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Lecture 7: Inner product spaces

I You have studied vector spaces. Now we introduce a new
structure on them called ‘inner product’.

I This abstractly captures the notions of ‘length’ and ‘angle’.

I Once we have an inner product we can talk about the
distance between elements of the vector space. This allows us
to define convergence of a sequence vectors.

I The notion of inner product also allows us to define as to
when one vector is ‘orthogonal’to another.
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The setting

I In the following the field F would be either R or C.

I We recall that for any complex number z = a + ib with
a, b ∈ R, z := a− ib.

I For any two complex numbers z ,w we have (zw) = z .w .

I For z ∈ C as above,

|z | := (zz)
1
2 = (a2 + b2)

1
2 .

I Recall that any complex number z 6= 0 has the unique polar
decomposition as z = re iθ where r = |z | and 0 ≤ θ < 2π.

I We have |z | = 0 if and only if z = 0. Further, |zw | = |z ||w |
and |z + w | ≤ |z |+ |w | for all z ,w ∈ C.
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Standard inner products

I Consider a vector space V over a field F (which is either R or
C.

I An inner product between two vectors x , y in V , usually
denoted by 〈x , y〉 would be a scalar (an element of F).

I The main examples we have in mind are the following:

I Definition 7.1: For n ∈ N, consider the vector space Rn. The
standard inner product on Rn is defined by:

〈


x1
x2
...
xn

 ,


y1
y2
...
yn

〉 =
n∑

j=1

xjyj .

I We note that 〈x , x〉 ≥ 0 for every x in Rn and 〈x , x〉 = 0 if
and only if x = 0.
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Cn. as an inner product space

I Definition 7.2: For n ∈ N, consider the vector space Cn. The
standard inner product on Cn is defined by:
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Definitions

I Definition 7.3: Let V be a vector space over a field F where F
is either R or C.

I An inner product on V is a map

〈·, ·〉 : V × V → F

such that

I (i) 〈x , cy + dz〉 = c〈x , y〉+ d〈x , z〉, for all
x , y , z ∈ V , c , d ∈ F (Linearity in second variable.)

I (ii) 〈y , x〉 = 〈x , y〉 for all x , y ∈ V . (Conjugate Symmetry.)

I (iii) 〈x , x〉 ≥ 0 for all x in V . (Positivity.)

I (iv) 〈x , x〉 = 0 if and only if x = 0. (Definiteness.)

I Some authors take inner product as linear in the first variable.
It is a matter of convention. A vector space with a specified
inner product is called an inner product space.
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Examples

I It is clear that standard inner products on Rn and Cn are
inner products.

I Example 7.4: For n ∈ N, fix scalars a1, a2, . . . , an.

I Then

〈


x1
x2
...
xn

 ,


y1
y2
...
yn

〉 =
n∑

j=1

ajxjyj ,

I is an inner-product on Rn if and only if aj > 0 for every j .

I Note that if aj ≥ 0, then conditions (i)-(iii) of the inner
product are satisfied but the definiteness may not be satisfied.
In such cases, 〈·, ·〉 is known as semi-inner product.
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Linearity or anti-linearity in the first variable

I If the field F = R, from linearity and (conjugate) symmetry of
the inner-product we get also linearity in the first variable.

I That is, 〈cx + dy , z〉 = c〈x , z〉+ d〈y , z〉, for all
x , y , z ∈ V , c , d ∈ F (Linearity in first variable in the real
case.)

I On the other hand if the field F = C, from linearity and
conjugate symmetry of the inner-product we get anti-linearity
in the first variable.

I That is, 〈cx + dy , z〉 = c̄〈x , z〉+ d̄〈y , z〉, for all
x , y , z ∈ V , c , d ∈ F.
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Another example

I Take F = C. Fix m, n ∈ N. Then we know that Mm,n(C) is a
vector space of dimension mn over C.

I For X ,Y ∈ Mm,n(C) take

〈X ,Y 〉 = trace(X ∗Y )

where (X ∗)jk = xkj , 1 ≤ k ≤ m; 1 ≤ j ≤ n.
I Then 〈·, ·〉 is an inner product on Mm,n(C).
I Proof: We have,

〈X ,Y 〉 = trace(X ∗Y )

=
n∑

j=1

(X ∗Y )jj

=
n∑

j=1

m∑
k=1

(X ∗)jk(Y )kj

=
n∑

j=1

m∑
k=1

xkjykj
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I Then 〈·, ·〉 is an inner product on Mm,n(C).
I Proof: We have,

〈X ,Y 〉 = trace(X ∗Y )

=
n∑

j=1

(X ∗Y )jj

=
n∑

j=1

m∑
k=1

(X ∗)jk(Y )kj

=
n∑

j=1

m∑
k=1

xkjykj



Continuation

I Now it is clear that this is essentially the standard inner
product on Cmn.

I Similarly,
〈X ,Y 〉 = trace(X tY ),

is an inner product on Mm,n(R).



Continuation

I Now it is clear that this is essentially the standard inner
product on Cmn.

I Similarly,
〈X ,Y 〉 = trace(X tY ),

is an inner product on Mm,n(R).



R2.

I On R2, for any x =

(
x1
x2

)
,

(〈x , x〉)
1
2 = (x21 + x22 )

1
2

is the distance of point x from the origin

(
0
0

)
.

I More generally the distance between any two points

(
x1
x2

)
and

(
y1
y2

)
is

((x1 − y1)2 + (x2 − y2)2))
1
2 = (〈x − y , x − y〉)

1
2 .

I This suggests the following definitions.
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The norm on an inner product space

I Definition 7.5: Let (V , 〈·, ·〉) be an inner product space. Then
the norm of a vector x ∈ V is defined as

‖x‖ = (〈x , x〉)
1
2 .

I If x , y are vectors in V , the distance of y from x is defined as

d(x , y) = ‖y − x‖.

I The ‘distance function’ d : V × V → R is also known as
metric.
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Basic properties of the norm

I Theorem 7.6: Let (V , 〈·, ·〉) be an inner product space and let
‖ · ‖ be the associated norm on V . Then

I (i) ‖x‖ ≥ 0 for all x ∈ V and ‖x‖ = 0 if and only if x = 0.

I (ii) ‖ax‖ = |a|‖x‖, ∀a ∈ F and x ∈ V .

I (iii) ‖x + y‖ ≤ ‖x‖+ ‖y‖, ∀x , y ∈ V .
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Continuation

I Proof. (i) This is clear, as 〈x , x〉 ≥ 0 for all x and 〈x , x〉 = 0 if
and only if x = 0.

I (ii) We have,

〈ax , ax〉 = ā.a〈x , x〉 = |a|2〈x , x〉

from anti-linearity of the inner product in the first variable and
linear in the second variable. Now (ii) is immediate.

I (iii) This is a consequence of Cauchy-Schwarz inequality and
we will prove it in the next class.

I END OF LECTURE 7.



Continuation

I Proof. (i) This is clear, as 〈x , x〉 ≥ 0 for all x and 〈x , x〉 = 0 if
and only if x = 0.

I (ii) We have,
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