 upper triangular matrices.

I Theorem 4.5: Consider a block upper triangular matrix

P =

[
A B
0 D

]
where A,D are square matrices. Then P is invertible if and
only if A and D are invertible and in such a case,

P−1 =

[
A−1 −A−1BD−1

0 D−1

]
.

I From the formula det(P) = det(A). det(D), we know that if P
is invertible, then det(A) and det(D) are non-zero and hence
A,D are invertible.

I The formula for the inverse can be confirmed by verifying:[
A B
C D

]
.

[
A−1 −A−1BD−1

0 D−1

]
=

[
I 0
0 I

]
.
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A special case

I Corollary 4.6: For any matrix B,[
I B
0 I

]n
=

[
I nB
0 I

]
for every n ∈ Z.

I Proof: The result is clear for n = 0, 1. Now verify the formula
for n ∈ N by induction. Taking inverses we have the result for
all n ∈ Z.

I This is actually a consequence of[
I B
0 I

]
.

[
I C
0 I

]
=

[
I B + C
0 I

]
.

The matrix product becomes simple addition here.
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A factorization theorem for 2× 2 block matrices

I Theorem 5.1: Consider a block matrix

P =

[
A B
C D

]
where A,D are square matrices.

I (i) If D is invertible, then

P =

[
I BD−1

0 I

] [
A− BD−1C 0

0 D

] [
I 0

D−1C I

]
.

I (ii) If A is invertible, then

P =

[
I 0

CA−1 I

] [
A 0
0 D − CA−1B

] [
I A−1B
0 I

]
.

I Remark The terms A− BD−1C and D − CA−1B appearing
above are known as Schur Complements and they appear in
various block matrix computations.

I Here A and D need not be of same order.
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Continuation

I Proof. By direct computation:

[
I BD−1

0 I

] [
A− BD−1C 0

0 D

] [
I 0

D−1C I

]
=

[
A− BD−1C B

0 D

] [
I 0

D−1C I

]
=

[
A B
C D

]
.

I This proves (i). Similarly (ii) follows by multiplication. �
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Determinant of 2× 2 block matrices

I Theorem 5.2: Consider a block matrix

P =

[
A B
C D

]
where A,D are square matrices.

I (i) If D is invertible, then

det(P) = det(A− BD−1C ). det(D).

I (ii) If A is invertible, then

det(P) = det(A). det(D − CA−1B).

I Proof. Clear from the factorization result and the fact that
the determinant of a triangular block matrix is the product of
determinants of diagonal blocks.
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Inverses of 2× 2 block matrices

I Theorem 5.3: Consider a block matrix

P =

[
A B
C D

]
where A,D are square matrices.

I (i) Assume D is invertible and S := (A− BD−1C ) is
invertible. Then P is invertible and

P−1 =

[
S−1 −S−1BD−1

−D−1CS−1 D−1 + D−1CS−1BD−1

]
I (ii) If A is invertible, and T := D − CA−1B is invertible, then

P is invertible and

P−1 =

[
A−1 + A−1BT−1CA−1 −A−1BT−1

−T−1CA−1 T−1

]
.
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Some special cases

I Theorem 5.4: Suppose

P =

[
A B
C D

]
where A,B,C ,D are square matrices of same sizes and C ,D
commute (CD = DC ). Then

det(P) = det(AD − BC ).

I Theorem 5.5: Suppose

P =

[
A B
B A

]
where A,B, are square matrices. Then

det(P) = det(A− B). det(A + B).

I Exercise: Prove these theorems.
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Matrix tricks

I How to compute the determinant of

P =

[
A B
C D

]
where B,C are n × n square matrices and either B or C is
invertible.

I Take

J =

[
0 I
I 0

]
of same order.

I Then det(J) = (−1)n. (Prove this!.)

I Now [
A B
C D

]
=

[
0 I
I 0

]
.

[
C D
A B

]
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Continuation

I Therefore,

det(P) = (−1)n. det(

[
C D
A B

]
)

which can be computed using the formulae derived earlier.



Another trick

I Suppose we want to compute the determinant of

P =

[
A B
C D

]
where A,D are square matrices, but not invertible.

I For t ∈ R consider

Pt = P + tI =

[
A + tI B
C D + tI

]
I Consider f (t) = det(A + tI ) for t ∈ R.
I Then f is a polynomial in t. So it has finite number of zeros.
I Hence there exists ε > 0 such that f (t) 6= 0 for

t ∈ (−ε, ε)\{0}.
I Therefore A + tI is invertible for t ∈ (−ε, ε)\{0}.
I So using results proved earlier we can compute the

determinant of Pt for t ∈ (−ε,+ε)\{0}.
I Taking the limit as t tends to 0, we get the determinant of P.
I END OF LECTURE 5.



Another trick

I Suppose we want to compute the determinant of

P =

[
A B
C D

]
where A,D are square matrices, but not invertible.

I For t ∈ R consider

Pt = P + tI =

[
A + tI B
C D + tI

]

I Consider f (t) = det(A + tI ) for t ∈ R.
I Then f is a polynomial in t. So it has finite number of zeros.
I Hence there exists ε > 0 such that f (t) 6= 0 for

t ∈ (−ε, ε)\{0}.
I Therefore A + tI is invertible for t ∈ (−ε, ε)\{0}.
I So using results proved earlier we can compute the

determinant of Pt for t ∈ (−ε,+ε)\{0}.
I Taking the limit as t tends to 0, we get the determinant of P.
I END OF LECTURE 5.



Another trick

I Suppose we want to compute the determinant of

P =

[
A B
C D

]
where A,D are square matrices, but not invertible.

I For t ∈ R consider

Pt = P + tI =

[
A + tI B
C D + tI

]
I Consider f (t) = det(A + tI ) for t ∈ R.

I Then f is a polynomial in t. So it has finite number of zeros.
I Hence there exists ε > 0 such that f (t) 6= 0 for

t ∈ (−ε, ε)\{0}.
I Therefore A + tI is invertible for t ∈ (−ε, ε)\{0}.
I So using results proved earlier we can compute the

determinant of Pt for t ∈ (−ε,+ε)\{0}.
I Taking the limit as t tends to 0, we get the determinant of P.
I END OF LECTURE 5.



Another trick

I Suppose we want to compute the determinant of

P =

[
A B
C D

]
where A,D are square matrices, but not invertible.

I For t ∈ R consider

Pt = P + tI =

[
A + tI B
C D + tI

]
I Consider f (t) = det(A + tI ) for t ∈ R.
I Then f is a polynomial in t. So it has finite number of zeros.

I Hence there exists ε > 0 such that f (t) 6= 0 for
t ∈ (−ε, ε)\{0}.

I Therefore A + tI is invertible for t ∈ (−ε, ε)\{0}.
I So using results proved earlier we can compute the

determinant of Pt for t ∈ (−ε,+ε)\{0}.
I Taking the limit as t tends to 0, we get the determinant of P.
I END OF LECTURE 5.



Another trick

I Suppose we want to compute the determinant of

P =

[
A B
C D

]
where A,D are square matrices, but not invertible.

I For t ∈ R consider

Pt = P + tI =

[
A + tI B
C D + tI

]
I Consider f (t) = det(A + tI ) for t ∈ R.
I Then f is a polynomial in t. So it has finite number of zeros.
I Hence there exists ε > 0 such that f (t) 6= 0 for

t ∈ (−ε, ε)\{0}.

I Therefore A + tI is invertible for t ∈ (−ε, ε)\{0}.
I So using results proved earlier we can compute the

determinant of Pt for t ∈ (−ε,+ε)\{0}.
I Taking the limit as t tends to 0, we get the determinant of P.
I END OF LECTURE 5.



Another trick

I Suppose we want to compute the determinant of

P =

[
A B
C D

]
where A,D are square matrices, but not invertible.

I For t ∈ R consider

Pt = P + tI =

[
A + tI B
C D + tI

]
I Consider f (t) = det(A + tI ) for t ∈ R.
I Then f is a polynomial in t. So it has finite number of zeros.
I Hence there exists ε > 0 such that f (t) 6= 0 for

t ∈ (−ε, ε)\{0}.
I Therefore A + tI is invertible for t ∈ (−ε, ε)\{0}.

I So using results proved earlier we can compute the
determinant of Pt for t ∈ (−ε,+ε)\{0}.

I Taking the limit as t tends to 0, we get the determinant of P.
I END OF LECTURE 5.



Another trick

I Suppose we want to compute the determinant of

P =

[
A B
C D

]
where A,D are square matrices, but not invertible.

I For t ∈ R consider

Pt = P + tI =

[
A + tI B
C D + tI

]
I Consider f (t) = det(A + tI ) for t ∈ R.
I Then f is a polynomial in t. So it has finite number of zeros.
I Hence there exists ε > 0 such that f (t) 6= 0 for

t ∈ (−ε, ε)\{0}.
I Therefore A + tI is invertible for t ∈ (−ε, ε)\{0}.
I So using results proved earlier we can compute the

determinant of Pt for t ∈ (−ε,+ε)\{0}.

I Taking the limit as t tends to 0, we get the determinant of P.
I END OF LECTURE 5.



Another trick

I Suppose we want to compute the determinant of

P =

[
A B
C D

]
where A,D are square matrices, but not invertible.

I For t ∈ R consider

Pt = P + tI =

[
A + tI B
C D + tI

]
I Consider f (t) = det(A + tI ) for t ∈ R.
I Then f is a polynomial in t. So it has finite number of zeros.
I Hence there exists ε > 0 such that f (t) 6= 0 for

t ∈ (−ε, ε)\{0}.
I Therefore A + tI is invertible for t ∈ (−ε, ε)\{0}.
I So using results proved earlier we can compute the

determinant of Pt for t ∈ (−ε,+ε)\{0}.
I Taking the limit as t tends to 0, we get the determinant of P.

I END OF LECTURE 5.



Another trick

I Suppose we want to compute the determinant of

P =

[
A B
C D

]
where A,D are square matrices, but not invertible.

I For t ∈ R consider

Pt = P + tI =

[
A + tI B
C D + tI

]
I Consider f (t) = det(A + tI ) for t ∈ R.
I Then f is a polynomial in t. So it has finite number of zeros.
I Hence there exists ε > 0 such that f (t) 6= 0 for

t ∈ (−ε, ε)\{0}.
I Therefore A + tI is invertible for t ∈ (−ε, ε)\{0}.
I So using results proved earlier we can compute the

determinant of Pt for t ∈ (−ε,+ε)\{0}.
I Taking the limit as t tends to 0, we get the determinant of P.
I END OF LECTURE 5.


