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Lecture 8: Cauchy-Schwarz inequality

I Recall: In the following the field F would be either R or C.

I An inner product between two vectors x , y in V , usually
denoted by 〈x , y〉 would be a scalar (an element of F).

I The main examples we have in mind are the following:

I Definition 7.1: For n ∈ N, consider the vector space Rn. The
standard inner product on Rn is defined by:

〈


x1
x2
...
xn

 ,


y1
y2
...
yn

〉 =
n∑

j=1

xjyj .

I We note that 〈x , x〉 ≥ 0 for every x in Rn and 〈x , x〉 = 0 if
and only if x = 0.
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Cn.

I Definition 7.2: For n ∈ N, consider the vector space Cn. The
standard inner product on Cn is defined by:
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I Here also we note that 〈x , x〉 ≥ 0 for every x in Cn and
〈x , x〉 = 0 if and only if x = 0.



Cn.
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Definitions

I Definition 7.3: Let V be a vector space over a field F where F
is either R or C.

I An inner product on V is a map

〈·, ·〉 : V × V → F

such that

I (i) 〈x , cy + dz〉 = c〈x , y〉+ d〈x , z〉, for all
x , y , z ∈ V , c , d ∈ F (Linearity in second variable.)

I (ii) 〈y , x〉 = 〈x , y〉 for all x , y ∈ V . (Conjugate Symmetry.)

I (iii) 〈x , x〉 ≥ 0 for all x in V . (Positivity.)

I (iv) 〈x , x〉 = 0 if and only if x = 0. (Definiteness.)

I Some authors take inner product as linear in the first variable.
It is a matter of convention. A vector space with a specified
inner product is called an inner product space.
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Linearity or anti-linearity in the first variable

I If the field F = R, from linearity and symmetry of the
inner-product we get also linearity in the first variable.

I That is, 〈cx + dy , z〉 = c〈x , z〉+ d〈y , z〉, for all
x , y , z ∈ V , c , d ∈ F (Linearity in first variable.)

I On the other hand if the field F = C, from linearity and
symmetry of the inner-product we get anti-linearity in the first
variable.

I That is, 〈cx + dy , z〉 = c̄〈x , z〉+ d̄〈y , z〉, for all
x , y , z ∈ V , c , d ∈ F (Linearity in the second variable.)



Linearity or anti-linearity in the first variable

I If the field F = R, from linearity and symmetry of the
inner-product we get also linearity in the first variable.

I That is, 〈cx + dy , z〉 = c〈x , z〉+ d〈y , z〉, for all
x , y , z ∈ V , c , d ∈ F (Linearity in first variable.)

I On the other hand if the field F = C, from linearity and
symmetry of the inner-product we get anti-linearity in the first
variable.

I That is, 〈cx + dy , z〉 = c̄〈x , z〉+ d̄〈y , z〉, for all
x , y , z ∈ V , c , d ∈ F (Linearity in the second variable.)



Linearity or anti-linearity in the first variable

I If the field F = R, from linearity and symmetry of the
inner-product we get also linearity in the first variable.

I That is, 〈cx + dy , z〉 = c〈x , z〉+ d〈y , z〉, for all
x , y , z ∈ V , c , d ∈ F (Linearity in first variable.)

I On the other hand if the field F = C, from linearity and
symmetry of the inner-product we get anti-linearity in the first
variable.

I That is, 〈cx + dy , z〉 = c̄〈x , z〉+ d̄〈y , z〉, for all
x , y , z ∈ V , c , d ∈ F (Linearity in the second variable.)



Linearity or anti-linearity in the first variable

I If the field F = R, from linearity and symmetry of the
inner-product we get also linearity in the first variable.

I That is, 〈cx + dy , z〉 = c〈x , z〉+ d〈y , z〉, for all
x , y , z ∈ V , c , d ∈ F (Linearity in first variable.)

I On the other hand if the field F = C, from linearity and
symmetry of the inner-product we get anti-linearity in the first
variable.

I That is, 〈cx + dy , z〉 = c̄〈x , z〉+ d̄〈y , z〉, for all
x , y , z ∈ V , c , d ∈ F (Linearity in the second variable.)



R2.

I On R2, for any x =

(
x1
x2

)
,

(〈x , x〉)
1
2 = (x21 + x22 )

1
2

is the distance of point x from the origin

(
0
0

)
.

I More generally the distance between any two points

(
x1
x2

)
and

(
y1
y2

)
is

((x1 − y1)2 + (x2 − y2)2))
1
2 = (〈(x − y), (x − y)〉)

1
2 .

I This suggests the following definitions.



R2.

I On R2, for any x =

(
x1
x2

)
,

(〈x , x〉)
1
2 = (x21 + x22 )

1
2

is the distance of point x from the origin

(
0
0

)
.

I More generally the distance between any two points

(
x1
x2

)
and

(
y1
y2

)
is

((x1 − y1)2 + (x2 − y2)2))
1
2 = (〈(x − y), (x − y)〉)

1
2 .

I This suggests the following definitions.



R2.

I On R2, for any x =

(
x1
x2

)
,

(〈x , x〉)
1
2 = (x21 + x22 )

1
2

is the distance of point x from the origin

(
0
0

)
.

I More generally the distance between any two points

(
x1
x2

)
and

(
y1
y2

)
is

((x1 − y1)2 + (x2 − y2)2))
1
2 = (〈(x − y), (x − y)〉)

1
2 .

I This suggests the following definitions.



The norm on an inner product space

I Definition 7.5: Let (V , 〈·, ·〉) be an inner product space. Then
the norm of a vector x ∈ V is defined as

‖x‖ = (〈x , x〉)
1
2 .

I If x , y are vectors in V , the distance of y from x is defined as

d(x , y) = ‖y − x‖.

I The ‘distance function’ d : V → V → R is also known as
metric.
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Basic properties of the norm

I Theorem 7.6: Let (V , 〈·, ·〉) be an inner product space and let
‖ · ‖ be the associated norm on V . Then

I (i) ‖x‖ ≥ 0 for all x ∈ V and ‖x‖ = 0 if and only if x = 0.

I (ii) ‖ax‖ = |a|‖x‖, ∀a ∈ F and x ∈ V .

I (iii) ‖x + y‖ ≤ ‖x‖+ ‖y‖, ∀x , y ∈ V .
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Continuation

I Proof. (i) This is clear, as 〈x , x〉 ≥ 0 for all x and 〈x , x〉 = 0 if
and only if x = 0.

I (ii) We have,

〈ax , ax〉 = ā.a〈x , x〉 = |a|2〈xx〉

from anti-linearity of the inner product in the first variable and
linear in the second variable. Now (ii) is immediate.

I (iii) This is a consequence of Cauchy-Schwarz inequality and
will be proved in the next class.
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Cauchy-Schwarz inequality

I You may have seen the inequality
n∑

j=1

ajbj ≤ (
n∑

j=1

a2j )
1
2 (

n∑
j=1

b2j )
1
2

for n ∈ N and real numbers aj , bj , 1 ≤ j ≤ n. Here we have a
generalization of this result. Cauchy-Schwarz inequality is
among the most important inequalities of mathematics.

I Theorem 8.1 (Cauchy-Schwarz inequality): Let (V , 〈·, ·〉) be
an inner product space over a field F (where F is R or C.)
Then for x , y in V ,

|〈x , y〉| ≤ ‖x‖.‖y‖.
I The equality takes place if and only if x , y are linearly

dependent.
I Case (i): 〈x , x〉 = 0. This means x = 0. Now
〈0, y〉 = 〈0 + 0, y〉 = 〈0, y〉+ 〈0, y〉. This implies 〈x , y〉 = 0.

I Hence the required inequality is trivially true and is an
equality.
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Continuation

I Case (ii): 〈x , x〉 6= 0.
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The case of equality

I Case (i): 〈x , x〉 = 0. Here x = 0 and hence x , y are linearly
dependent.

I Case (ii): 〈x , x〉 6= 0.

I From the proof of Cauchy-Schwarz inequality, to have
equality, we must have z = 0, where

z = y − 〈x , y〉
〈x , x〉

x .

I Hence z is a scalar multiple of x . In particular, x , y are
linearly dependent.

I Exercise: We proved the Cauchy-Schwarz inequality with the
assumption of definiteness, that is 〈x , x〉 = 0 implies x = 0.
Prove the inequality without this assumption. (Hint: Consider
the function p(t) = ‖y − t〈x , y〉x‖2 for t ∈ R.)
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Triangle inequality

I Recall that we wanted to show

‖x + y‖ ≤ ‖x‖+ ‖y‖

for x , y ∈ V .

I Now using Cauchy-Schwarz inequality,

〈x + y , x + y〉 = ‖x‖2 + ‖y‖2 + 〈x , y〉+ 〈y , x〉
= ‖x‖2 + ‖y‖2 + 2 Re〈x , y〉
≤ ‖x‖2 + ‖y‖2 + 2|〈x , y〉|
≤ ‖x‖2 + ‖y‖2 + 2‖x‖.‖y‖
= (‖x‖+ ‖y‖)2.

I Taking positive square root we have the required inequality.
�.
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Triangle inequality for the metric

I In any inner product space (V , 〈·, ·〉) we have the metric
(distance function) as

d(x , y) = ‖y − x‖.

I We observe that d satisfies:

I (i) d(x , y) ≥ 0 for every x , y in V and d(x , y) = 0 if and only
if x = y (Positivity and definiteness).

I (ii) d(x , y) = d(y , x) for all x , y in V (symmetry).

I (iii) d(x , y) ≤ d(x , z) + d(z , y) for all x , y , z in V . (triangle
inequality).

I All these are immediate from respective properties of the
norm.
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Parallelogram law

I Theorem 8.2: Let (V , 〈·, ·〉) be an inner product space. Then
for any x , y in V :

I
‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2.

I Proof. This is clear by direct computation:

‖x + y‖2 + ‖x − y‖2

= 〈x + y , x + y〉+ 〈x − y , x − y〉
= 2〈x , x〉+ 2〈y , y〉

I as all cross-terms cancel with each other.

I Exercise: Find out as to why this is called parallelogram law.
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Recovering the inner product from the norm

I It is possible to compute the inner product from the norm
using the following formulae.

I Theorem 8.3: Let (V , 〈·, ·〉) be an inner product space over
R. Then for any x , y ∈ V

〈x , y〉 =
1

4
(‖x + y‖2 − ‖x − y‖2).

I Proof. We have,

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 〈x , y〉+ 〈y , x〉

By symmetry,

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2〈x , y〉.
I Similarly,

‖(x − y)‖2 = ‖x‖2 + ‖y‖2 − 2〈x , y〉.
I Now the result is clear by taking the difference of two

equations and dividing by four.
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Continuation

I Theorem 8.4 (polarization identity): Let (V , 〈·, ·〉) be an
inner product space over C. Then for any x , y ∈ V

〈x , y〉 =
1

4

3∑
n=0

(−i)n‖x + iny‖2.

I Proof. The proof is by direct computation.
I Recall: i2 = −1, i3 = −i , i4 = 1 and ī = −i .
I Now

(−i)0‖x + i0y‖2 = ‖x‖2 + ‖y‖2 + 〈x , y〉+ 〈y , x〉.
(−i)1‖x + i1y‖2 = (−i)‖x‖2 + (−i)‖y‖2 + 〈x , y〉+ (−i)2〈y , x〉
(−i)2‖x + i2y‖2 = −‖x‖2 − ‖y‖2 + 〈x , y〉+ (−1).(−1)〈y , x〉
(−i)3‖x + i3y‖2 = i‖x‖2 + i‖y‖2 + 〈x , y〉+ (i).(i)〈y , x〉

I Adding these equations and dividing by 4 we have the
theorem. �.

I The formula of this theorem is known as polarization identity.
I END OF LECTURE 8.
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