

LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 6: Cauchy Binet formula

- ▶ Suppose A, B are $m \times m$ matrices. Then we know that

$$\det(AB) = \det(A) \cdot \det(B).$$

Lecture 6: Cauchy Binet formula

- ▶ Suppose A, B are $m \times m$ matrices. Then we know that

$$\det(AB) = \det(A) \cdot \det(B).$$

- ▶ Now suppose A is an $m \times n$ matrix and B is a $n \times m$ matrix so that AB is again an $m \times m$ matrix.

Lecture 6: Cauchy Binet formula

- ▶ Suppose A, B are $m \times m$ matrices. Then we know that

$$\det(AB) = \det(A) \cdot \det(B).$$

- ▶ Now suppose A is an $m \times n$ matrix and B is a $n \times m$ matrix so that AB is again an $m \times m$ matrix.
- ▶ **Question:** How can we compute the determinant of AB using A and B ?

Lecture 6: Cauchy Binet formula

- ▶ Suppose A, B are $m \times m$ matrices. Then we know that

$$\det(AB) = \det(A) \cdot \det(B).$$

- ▶ Now suppose A is an $m \times n$ matrix and B is a $n \times m$ matrix so that AB is again an $m \times m$ matrix.
- ▶ **Question:** How can we compute the determinant of AB using A and B ?
- ▶ This question is answered by Cauchy-Binet formula.

Illustration

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 5 & 7 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 6 \\ 7 & 8 \\ 0 & 1 \end{bmatrix}$$

Illustration

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 5 & 7 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 6 \\ 7 & 8 \\ 0 & 1 \end{bmatrix}$$

$$\det(AB) = \det(A_1B_1) + \det(A_2B_2) + \det(A_3B_3),$$

Illustration

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 5 & 7 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 6 \\ 7 & 8 \\ 0 & 1 \end{bmatrix}$$

$$\det(AB) = \det(A_1B_1) + \det(A_2B_2) + \det(A_3B_3),$$

► where A_j, B_j 's are 2×2 matrices formed by choosing columns of A and respective rows of B :

$$A_1 = \begin{bmatrix} 2 & 1 \\ 0 & 5 \end{bmatrix}, \quad B_1 = \begin{bmatrix} 4 & 6 \\ 7 & 8 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 2 & 0 \\ 0 & 7 \end{bmatrix}, \quad B_2 = \begin{bmatrix} 4 & 6 \\ 0 & 1 \end{bmatrix}$$

$$A_3 = \begin{bmatrix} 1 & 0 \\ 5 & 7 \end{bmatrix}, \quad B_3 = \begin{bmatrix} 7 & 8 \\ 0 & 1 \end{bmatrix}.$$

Notation

- ▶ To state the theorem we need some notation.

Notation

- ▶ To state the theorem we need some notation.
- ▶ Fix $m, n \in \mathbb{N}$ with $m \leq n$.

Notation

- ▶ To state the theorem we need some notation.
- ▶ Fix $m, n \in \mathbb{N}$ with $m \leq n$.
- ▶ Suppose $B = [b_{jk}]_{1 \leq j \leq n, 1 \leq k \leq m}$ so that B is an $n \times m$ matrix.

Notation

- ▶ To state the theorem we need some notation.
- ▶ Fix $m, n \in \mathbb{N}$ with $m \leq n$.
- ▶ Suppose $B = [b_{jk}]_{1 \leq j \leq n, 1 \leq k \leq m}$ so that B is an $n \times m$ matrix.
- ▶ We form $m \times m$ square matrices out of B by choosing m -rows of B .

Notation

- ▶ To state the theorem we need some notation.
- ▶ Fix $m, n \in \mathbb{N}$ with $m \leq n$.
- ▶ Suppose $B = [b_{jk}]_{1 \leq j \leq n, 1 \leq k \leq m}$ so that B is an $n \times m$ matrix.
- ▶ We form $m \times m$ square matrices out of B by choosing m -rows of B .
- ▶ So if $1 \leq j_1, j_2, \dots, j_m \leq n$, we take

$$B(j_1, j_2, \dots, j_m | 1, 2, \dots, m) = \begin{bmatrix} b_{j_1 1} & b_{j_1 2} & \dots & b_{j_1 m} \\ b_{j_2 1} & b_{j_2 2} & \dots & b_{j_2 m} \\ \vdots & \vdots & \vdots & \vdots \\ b_{j_m 1} & b_{j_m 2} & \dots & b_{j_m m} \end{bmatrix}.$$

Notation

- ▶ To state the theorem we need some notation.
- ▶ Fix $m, n \in \mathbb{N}$ with $m \leq n$.
- ▶ Suppose $B = [b_{jk}]_{1 \leq j \leq n, 1 \leq k \leq m}$ so that B is an $n \times m$ matrix.
- ▶ We form $m \times m$ square matrices out of B by choosing m -rows of B .
- ▶ So if $1 \leq j_1, j_2, \dots, j_m \leq n$, we take

$$B(j_1, j_2, \dots, j_m | 1, 2, \dots, m) = \begin{bmatrix} b_{j_1 1} & b_{j_1 2} & \dots & b_{j_1 m} \\ b_{j_2 1} & b_{j_2 2} & \dots & b_{j_2 m} \\ \vdots & \vdots & \vdots & \vdots \\ b_{j_m 1} & b_{j_m 2} & \dots & b_{j_m m} \end{bmatrix}.$$

- ▶ The notation indicates that the rows chosen are j_1, j_2, \dots, j_m , and columns chosen are $1, 2, \dots, m$.

Continuation

- ▶ Similarly if $A = [a_{ij}]_{1 \leq i \leq m; 1 \leq j \leq n}$ is an $m \times n$ matrix with $m \leq n$, we form square matrices by choosing m -columns of A .

Continuation

- ▶ Similarly if $A = [a_{ij}]_{1 \leq i \leq m; 1 \leq j \leq n}$ is an $m \times n$ matrix with $m \leq n$, we form square matrices by choosing m -columns of A .
- ▶ If $1 \leq j_1, j_2, \dots, j_m \leq n$, take

$$A(1, 2, \dots, m | j_1, j_2, \dots, j_m) := \begin{bmatrix} a_{1j_1} & a_{1j_2} & \dots & a_{1j_m} \\ a_{2j_1} & a_{2j_2} & \dots & a_{2j_m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{mj_1} & a_{mj_2} & \dots & a_{mj_m} \end{bmatrix}.$$

Continuation

- ▶ Similarly if $A = [a_{ij}]_{1 \leq i \leq m; 1 \leq j \leq n}$ is an $m \times n$ matrix with $m \leq n$, we form square matrices by choosing m -columns of A .
- ▶ If $1 \leq j_1, j_2, \dots, j_m \leq n$, take

$$A(1, 2, \dots, m | j_1, j_2, \dots, j_m) := \begin{bmatrix} a_{1j_1} & a_{1j_2} & \dots & a_{1j_m} \\ a_{2j_1} & a_{2j_2} & \dots & a_{2j_m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{mj_1} & a_{mj_2} & \dots & a_{mj_m} \end{bmatrix}.$$

- ▶ Here all rows are chosen and columns j_1, j_2, \dots, j_m are chosen to get a square matrix.

A Lemma

- ▶ **Lemma 6.1:** For any $n \times m$ matrix B ,

$$\det B(j_1, j_2, \dots, j_m | 1, 2, \dots, m) = 0$$

if j_1, \dots, j_m are not distinct. If j_1, j_2, \dots, j_m are distinct, then

$$\begin{aligned} & \det B(j_1, j_2, \dots, j_m | 1, \dots, m) \\ &= \epsilon(\tau) \det B(j_{\tau(1)}, j_{\tau(2)}, \dots, j_{\tau(m)} | 1, \dots, m) \end{aligned}$$

where $\tau \in S_m$ is the permutation such that
 $j_{\tau(1)} < j_{\tau(2)} < \dots < j_{\tau(m)}$.

A Lemma

- ▶ **Lemma 6.1:** For any $n \times m$ matrix B ,

$$\det B(j_1, j_2, \dots, j_m | 1, 2, \dots, m) = 0$$

if j_1, \dots, j_m are not distinct. If j_1, j_2, \dots, j_m are distinct, then

$$\begin{aligned} & \det B(j_1, j_2, \dots, j_m | 1, \dots, m) \\ &= \epsilon(\tau) \det B(j_{\tau(1)}, j_{\tau(2)}, \dots, j_{\tau(m)} | 1, \dots, m) \end{aligned}$$

where $\tau \in S_m$ is the permutation such that

$$j_{\tau(1)} < j_{\tau(2)} < \dots < j_{\tau(m)}.$$

- ▶ **Proof.** Follows from the basic properties of the determinant.

Cauchy Binet formula

► **Theorem 6.2:** Suppose A, B are $m \times n$ and $n \times m$ matrices with $m \leq n$ and $C = AB$. Then $\det(C) =$

$$\sum_{1 \leq j_1 < \dots < j_m \leq n} \det(A(1, \dots, m | j_1, \dots, j_m)) \cdot \det(B(j_1, \dots, j_m | 1, \dots, m)).$$

Cauchy Binet formula

- **Theorem 6.2:** Suppose A, B are $m \times n$ and $n \times m$ matrices with $m \leq n$ and $C = AB$. Then $\det(C) =$

$$\sum_{1 \leq j_1 < \dots < j_m \leq n} \det(A(1, \dots, m | j_1, \dots, j_m)) \cdot \det(B(j_1, \dots, j_m | 1, \dots, m)).$$

- Note that there are $\binom{n}{m}$ terms in this summation.

Cauchy Binet formula

- **Theorem 6.2:** Suppose A, B are $m \times n$ and $n \times m$ matrices with $m \leq n$ and $C = AB$. Then $\det(C) =$

$$\sum_{1 \leq j_1 < \dots < j_m \leq n} \det(A(1, \dots, m | j_1, \dots, j_m)) \cdot \det(B(j_1, \dots, j_m | 1, \dots, m)).$$

- Note that there are $\binom{n}{m}$ terms in this summation.
- **Proof.** We have

$$\begin{aligned} & \det(AB) \\ = & \sum_{\sigma \in S_m} \epsilon(\sigma) (AB)_{1\sigma(1)} (AB)_{2\sigma(2)} \dots (AB)_{m\sigma(m)} \\ = & \sum_{\sigma \in S_m} \epsilon(\sigma) \left(\sum_{j=1}^n a_{1j} b_{j\sigma(1)} \right) \left(\sum_{j=1}^n a_{2j} b_{j\sigma(2)} \right) \dots \left(\sum_{j=1}^n a_{mj} b_{j\sigma(m)} \right) \end{aligned}$$

Continuation

$$\begin{aligned} &= \sum_{j_1, j_2, \dots, j_m=1}^n a_{1j_1} \dots a_{mj_m} \sum_{\sigma \in S_m} \epsilon(\sigma) b_{j_1\sigma(1)} b_{j_2\sigma(2)} \dots b_{j_m\sigma(m)} \\ &= \sum_{j_1, j_2, \dots, j_m=1}^n a_{1j_1} \dots a_{mj_m} \det B(j_1, \dots, j_m | 1, \dots, m) \\ &= \sum_{\substack{j_1, j_2, \dots, j_m - \text{distinct}} \atop {1 \leq j_1 < \dots < j_m \leq n}} a_{1j_1} \dots a_{mj_m} \det B(j_1, \dots, j_m | 1, \dots, m) \\ &= \sum_{\substack{1 \leq j_1 < \dots < j_m \leq n \atop \tau \in S_m}} a_{1j_{\tau(1)}} \dots a_{mj_{\tau(m)}} \det B(j_{\tau(1)}, \dots, j_{\tau(m)} | 1, \dots, m) \\ &= \sum_{\substack{1 \leq j_1 < \dots < j_m \leq n, \tau \in S_m}} a_{1j_{\tau(1)}} \dots a_{mj_{\tau(m)}} \epsilon(\tau) \det B(j_1, \dots, j_m | 1, \dots, m) \\ &= \sum_{\substack{1 \leq j_1 < \dots < j_m \leq n}} \det A(1, \dots, m | j_1, \dots, j_m) \det B(j_1, \dots, j_m | 1, \dots, m) \end{aligned}$$

This is what we wanted to prove.

Continuation

- ▶ What happens if $m > n$.

Continuation

- ▶ What happens if $m > n$.
- ▶ We have $C = AB$, where A is an $m \times n$ matrix and B is an $n \times m$ matrix.

Continuation

- ▶ What happens if $m > n$.
- ▶ We have $C = AB$, where A is an $m \times n$ matrix and B is an $n \times m$ matrix.
- ▶ Now $m > n$, means that we can't form $m \times m$ matrices using distinct columns of A . This suggests that the determinant should be zero.

Continuation

- ▶ What happens if $m > n$.
- ▶ We have $C = AB$, where A is an $m \times n$ matrix and B is an $n \times m$ matrix.
- ▶ Now $m > n$, means that we can't form $m \times m$ matrices using distinct columns of A . This suggests that the determinant should be zero.
- ▶ **Exercise:** Show that $\det(AB) = 0$ when A, B are as above.
(Hint: $\text{rank}(AB) \leq \min(\text{rank } A, \text{rank } B)$.)

Continuation

- ▶ What happens if $m > n$.
- ▶ We have $C = AB$, where A is an $m \times n$ matrix and B is an $n \times m$ matrix.
- ▶ Now $m > n$, means that we can't form $m \times m$ matrices using distinct columns of A . This suggests that the determinant should be zero.
- ▶ **Exercise:** Show that $\det(AB) = 0$ when A, B are as above.
(Hint: $\text{rank}(AB) \leq \min(\text{rank } A, \text{rank } B)$.)
- ▶ Look up Wikipedia for a good account of Cauchy Binet formula.

Continuation

- ▶ What happens if $m > n$.
- ▶ We have $C = AB$, where A is an $m \times n$ matrix and B is an $n \times m$ matrix.
- ▶ Now $m > n$, means that we can't form $m \times m$ matrices using distinct columns of A . This suggests that the determinant should be zero.
- ▶ **Exercise:** Show that $\det(AB) = 0$ when A, B are as above.
(Hint: $\text{rank}(AB) \leq \min(\text{rank } A, \text{rank } B)$.)
- ▶ Look up Wikipedia for a good account of Cauchy Binet formula.
- ▶ END OF LECTURE 6.