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Lecture 6: Cauchy Binet formula

I Suppose A,B are m ×m matrices. Then we know that

det(AB) = det(A). det(B).

I Now suppose A ia an m × n matrix and B is a n ×m matrix
so that AB is again an m ×m matrix.

I Question: How can we compute the determinant of AB using
A and B?

I This question is answered by Cauchy-Binet formula.
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Illustration

I

A =

[
2 1 0
0 5 7

]
, B =

 4 6
7 8
0 1



I Then

det(AB) = det(A1B1) + det(A2B2) + det(A3B3),

I where Aj ,Bj ’s are 2× 2 matrices formed by choosing columns
of A and respective rows of B:

A1 =

[
2 1
0 5

]
, B1 =

[
4 6
7 8

]

A2 =

[
2 0
0 7

]
, B2 =

[
4 6
0 1

]
A3 =

[
1 0
5 7

]
, B3 =

[
7 8
0 1

]
.
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Notation

I To state the theorem we need some notation.

I Fix m, n ∈ N with m ≤ n.

I Suppose B = [bjk ]1≤j≤n,1≤k≤m so that B is an n ×m matrix.

I We form m×m square matrices out of B by choosing m-rows
of B.

I So if 1 ≤ j1, j2, . . . , jm ≤ n, we take

B(j1, j2, . . . , jm|1, 2, . . . ,m) =


bj11 bj12 . . . bj1m
bj21 bj22 . . . bj2m
...

...
...

...
bjm1 bjm2 . . . bjmm

 .
I The notation indicates that the rows chosen are j1, j2, . . . , jm,

and columns chosen are 1, 2, . . . ,m.
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Continuation

I Similarly if A = [aij ]1≤i≤m;1≤j≤n is an m × n matrix with
m ≤ n, we form square matrices by choosing m-columns of A.

I If 1 ≤ j1, j2, . . . , jm ≤ n, take

A(1, 2, . . . ,m|j1, j2, . . . , jm) :=


a1j1 a1j2 . . . a1jm
a2j1 a2j2 . . . a2jm
...

...
...

...
amj1 amj2 . . . amjm

 .
I Here all rows are chosen and columns j1, j2, . . . , jm are chosen

to get a square matrix.
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A Lemma

I Lemma 6.1: For any n ×m matrix B,

detB(j1, j2, . . . , jm|1, 2, . . . ,m) = 0

if j1, . . . , jm are not distinct. If j1, j2, . . . , jm are distinct, then

detB(j1, j2, . . . , jm|1, . . . ,m)

= ε(τ) detB(jτ(1), jτ(2), . . . , jτ(m)|1, . . . ,m)

where τ ∈ Sm is the permutation such that
jτ(1) < jτ(2) < · · · < jτ(m).

I Proof. Follows from the basic properties of the determinant.
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Cauchy Binet formula

I Theorem 6.2: Suppose A,B are m × n and n ×m matrices
with m ≤ n and C = AB. Then det(C ) =∑
1≤j1<···<jm≤n

det(A(1, . . . ,m|j1, . . . , jm)). det(B(j1, . . . , jm|1, . . . ,m)).

I Note that there are

(
n
m

)
terms in this summation.

I Proof. We have

det(AB)

=
∑
σ∈Sm

ε(σ)(AB)1σ(1)(AB)2σ(2) . . . (AB)mσ(m)

=
∑
σ∈Sm

ε(σ)(
n∑

j=1

a1jbjσ(1))(
n∑

j=1

a2jbjσ(2)) · · · (
n∑

j=1

amjbjσ(m))
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Continuation

=
n∑

j1,j2,...,jm=1

a1j1 . . . amjm

∑
σ∈Sm

ε(σ)bj1σ(1)bj2σ(2) · · · bjmσ(m)

=
n∑

j1,j2,...,jm=1

a1j1 . . . amjm detB(j1, . . . , jm|1, . . .m)

=
∑

j1,j2,...,jm− distinct

a1j1 . . . amjm detB(j1, . . . , jm|1, . . . ,m)

=
∑

1≤j1<···<jm≤n

∑
τ∈Sm

a1jτ(1) · · · amjτ(m)
detB(jτ(1), . . . jτ(m)|1, . . . ,m)

=
∑

1≤j1<···<jm≤n,τ∈Sm

a1jτ(1) · · · amjτ(m)
ε(τ) detB(j1, . . . jm|1, . . . ,m)

=
∑

1≤j1<···<jm≤n
detA(1, . . . ,m|j1, . . . , jm) detB(j1, . . . , jm|1, . . . ,m)

This is what we wanted to prove. �



Continuation

I What happens if m > n.

I We have C = AB, where A is an m × n matrix and B is an
n ×m matrix.

I Now m > n, means that we can’t form m ×m matrices using
distinct columns of A. This suggests that the determinant
should be zero.

I Exercise: Show that det(AB) = 0 when A,B are as above.
(Hint: rank (AB) ≤ min ( rank A, rank B).)

I Look up Wikipedia for a good account of Cauchy Binet
formula.

I END OF LECTURE 6.
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