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» You have studied vector spaces. Now we introduce a new
structure on them called ‘inner product’.
» This abstractly captures the notions of ‘length’ and ‘angle’.

» Once we have an inner product we can talk about the
distance between elements of the vector space. This allows us
to define convergence of a sequence vectors.

» The notion of inner product also allows us to define as to
when one vector is ‘orthogonal'to another.
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The setting

» In the following the field ' would be either R or C.

> We recall that for any complex number z = a + ib with
a,beR,z:=a—ib.

» For any two complex numbers z, w we have (zw) = Z.w.

» For z € C as above,
2| i= (22)2 = (&% + bP)>.

» Recall that any complex number z # 0 has the unique polar
decomposition as z = re’® where r = |z| and 0 < 6 < 2.

» We have |z| = 0 if and only if z = 0. Further, |zw| = |z||w|
and |z 4+ w| < |z| + |w] for all z,w € C.
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Consider a vector space V over a field F (which is either R or
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An inner product between two vectors x, y in V/, usually
denoted by (x, y) would be a scalar (an element of F).

The main examples we have in mind are the following:
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standard inner product on R" is defined by:

X1 n
X2 y2 1
< : ’ : > = Z XjYj-
: : =
Xn Yn

We note that (x, x) > 0 for every x in R” and (x,x) =0 if
and only if x = 0.



C". as an inner product space

» Definition 7.2: For n € N, consider the vector space C". The
standard inner product on C” is defined by:

X1 1
X2

¥2 .
{ : ! : >:ZXJyJ
: : st

Xn Yn



C". as an inner product space

» Definition 7.2: For n € N, consider the vector space C". The
standard inner product on C” is defined by:

X1 Y1
X2 y2 L
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: : =1
Xn Yn

» Here also we note that (x, x) > 0 for every x in C” and
(x,x) =0 if and only if x = 0.
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Definitions

» Definition 7.3: Let V be a vector space over a field F where F
is either R or C.

» An inner product on V is a map
(w):VxV—=F

such that

(i) (x,cy + dz) = c(x,y) + d(x, z), for all
x,y,z € V,c,d € F (Linearity in second variable.)

v

(i) (y,x) = (x,y) for all x,y € V. (Conjugate Symmetry.)
(iii) (x,x) > 0 for all x in V. (Positivity.)

(iv) (x,x) = 0 if and only if x = 0. (Definiteness.)

Some authors take inner product as linear in the first variable.

It is a matter of convention. A vector space with a specified
inner product is called an inner product space.
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Examples

» It is clear that standard inner products on R"” and C" are
inner products.

» Example 7.4: For n € N, fix scalars a1, ap, ..., ap.
> Then
X1 n
X2 ¥2 .
017 =2
: : =
Xn Yn

» is an inner-product on R" if and only if a; > 0 for every ;.

» Note that if a; > 0, then conditions (i)-(iii) of the inner
product are satisfied but the definiteness may not be satisfied.
In such cases, (-,-) is known as semi-inner product.



Linearity or anti-linearity in the first variable

» If the field F = R, from linearity and (conjugate) symmetry of
the inner-product we get also linearity in the first variable.



Linearity or anti-linearity in the first variable

» If the field F = R, from linearity and (conjugate) symmetry of
the inner-product we get also linearity in the first variable.

» Thatis, (cx + dy, z) = c(x, z) + d(y, z), for all
x,y,z € V,c,d € F (Linearity in first variable in the real
case.)



Linearity or anti-linearity in the first variable

» If the field F = R, from linearity and (conjugate) symmetry of
the inner-product we get also linearity in the first variable.

» Thatis, (cx + dy, z) = c(x, z) + d(y, z), for all
x,y,z € V,c,d € F (Linearity in first variable in the real
case.)

» On the other hand if the field F = C, from linearity and

conjugate symmetry of the inner-product we get anti-linearity
in the first variable.



Linearity or anti-linearity in the first variable

» If the field F = R, from linearity and (conjugate) symmetry of
the inner-product we get also linearity in the first variable.

» Thatis, (cx + dy, z) = c(x, z) + d(y, z), for all
x,y,z € V,c,d € F (Linearity in first variable in the real
case.)

» On the other hand if the field F = C, from linearity and
conjugate symmetry of the inner-product we get anti-linearity
in the first variable.

» Thatis, (cx + dy,z) = &(x, z) + d(y, z), for all
x,y,z€ V,c,d € F.
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Another example

» Take F = C. Fix m,n € N. Then we know that Mp, ,(C) is a
vector space of dimension mn over C.
» For X, Y € Mp, 5(C) take

(X,Y)=trace(X"Y)

where (X*)j =X, 1 < k<m;1<j<n.
» Then (-,-) is an inner product on My, ,(C).
» Proof: We have,

(X,Y)y = trace(X"Y)

n

= Z(X* Y)J'J'
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> Now it is clear that this is essentially the standard inner
product on C™",

» Similarly,
(X,Y) = trace(X'Y),

is an inner product on Mp, ,(R).
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» On R?, for any x = ( Xl >
X2
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(06, x))2 = (4 +3)
. : . . 0
is the distance of point x from the origin 0 )
> More generally the distance between any two points ( il )
2

and (yl > is
Y2

(1 —y1)? + (2 — v2)2))7 = ({x = y.x — y))2.

> This suggests the following definitions.
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The norm on an inner product space

» Definition 7.5: Let (V/,(-,-)) be an inner product space. Then
the norm of a vector x € V is defined as

1
[Ix]l = ((x,x))2.
> If x,y are vectors in V, the distance of y from x is defined as
d(x,y) = lly = x|

» The ‘distance function’ d : V x V — R is also known as
metric.
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Basic properties of the norm

» Theorem 7.6: Let (V,(:,-)) be an inner product space and let
|| - || be the associated norm on V. Then

» (i) ||x|]| > 0 for all x € V and ||x|| = 0 if and only if x = 0.
> (i) [lax|| = |a[||lx]|, Va€F and x € V.
> (i) lx +yll < [l +llyll, vx,y € V.
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> (ii) We have,
(ax, ax) = a.a(x, x) = |a|?(x, x)

from anti-linearity of the inner product in the first variable and
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» (iii) This is a consequence of Cauchy-Schwarz inequality and
we will prove it in the next class.

» END OF LECTURE 7.



