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Lecture 5: Determinant and inverses of block matrices

» We recall: Fix m,n € N. Consider a vector z € R™*":

21
22

Zm+n

» We can view of the first m-coordinates of z as forming a
vector in R™ and the remaining n-coordinates as forming a

vector in R”.
» So we write
ZzZ =
y
z1 Zm+1

z2 Zm+-2

where

Zm Zm4-n



Continuation

» Conversely, given any x € R™ and y € R", we get a vector

z € R a5
(y)
z= )
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Continuation

» Conversely, given any x € R™ and y € R", we get a vector

z € R a5
(y)
z= )
y

» So in a way, we can think of R™" as constructed out of R™
and R". We say that R™"" is direct sum of R™ and R".



Partitioned matrices or block matrices

> Now consider a matrix P = [pj]i<;j j<(mn) considered as a
linear map on R™*7,



Partitioned matrices or block matrices

> Now consider a matrix P = [pj]i<;j j<(mn) considered as a
linear map on R™*7,

> We partition P as
A B
P=le 5]
where Anmxm, Bmxns Caxms Dnxn are given by

pi1 ... Pim Pi(m+1) -+ Pi(m+n)

Pmi -+ Pmm Pm(m+1) -+ Pm(m+n)



Continuation

P(m+1)1 -+ P(m+1)m

p(m+n)1 p(m+n)(m)



Continuation

>
P(m+1)1
C— .
P(m+n)1
>
P(m+1)(m+1)

D= :

P(m+n)(m+1)

P(m+1)m
P(m4n)(m)
P(m+1)(m+n)

P(m-+n)(m+n)



The action of partitioned matrices on vectors

» Under notation as above, with

Py — A B x\ ([ Ax+ By
““lc oD y ) \ C+Dy )’



The action of partitioned matrices on vectors

» Under notation as above, with

Py — A B x\ ([ Ax+ By

| C D y ) \ C+Dy )’
» Note that A: R™ — R™, B: R"” — R™, C: R™ — R" and
D:R" — R".
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Multiplication of partitioned matrices

» Theorem 4.3: Consider two partitioned matrices

A B
P=les)
and
>
E F
with matching sizes. Then
| 2

PQ:[AE+BG AF+BH}’

CE+ DG CF+ DH

» In other words, the multiplication is like the usual matrix
multiplication.



Multiplication of partitioned matrices

» Theorem 4.3: Consider two partitioned matrices

A B
=¢8]
and
| 2
E F
o=l ¢kl

with matching sizes. Then

PQ:[AE+BG AF+BH}’

CE+ DG CF+ DH

» In other words, the multiplication is like the usual matrix
multiplication.

» Proof. The proof is by direct multiplication.



Continuation

» For instance, for 1 <i,j < m,

m+n m+n

> piag = Zp,quj+ > pika
k=1

= k=m+1
= (AE)U+(BG)U



Continuation

» For instance, for 1 <i,j < m,

m+n m+n

> piag = Zp,quj+ > pika
k=1

= k=m+1
= (AE)U+(BG)U



Continuation

» For instance, for 1 <i,j < m,

m-+n m—+n
> piag = Zp,quj+ > Py
k=1 k=m+1

= (;E),-j+ (BG)ij

» Similar computations work for other coordinates. H



Continuation

» For instance, for 1 <i,j < m,

m-+n m—+n
> piag = Zp,quj+ > Py
k=1 k=m+1

= (;E),-j+ (BG)ij

» Similar computations work for other coordinates. H

» More generally, if P = [Aj], Q = [Bu] are partitioned
matrices, with matching orders, then PQ is a partitioned

matrix [Cj;] with
Cj=>_ AuBy.
K



Continuation

» For instance, for 1 <i,j < m,

m-+n m—+n
> piag = Zp,quj+ > Py
k=1 k=m+1

= (;E),-j+ (BG)ij

» Similar computations work for other coordinates. H

» More generally, if P = [Aj], Q = [Bu] are partitioned
matrices, with matching orders, then PQ is a partitioned

matrix [Cj;] with
Cj=>_ AuBy.
K

» Here, for the matrix multiplication to be meaningful, it is
necessary that for fixed i, k, j, if the order of Aj is a X b then
the order of By; should be b x ¢ for some c. This is what we
mean by ‘matching orders’.



Determinants of block upper triangular matrices

» Theorem 4.4: Consider a block upper triangular matrix

-[4 3]

where A, D are square matrices. Then

det(P) = det(A). det(D).



Inverses of 2 X 2 upper triangular matrices.

» Theorem 4.5: Consider a block upper triangular matrix
A B
S
where A, D are square matrices. Then P is invertible if and

only if A and D are invertible and in such a case,

p-1_ [ At —ABD™
10 D1 '



Inverses of 2 X 2 upper triangular matrices.
» Theorem 4.5: Consider a block upper triangular matrix
A B
P-[5 5]

where A, D are square matrices. Then P is invertible if and
only if A and D are invertible and in such a case,

p-1_ [ At —ABD™
10 D1 '

» From the formula det(P) = det(A). det(D), we know that if P
is invertible, then det(A) and det(D) are non-zero and hence
A, D are invertible.



Inverses of 2 X 2 upper triangular matrices.
» Theorem 4.5: Consider a block upper triangular matrix
A B
P-[5 5]

where A, D are square matrices. Then P is invertible if and
only if A and D are invertible and in such a case,

pi_[AY —AlBD
0 D! '
» From the formula det(P) = det(A). det(D), we know that if P

is invertible, then det(A) and det(D) are non-zero and hence
A, D are invertible.

» The formula for the inverse can be confirmed by verifying:

A B ATt —ATBDTY] [0
C D|| O D! Lo



A special case

» Corollary 4.6: For any matrix B,

o 7]l
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A special case

» Corollary 4.6: For any matrix B,
I B1" [1 nB
0 |/ 10

» Proof: The result is clear for n = 0,1. Now verify the formula
for n € N by induction. Taking inverses we have the result for
all n e Z.

for every n € Z.



A special case

» Corollary 4.6: For any matrix B,
I B1" [1 nB
0 |/ 10

» Proof: The result is clear for n = 0,1. Now verify the formula
for n € N by induction. Taking inverses we have the result for
all n e Z.

for every n € Z.

» This is actually a consequence of

o 7)o Tl=le Y

The matrix product becomes simple addition here.



A factorization theorem for 2 x 2 block matrices

» Theorem 5.1: Consider a block matrix
A B
S

where A, D are square matrices.



A factorization theorem for 2 x 2 block matrices

» Theorem 5.1: Consider a block matrix
A B
P-e 5]
where A, D are square matrices.
» (i) If D is invertible, then

p_ I BD™' ][ A-BD7IC
Lo 0

0
D

Il

/
D-C

0
/

|



A factorization theorem for 2 x 2 block matrices

» Theorem 5.1: Consider a block matrix
A B
P-e 5]
where A, D are square matrices.
» (i) If D is invertible, then

| BD'1[ A-BD1C OH / 0}

P:[o o 0 D||DC I
» (ii) If Ais invertible, then
p_ I 0][A 0 I A7lB
“|lcAat 1 ]lo D-cAaB|l0o 1 |



A factorization theorem for 2 x 2 block matrices

» Theorem 5.1: Consider a block matrix
A B
P-e 5]
where A, D are square matrices.
» (i) If D is invertible, then

P_[/ BD* ][ A-BD'C OH / 0}

o 1 || o D||DC I
» (ii) If Ais invertible, then
p_ I 0][A 0 I A7lB
“lecat |0 b-catBllo 1 |

» Remark The terms A— BD~1C and D — CA~1B appearing
above are known as Schur Complements and they appear in
various block matrix computations.



A factorization theorem for 2 x 2 block matrices

» Theorem 5.1: Consider a block matrix
A B
P-e 5]
where A, D are square matrices.
» (i) If D is invertible, then

P_[/ BD* ][ A-BD'C OH / 0}

o 1 || o D||DC I
» (ii) If Ais invertible, then
p_ I 0][A 0 I A7lB
“lecat |0 b-catBllo 1 |

» Remark The terms A— BD~1C and D — CA~1B appearing
above are known as Schur Complements and they appear in
various block matrix computations.

» Here A and D need not be of same order.



Continuation

» Proof. By direct computation:

| BD1 A—BDIC 0 / 0
0 / 0 D DIC |

[ A-BD7IC B I 0
| 0 D || DC I




Continuation

» Proof. By direct computation:

[ 1 BD' [ A-BD!C 0 I 0
0/ 0 D||D'C I
[ A-BD7IC B I 0
| 0 D||D'C I
[ A B
| ¢ D]

» This proves (i). Similarly (ii) follows by multiplication. H



Determinant of 2 x 2 block matrices

» Theorem 5.2: Consider a block matrix
A B
P=|¢ o]

where A, D are square matrices.
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» Theorem 5.2: Consider a block matrix
A B
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where A, D are square matrices.
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det(P) = det(A — BD™1C). det(D).



Determinant of 2 x 2 block matrices

» Theorem 5.2: Consider a block matrix
Sk
where A, D are square matrices.
» (i) If D is invertible, then
det(P) = det(A — BD™1C). det(D).
» (ii) If Ais invertible, then

det(P) = det(A).det(D — CA™1B).



Determinant of 2 x 2 block matrices

» Theorem 5.2: Consider a block matrix
(28]
where A, D are square matrices.
» (i) If D is invertible, then
det(P) = det(A — BD™1C). det(D).
» (ii) If Ais invertible, then
det(P) = det(A).det(D — CA™1B).

» Proof. Clear from the factorization result and the fact that
the determinant of a triangular block matrix is the product of
determinants of diagonal blocks.



Inverses of 2 x 2 block matrices

» Theorem 5.3: Consider a block matrix
A B
=25

where A, D are square matrices.



Inverses of 2 x 2 block matrices

» Theorem 5.3: Consider a block matrix

A B
P-e 5]
where A, D are square matrices.

» (i) Assume D is invertible and S := (A — BD7'C) is
invertible. Then P is invertible and
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Inverses of 2 x 2 block matrices

» Theorem 5.3: Consider a block matrix

A B
P-e 5]
where A, D are square matrices.

» (i) Assume D is invertible and S := (A — BD7'C) is
invertible. Then P is invertible and

p-1_ st -S-1BD7!
| -D7'¢s7t D4+ DlcsTiBDT!

» (i) If Ais invertible, and T := D — CA~1B is invertible, then
P is invertible and

pi_ [ATTHATIBTICAT —ATIBT!
B —-Tlcat T-!



Some special cases

» Theorem 5.4: Suppose
A B
P-|e o]
where A, B, C, D are square matrices of same sizes and C, D
commute (CD = DC). Then
det(P) = det(AD — BC).
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» Theorem 5.4: Suppose
A B
P-[e 5]
where A, B, C, D are square matrices of same sizes and C, D
commute (CD = DC). Then
det(P) = det(AD — BC).
» Theorem 5.5: Suppose
A B
P-|& 4]
where A, B, are square matrices. Then
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Some special cases

» Theorem 5.4: Suppose
A B
P-|e o]
where A, B, C, D are square matrices of same sizes and C, D
commute (CD = DC). Then
det(P) = det(AD — BC).
» Theorem 5.5: Suppose
A B
"-15 4]
where A, B, are square matrices. Then
det(P) = det(A — B).det(A+ B).

» Exercise: Prove these theorems.
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Matrix tricks

> How to compute the determinant of
A B
P-[e 5]

where B, C are n X n square matrices and either B or C is
invertible.

» Take

of same order.
» Then det(J) = (—1)". (Prove this!.)

B PR RN



Continuation

» Therefore,

det(P) = (—1)".det([ < ])

which can be computed using the formulae derived earlier.



Another trick

» Suppose we want to compute the determinant of
A B
P=
o]

where A, D are square matrices, but not invertible.
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» Suppose we want to compute the determinant of
A B
P=
cC D
where A, D are square matrices, but not invertible.
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Another trick

» Suppose we want to compute the determinant of

A B
7-1¢ o]
where A, D are square matrices, but not invertible.

» For t € R consider

C D +tl

» Consider f(t) = det(A + tl) for t € R.
Then f is a polynomial in t. So it has finite number of zeros.
» Hence there exists € > 0 such that f(t) # 0 for

t € (—e,¢)\{0}.

Pt:P+tI:[A+tl B ]

v



Another trick

» Suppose we want to compute the determinant of

A B
7-1¢ o]
where A, D are square matrices, but not invertible.
> For t € R consider
A+t B
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Another trick

» Suppose we want to compute the determinant of
A B
P=
cC D
where A, D are square matrices, but not invertible.
> For t € R consider

C D +tl

» Consider f(t) = det(A + tl) for t € R.
» Then f is a polynomial in t. So it has finite number of zeros.
» Hence there exists € > 0 such that f(t) # 0 for
t € (—e,€)\{0}.
» Therefore A+ tl is invertible for t € (—¢,€)\{0}.
» So using results proved earlier we can compute the
determinant of P; for t € (—e, +€)\{0}.
» Taking the limit as t tends to 0, we get the determinant of P.
» END OF LECTURE 5.

Pt:P+tI:[A+tl B ]



