

LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 5: Determinant and inverses of block matrices

- We recall: Fix $m, n \in \mathbb{N}$. Consider a vector $z \in \mathbb{R}^{m+n}$:

$$z = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_{m+n} \end{pmatrix}.$$

Lecture 5: Determinant and inverses of block matrices

- We recall: Fix $m, n \in \mathbb{N}$. Consider a vector $z \in \mathbb{R}^{m+n}$:

$$z = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_{m+n} \end{pmatrix}.$$

Lecture 5: Determinant and inverses of block matrices

- We recall: Fix $m, n \in \mathbb{N}$. Consider a vector $z \in \mathbb{R}^{m+n}$:

$$z = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_{m+n} \end{pmatrix}.$$

- We can view of the first m -coordinates of z as forming a vector in \mathbb{R}^m and the remaining n -coordinates as forming a vector in \mathbb{R}^n .
- So we write

$$z = \begin{pmatrix} x \\ y \end{pmatrix}$$

where

$$x = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_m \end{pmatrix}, \quad y = \begin{pmatrix} z_{m+1} \\ z_{m+2} \\ \vdots \\ z_{m+n} \end{pmatrix}.$$

Continuation

- ▶ Conversely, given any $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$, we get a vector $z \in \mathbb{R}^{m+n}$ as

$$z = \begin{pmatrix} x \\ y \end{pmatrix}.$$

Continuation

- ▶ Conversely, given any $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$, we get a vector $z \in \mathbb{R}^{m+n}$ as

$$z = \begin{pmatrix} x \\ y \end{pmatrix}.$$

- ▶ So in a way, we can think of \mathbb{R}^{m+n} as constructed out of \mathbb{R}^m and \mathbb{R}^n . We say that \mathbb{R}^{m+n} is direct sum of \mathbb{R}^m and \mathbb{R}^n .

Partitioned matrices or block matrices

- ▶ Now consider a matrix $P = [p_{ij}]_{1 \leq i,j \leq (m+n)}$ considered as a linear map on \mathbb{R}^{m+n} .

Partitioned matrices or block matrices

- ▶ Now consider a matrix $P = [p_{ij}]_{1 \leq i,j \leq (m+n)}$ considered as a linear map on \mathbb{R}^{m+n} .
- ▶ We partition P as

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix},$$

where $A_{m \times m}, B_{m \times n}, C_{n \times m}, D_{n \times n}$ are given by

$$A = \begin{bmatrix} p_{11} & \dots & p_{1m} \\ \vdots & \ddots & \vdots \\ p_{m1} & \dots & p_{mm} \end{bmatrix}, \quad B = \begin{bmatrix} p_{1(m+1)} & \dots & p_{1(m+n)} \\ \vdots & \ddots & \vdots \\ p_{m(m+1)} & \dots & p_{m(m+n)} \end{bmatrix}.$$

Continuation

$$C = \begin{bmatrix} p_{(m+1)1} & \cdots & p_{(m+1)m} \\ \vdots & \ddots & \vdots \\ p_{(m+n)1} & \cdots & p_{(m+n)(m)} \end{bmatrix},$$

Continuation

$$C = \begin{bmatrix} p_{(m+1)1} & \cdots & p_{(m+1)m} \\ \vdots & \ddots & \vdots \\ p_{(m+n)1} & \cdots & p_{(m+n)(m)} \end{bmatrix},$$

$$D = \begin{bmatrix} p_{(m+1)(m+1)} & \cdots & p_{(m+1)(m+n)} \\ \vdots & \ddots & \vdots \\ p_{(m+n)(m+1)} & \cdots & p_{(m+n)(m+n)} \end{bmatrix}$$

The action of partitioned matrices on vectors

- ▶ Under notation as above, with

$$Pz = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} Ax + By \\ Cx + Dy \end{pmatrix}.$$

The action of partitioned matrices on vectors

- ▶ Under notation as above, with

$$Pz = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} Ax + By \\ Cx + Dy \end{pmatrix}.$$

- ▶ Note that $A : \mathbb{R}^m \rightarrow \mathbb{R}^m$, $B : \mathbb{R}^n \rightarrow \mathbb{R}^m$, $C : \mathbb{R}^m \rightarrow \mathbb{R}^n$ and $D : \mathbb{R}^n \rightarrow \mathbb{R}^n$.

Multiplication of partitioned matrices

- Theorem 4.3: Consider two partitioned matrices

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix},$$

and

Multiplication of partitioned matrices

- Theorem 4.3: Consider two partitioned matrices

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix},$$

and

-

$$Q = \begin{bmatrix} E & F \\ G & H \end{bmatrix},$$

with matching sizes. Then

Multiplication of partitioned matrices

- Theorem 4.3: Consider two partitioned matrices

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix},$$

and

-

$$Q = \begin{bmatrix} E & F \\ G & H \end{bmatrix},$$

with matching sizes. Then

-

$$PQ = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix},$$

Multiplication of partitioned matrices

- Theorem 4.3: Consider two partitioned matrices

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix},$$

and

-
-
-

$$Q = \begin{bmatrix} E & F \\ G & H \end{bmatrix},$$

with matching sizes. Then

-
-
-

$$PQ = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix},$$

- In other words, the multiplication is like the usual matrix multiplication.

Multiplication of partitioned matrices

- Theorem 4.3: Consider two partitioned matrices

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix},$$

and

-
-
-

$$Q = \begin{bmatrix} E & F \\ G & H \end{bmatrix},$$

with matching sizes. Then

-
-
-

$$PQ = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix},$$

- In other words, the multiplication is like the usual matrix multiplication.
- Proof. The proof is by direct multiplication.

Continuation

- ▶ For instance, for $1 \leq i, j \leq m$,

$$\begin{aligned}(PQ)_{ij} &= \sum_{k=1}^{m+n} p_{ik} q_{kj} = \sum_{k=1}^m p_{ik} q_{kj} + \sum_{k=m+1}^{m+n} p_{ik} q_{kj} \\ &= (AE)_{ij} + (BG)_{ij}\end{aligned}$$

Continuation

- ▶ For instance, for $1 \leq i, j \leq m$,

$$\begin{aligned}(PQ)_{ij} &= \sum_{k=1}^{m+n} p_{ik} q_{kj} = \sum_{k=1}^m p_{ik} q_{kj} + \sum_{k=m+1}^{m+n} p_{ik} q_{kj} \\ &= (AE)_{ij} + (BG)_{ij}\end{aligned}$$

Continuation

- ▶ For instance, for $1 \leq i, j \leq m$,

$$\begin{aligned}(PQ)_{ij} &= \sum_{k=1}^{m+n} p_{ik} q_{kj} = \sum_{k=1}^m p_{ik} q_{kj} + \sum_{k=m+1}^{m+n} p_{ik} q_{kj} \\ &= (AE)_{ij} + (BG)_{ij}\end{aligned}$$

- ▶ Similar computations work for other coordinates. ■

Continuation

- ▶ For instance, for $1 \leq i, j \leq m$,

$$\begin{aligned}(PQ)_{ij} &= \sum_{k=1}^{m+n} p_{ik} q_{kj} = \sum_{k=1}^m p_{ik} q_{kj} + \sum_{k=m+1}^{m+n} p_{ik} q_{kj} \\ &= (AE)_{ij} + (BG)_{ij}\end{aligned}$$

- ▶ Similar computations work for other coordinates. ■
- ▶ More generally, if $P = [A_{ij}]$, $Q = [B_{kl}]$ are partitioned matrices, with matching orders, then PQ is a partitioned matrix $[C_{ij}]$ with

$$C_{ij} = \sum_k A_{ik} B_{kj}.$$

Continuation

- ▶ For instance, for $1 \leq i, j \leq m$,

$$\begin{aligned}(PQ)_{ij} &= \sum_{k=1}^{m+n} p_{ik} q_{kj} = \sum_{k=1}^m p_{ik} q_{kj} + \sum_{k=m+1}^{m+n} p_{ik} q_{kj} \\ &= (AE)_{ij} + (BG)_{ij}\end{aligned}$$

- ▶ Similar computations work for other coordinates. ■
- ▶ More generally, if $P = [A_{ij}]$, $Q = [B_{kl}]$ are partitioned matrices, with matching orders, then PQ is a partitioned matrix $[C_{ij}]$ with

$$C_{ij} = \sum_k A_{ik} B_{kj}.$$

- ▶ Here, for the matrix multiplication to be meaningful, it is necessary that for fixed i, k, j , if the order of A_{ik} is $a \times b$ then the order of B_{kj} should be $b \times c$ for some c . This is what we mean by 'matching orders'.

Determinants of block upper triangular matrices

- **Theorem 4.4:** Consider a block upper triangular matrix

$$P = \begin{bmatrix} A & B \\ 0 & D \end{bmatrix}$$

where A, D are square matrices. Then

$$\det(P) = \det(A) \cdot \det(D).$$

Inverses of 2×2 upper triangular matrices.

- **Theorem 4.5:** Consider a block upper triangular matrix

$$P = \begin{bmatrix} A & B \\ 0 & D \end{bmatrix}$$

where A, D are square matrices. Then P is invertible if and only if A and D are invertible and in such a case,

$$P^{-1} = \begin{bmatrix} A^{-1} & -A^{-1}BD^{-1} \\ 0 & D^{-1} \end{bmatrix}.$$

Inverses of 2×2 upper triangular matrices.

- **Theorem 4.5:** Consider a block upper triangular matrix

$$P = \begin{bmatrix} A & B \\ 0 & D \end{bmatrix}$$

where A, D are square matrices. Then P is invertible if and only if A and D are invertible and in such a case,

$$P^{-1} = \begin{bmatrix} A^{-1} & -A^{-1}BD^{-1} \\ 0 & D^{-1} \end{bmatrix}.$$

- From the formula $\det(P) = \det(A) \cdot \det(D)$, we know that if P is invertible, then $\det(A)$ and $\det(D)$ are non-zero and hence A, D are invertible.

Inverses of 2×2 upper triangular matrices.

- **Theorem 4.5:** Consider a block upper triangular matrix

$$P = \begin{bmatrix} A & B \\ 0 & D \end{bmatrix}$$

where A, D are square matrices. Then P is invertible if and only if A and D are invertible and in such a case,

$$P^{-1} = \begin{bmatrix} A^{-1} & -A^{-1}BD^{-1} \\ 0 & D^{-1} \end{bmatrix}.$$

- From the formula $\det(P) = \det(A) \cdot \det(D)$, we know that if P is invertible, then $\det(A)$ and $\det(D)$ are non-zero and hence A, D are invertible.
- The formula for the inverse can be confirmed by verifying:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \cdot \begin{bmatrix} A^{-1} & -A^{-1}BD^{-1} \\ 0 & D^{-1} \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}.$$

A special case

- Corollary 4.6: For any matrix B ,

$$\begin{bmatrix} I & B \\ 0 & I \end{bmatrix}^n = \begin{bmatrix} I & nB \\ 0 & I \end{bmatrix}$$

for every $n \in \mathbb{Z}$.

A special case

- Corollary 4.6: For any matrix B ,

$$\begin{bmatrix} I & B \\ 0 & I \end{bmatrix}^n = \begin{bmatrix} I & nB \\ 0 & I \end{bmatrix}$$

for every $n \in \mathbb{Z}$.

- **Proof:** The result is clear for $n = 0, 1$. Now verify the formula for $n \in \mathbb{N}$ by induction. Taking inverses we have the result for all $n \in \mathbb{Z}$.

A special case

- Corollary 4.6: For any matrix B ,

$$\begin{bmatrix} I & B \\ 0 & I \end{bmatrix}^n = \begin{bmatrix} I & nB \\ 0 & I \end{bmatrix}$$

for every $n \in \mathbb{Z}$.

- **Proof:** The result is clear for $n = 0, 1$. Now verify the formula for $n \in \mathbb{N}$ by induction. Taking inverses we have the result for all $n \in \mathbb{Z}$.
- This is actually a consequence of

$$\begin{bmatrix} I & B \\ 0 & I \end{bmatrix} \cdot \begin{bmatrix} I & C \\ 0 & I \end{bmatrix} = \begin{bmatrix} I & B + C \\ 0 & I \end{bmatrix}.$$

The matrix product becomes simple addition here.

A factorization theorem for 2×2 block matrices

- **Theorem 5.1:** Consider a block matrix

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices.

A factorization theorem for 2×2 block matrices

- **Theorem 5.1:** Consider a block matrix

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices.

- (i) If D is invertible, then

$$P = \begin{bmatrix} I & BD^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} I & 0 \\ D^{-1}C & I \end{bmatrix}.$$

A factorization theorem for 2×2 block matrices

- **Theorem 5.1:** Consider a block matrix

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices.

- (i) If D is invertible, then

$$P = \begin{bmatrix} I & BD^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} I & 0 \\ D^{-1}C & I \end{bmatrix}.$$

- (ii) If A is invertible, then

$$P = \begin{bmatrix} I & 0 \\ CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & D - CA^{-1}B \end{bmatrix} \begin{bmatrix} I & A^{-1}B \\ 0 & I \end{bmatrix}.$$

A factorization theorem for 2×2 block matrices

- **Theorem 5.1:** Consider a block matrix

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices.

- (i) If D is invertible, then

$$P = \begin{bmatrix} I & BD^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} I & 0 \\ D^{-1}C & I \end{bmatrix}.$$

- (ii) If A is invertible, then

$$P = \begin{bmatrix} I & 0 \\ CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & D - CA^{-1}B \end{bmatrix} \begin{bmatrix} I & A^{-1}B \\ 0 & I \end{bmatrix}.$$

- **Remark** The terms $A - BD^{-1}C$ and $D - CA^{-1}B$ appearing above are known as **Schur Complements** and they appear in various block matrix computations.

A factorization theorem for 2×2 block matrices

- **Theorem 5.1:** Consider a block matrix

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices.

- (i) If D is invertible, then

$$P = \begin{bmatrix} I & BD^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} I & 0 \\ D^{-1}C & I \end{bmatrix}.$$

- (ii) If A is invertible, then

$$P = \begin{bmatrix} I & 0 \\ CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & 0 \\ 0 & D - CA^{-1}B \end{bmatrix} \begin{bmatrix} I & A^{-1}B \\ 0 & I \end{bmatrix}.$$

- **Remark** The terms $A - BD^{-1}C$ and $D - CA^{-1}B$ appearing above are known as **Schur Complements** and they appear in various block matrix computations.
- Here A and D need not be of same order.

Continuation

► **Proof.** By direct computation:

$$\begin{aligned}& \begin{bmatrix} I & BD^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} I & 0 \\ D^{-1}C & I \end{bmatrix} \\&= \begin{bmatrix} A - BD^{-1}C & B \\ 0 & D \end{bmatrix} \begin{bmatrix} I & 0 \\ D^{-1}C & I \end{bmatrix} \\&= \begin{bmatrix} A & B \\ C & D \end{bmatrix}.\end{aligned}$$

Continuation

► **Proof.** By direct computation:

$$\begin{aligned}& \begin{bmatrix} I & BD^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} I & 0 \\ D^{-1}C & I \end{bmatrix} \\&= \begin{bmatrix} A - BD^{-1}C & B \\ 0 & D \end{bmatrix} \begin{bmatrix} I & 0 \\ D^{-1}C & I \end{bmatrix} \\&= \begin{bmatrix} A & B \\ C & D \end{bmatrix}.\end{aligned}$$

► This proves (i). Similarly (ii) follows by multiplication. ■

Determinant of 2×2 block matrices

- Theorem 5.2: Consider a block matrix

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices.

Determinant of 2×2 block matrices

- Theorem 5.2: Consider a block matrix

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices.

- (i) If D is invertible, then

$$\det(P) = \det(A - BD^{-1}C) \cdot \det(D).$$

Determinant of 2×2 block matrices

- **Theorem 5.2:** Consider a block matrix

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices.

- (i) If D is invertible, then

$$\det(P) = \det(A - BD^{-1}C) \cdot \det(D).$$

- (ii) If A is invertible, then

$$\det(P) = \det(A) \cdot \det(D - CA^{-1}B).$$

Determinant of 2×2 block matrices

- **Theorem 5.2:** Consider a block matrix

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices.

- (i) If D is invertible, then

$$\det(P) = \det(A - BD^{-1}C) \cdot \det(D).$$

- (ii) If A is invertible, then

$$\det(P) = \det(A) \cdot \det(D - CA^{-1}B).$$

- **Proof.** Clear from the factorization result and the fact that the determinant of a triangular block matrix is the product of determinants of diagonal blocks.

Inverses of 2×2 block matrices

- Theorem 5.3: Consider a block matrix

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices.

Inverses of 2×2 block matrices

- **Theorem 5.3:** Consider a block matrix

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices.

- (i) Assume D is invertible and $S := (A - BD^{-1}C)$ is invertible. Then P is invertible and

$$P^{-1} = \begin{bmatrix} S^{-1} & -S^{-1}BD^{-1} \\ -D^{-1}CS^{-1} & D^{-1} + D^{-1}CS^{-1}BD^{-1} \end{bmatrix}$$

Inverses of 2×2 block matrices

- **Theorem 5.3:** Consider a block matrix

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices.

- (i) Assume D is invertible and $S := (A - BD^{-1}C)$ is invertible. Then P is invertible and

$$P^{-1} = \begin{bmatrix} S^{-1} & -S^{-1}BD^{-1} \\ -D^{-1}CS^{-1} & D^{-1} + D^{-1}CS^{-1}BD^{-1} \end{bmatrix}$$

- (ii) If A is invertible, and $T := D - CA^{-1}B$ is invertible, then P is invertible and

$$P^{-1} = \begin{bmatrix} A^{-1} + A^{-1}BT^{-1}CA^{-1} & -A^{-1}BT^{-1} \\ -T^{-1}CA^{-1} & T^{-1} \end{bmatrix}.$$

Some special cases

- Theorem 5.4: Suppose

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, B, C, D are square matrices of same sizes and C, D commute ($CD = DC$). Then

$$\det(P) = \det(AD - BC).$$

Some special cases

- **Theorem 5.4:** Suppose

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, B, C, D are square matrices of same sizes and C, D commute ($CD = DC$). Then

$$\det(P) = \det(AD - BC).$$

- **Theorem 5.5:** Suppose

$$P = \begin{bmatrix} A & B \\ B & A \end{bmatrix}$$

where A, B , are square matrices. Then

$$\det(P) = \det(A - B) \cdot \det(A + B).$$

Some special cases

- **Theorem 5.4:** Suppose

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, B, C, D are square matrices of same sizes and C, D commute ($CD = DC$). Then

$$\det(P) = \det(AD - BC).$$

- **Theorem 5.5:** Suppose

$$P = \begin{bmatrix} A & B \\ B & A \end{bmatrix}$$

where A, B , are square matrices. Then

$$\det(P) = \det(A - B) \cdot \det(A + B).$$

- **Exercise:** Prove these theorems.

Matrix tricks

- ▶ How to compute the determinant of

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where B, C are $n \times n$ square matrices and either B or C is invertible.

Matrix tricks

- ▶ How to compute the determinant of

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where B, C are $n \times n$ square matrices and either B or C is invertible.

- ▶ Take

$$J = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$$

of same order.

Matrix tricks

- ▶ How to compute the determinant of

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where B, C are $n \times n$ square matrices and either B or C is invertible.

- ▶ Take

$$J = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$$

of same order.

- ▶ Then $\det(J) = (-1)^n$. (Prove this!).

Matrix tricks

- ▶ How to compute the determinant of

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where B, C are $n \times n$ square matrices and either B or C is invertible.

- ▶ Take

$$J = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$$

of same order.

- ▶ Then $\det(J) = (-1)^n$. (Prove this!.)

- ▶ Now

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \cdot \begin{bmatrix} C & D \\ A & B \end{bmatrix}$$

Continuation

- ▶ Therefore,

$$\det(P) = (-1)^n \cdot \det \begin{bmatrix} C & D \\ A & B \end{bmatrix}$$

which can be computed using the formulae derived earlier.

Another trick

- ▶ Suppose we want to compute the determinant of

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices, but not invertible.

Another trick

- ▶ Suppose we want to compute the determinant of

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices, but not invertible.

- ▶ For $t \in \mathbb{R}$ consider

$$P_t = P + tI = \begin{bmatrix} A + tI & B \\ C & D + tI \end{bmatrix}$$

Another trick

- ▶ Suppose we want to compute the determinant of

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices, but not invertible.

- ▶ For $t \in \mathbb{R}$ consider

$$P_t = P + tI = \begin{bmatrix} A + tI & B \\ C & D + tI \end{bmatrix}$$

- ▶ Consider $f(t) = \det(A + tI)$ for $t \in \mathbb{R}$.

Another trick

- ▶ Suppose we want to compute the determinant of

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices, but not invertible.

- ▶ For $t \in \mathbb{R}$ consider

$$P_t = P + tI = \begin{bmatrix} A + tI & B \\ C & D + tI \end{bmatrix}$$

- ▶ Consider $f(t) = \det(A + tI)$ for $t \in \mathbb{R}$.
- ▶ Then f is a polynomial in t . So it has finite number of zeros.

Another trick

- ▶ Suppose we want to compute the determinant of

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices, but not invertible.

- ▶ For $t \in \mathbb{R}$ consider

$$P_t = P + tI = \begin{bmatrix} A + tI & B \\ C & D + tI \end{bmatrix}$$

- ▶ Consider $f(t) = \det(A + tI)$ for $t \in \mathbb{R}$.
- ▶ Then f is a polynomial in t . So it has finite number of zeros.
- ▶ Hence there exists $\epsilon > 0$ such that $f(t) \neq 0$ for $t \in (-\epsilon, \epsilon) \setminus \{0\}$.

Another trick

- ▶ Suppose we want to compute the determinant of

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices, but not invertible.

- ▶ For $t \in \mathbb{R}$ consider

$$P_t = P + tI = \begin{bmatrix} A + tI & B \\ C & D + tI \end{bmatrix}$$

- ▶ Consider $f(t) = \det(A + tI)$ for $t \in \mathbb{R}$.
- ▶ Then f is a polynomial in t . So it has finite number of zeros.
- ▶ Hence there exists $\epsilon > 0$ such that $f(t) \neq 0$ for $t \in (-\epsilon, \epsilon) \setminus \{0\}$.
- ▶ Therefore $A + tI$ is invertible for $t \in (-\epsilon, \epsilon) \setminus \{0\}$.

Another trick

- ▶ Suppose we want to compute the determinant of

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices, but not invertible.

- ▶ For $t \in \mathbb{R}$ consider

$$P_t = P + tI = \begin{bmatrix} A + tI & B \\ C & D + tI \end{bmatrix}$$

- ▶ Consider $f(t) = \det(A + tI)$ for $t \in \mathbb{R}$.
- ▶ Then f is a polynomial in t . So it has finite number of zeros.
- ▶ Hence there exists $\epsilon > 0$ such that $f(t) \neq 0$ for $t \in (-\epsilon, \epsilon) \setminus \{0\}$.
- ▶ Therefore $A + tI$ is invertible for $t \in (-\epsilon, \epsilon) \setminus \{0\}$.
- ▶ So using results proved earlier we can compute the determinant of P_t for $t \in (-\epsilon, +\epsilon) \setminus \{0\}$.

Another trick

- ▶ Suppose we want to compute the determinant of

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices, but not invertible.

- ▶ For $t \in \mathbb{R}$ consider

$$P_t = P + tI = \begin{bmatrix} A + tI & B \\ C & D + tI \end{bmatrix}$$

- ▶ Consider $f(t) = \det(A + tI)$ for $t \in \mathbb{R}$.
- ▶ Then f is a polynomial in t . So it has finite number of zeros.
- ▶ Hence there exists $\epsilon > 0$ such that $f(t) \neq 0$ for $t \in (-\epsilon, \epsilon) \setminus \{0\}$.
- ▶ Therefore $A + tI$ is invertible for $t \in (-\epsilon, \epsilon) \setminus \{0\}$.
- ▶ So using results proved earlier we can compute the determinant of P_t for $t \in (-\epsilon, +\epsilon) \setminus \{0\}$.
- ▶ Taking the limit as t tends to 0, we get the determinant of P .

Another trick

- ▶ Suppose we want to compute the determinant of

$$P = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

where A, D are square matrices, but not invertible.

- ▶ For $t \in \mathbb{R}$ consider

$$P_t = P + tI = \begin{bmatrix} A + tI & B \\ C & D + tI \end{bmatrix}$$

- ▶ Consider $f(t) = \det(A + tI)$ for $t \in \mathbb{R}$.
- ▶ Then f is a polynomial in t . So it has finite number of zeros.
- ▶ Hence there exists $\epsilon > 0$ such that $f(t) \neq 0$ for $t \in (-\epsilon, \epsilon) \setminus \{0\}$.
- ▶ Therefore $A + tI$ is invertible for $t \in (-\epsilon, \epsilon) \setminus \{0\}$.
- ▶ So using results proved earlier we can compute the determinant of P_t for $t \in (-\epsilon, +\epsilon) \setminus \{0\}$.
- ▶ Taking the limit as t tends to 0, we get the determinant of P .
- ▶ **END OF LECTURE 5.**