

LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 8: Cauchy-Schwarz inequality

- ▶ Recall: In the following the field \mathbb{F} would be either \mathbb{R} or \mathbb{C} .

Lecture 8: Cauchy-Schwarz inequality

- ▶ Recall: In the following the field \mathbb{F} would be either \mathbb{R} or \mathbb{C} .
- ▶ An inner product between two vectors x, y in V , usually denoted by $\langle x, y \rangle$ would be a scalar (an element of \mathbb{F}).

Lecture 8: Cauchy-Schwarz inequality

- ▶ Recall: In the following the field \mathbb{F} would be either \mathbb{R} or \mathbb{C} .
- ▶ An inner product between two vectors x, y in V , usually denoted by $\langle x, y \rangle$ would be a scalar (an element of \mathbb{F}).
- ▶ The main examples we have in mind are the following:

Lecture 8: Cauchy-Schwarz inequality

- ▶ Recall: In the following the field \mathbb{F} would be either \mathbb{R} or \mathbb{C} .
- ▶ An inner product between two vectors x, y in V , usually denoted by $\langle x, y \rangle$ would be a scalar (an element of \mathbb{F}).
- ▶ The main examples we have in mind are the following:
- ▶ **Definition 7.1:** For $n \in \mathbb{N}$, consider the vector space \mathbb{R}^n . The **standard inner product** on \mathbb{R}^n is defined by:

$$\langle \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \rangle = \sum_{j=1}^n x_j y_j.$$

Lecture 8: Cauchy-Schwarz inequality

- ▶ Recall: In the following the field \mathbb{F} would be either \mathbb{R} or \mathbb{C} .
- ▶ An inner product between two vectors x, y in V , usually denoted by $\langle x, y \rangle$ would be a scalar (an element of \mathbb{F}).
- ▶ The main examples we have in mind are the following:
- ▶ **Definition 7.1:** For $n \in \mathbb{N}$, consider the vector space \mathbb{R}^n . The **standard inner product** on \mathbb{R}^n is defined by:

$$\left\langle \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \right\rangle = \sum_{j=1}^n x_j y_j.$$

- ▶ We note that $\langle x, x \rangle \geq 0$ for every x in \mathbb{R}^n and $\langle x, x \rangle = 0$ if and only if $x = 0$.

\mathbb{C}^n .

- ▶ **Definition 7.2:** For $n \in \mathbb{N}$, consider the vector space \mathbb{C}^n . The **standard inner product** on \mathbb{C}^n is defined by:

$$\left\langle \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \right\rangle = \sum_{j=1}^n \overline{x_j} y_j.$$

- ▶ **Definition 7.2:** For $n \in \mathbb{N}$, consider the vector space \mathbb{C}^n . The **standard inner product** on \mathbb{C}^n is defined by:

$$\left\langle \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \right\rangle = \sum_{j=1}^n \overline{x_j} y_j.$$

- ▶ Here also we note that $\langle x, x \rangle \geq 0$ for every x in \mathbb{C}^n and $\langle x, x \rangle = 0$ if and only if $x = 0$.

Definitions

- ▶ **Definition 7.3:** Let V be a vector space over a field \mathbb{F} where \mathbb{F} is either \mathbb{R} or \mathbb{C} .

Definitions

- ▶ **Definition 7.3:** Let V be a vector space over a field \mathbb{F} where \mathbb{F} is either \mathbb{R} or \mathbb{C} .
- ▶ An inner product on V is a map

$$\langle \cdot, \cdot \rangle : V \times V \rightarrow \mathbb{F}$$

such that

Definitions

- ▶ **Definition 7.3:** Let V be a vector space over a field \mathbb{F} where \mathbb{F} is either \mathbb{R} or \mathbb{C} .
- ▶ An inner product on V is a map

$$\langle \cdot, \cdot \rangle : V \times V \rightarrow \mathbb{F}$$

such that

- ▶ (i) $\langle x, cy + dz \rangle = c\langle x, y \rangle + d\langle x, z \rangle$, for all $x, y, z \in V, c, d \in \mathbb{F}$ (Linearity in second variable.)

Definitions

- ▶ **Definition 7.3:** Let V be a vector space over a field \mathbb{F} where \mathbb{F} is either \mathbb{R} or \mathbb{C} .
- ▶ An inner product on V is a map

$$\langle \cdot, \cdot \rangle : V \times V \rightarrow \mathbb{F}$$

such that

- ▶ (i) $\langle x, cy + dz \rangle = c\langle x, y \rangle + d\langle x, z \rangle$, for all $x, y, z \in V, c, d \in \mathbb{F}$ (Linearity in second variable.)
- ▶ (ii) $\langle y, x \rangle = \overline{\langle x, y \rangle}$ for all $x, y \in V$. (Conjugate Symmetry.)

Definitions

- ▶ **Definition 7.3:** Let V be a vector space over a field \mathbb{F} where \mathbb{F} is either \mathbb{R} or \mathbb{C} .
- ▶ An inner product on V is a map

$$\langle \cdot, \cdot \rangle : V \times V \rightarrow \mathbb{F}$$

such that

- ▶ (i) $\langle x, cy + dz \rangle = c\langle x, y \rangle + d\langle x, z \rangle$, for all $x, y, z \in V, c, d \in \mathbb{F}$ (Linearity in second variable.)
- ▶ (ii) $\langle y, x \rangle = \overline{\langle x, y \rangle}$ for all $x, y \in V$. (Conjugate Symmetry.)
- ▶ (iii) $\langle x, x \rangle \geq 0$ for all x in V . (Positivity.)

Definitions

- ▶ **Definition 7.3:** Let V be a vector space over a field \mathbb{F} where \mathbb{F} is either \mathbb{R} or \mathbb{C} .
- ▶ An inner product on V is a map

$$\langle \cdot, \cdot \rangle : V \times V \rightarrow \mathbb{F}$$

such that

- ▶ (i) $\langle x, cy + dz \rangle = c\langle x, y \rangle + d\langle x, z \rangle$, for all $x, y, z \in V, c, d \in \mathbb{F}$ (Linearity in second variable.)
- ▶ (ii) $\langle y, x \rangle = \overline{\langle x, y \rangle}$ for all $x, y \in V$. (Conjugate Symmetry.)
- ▶ (iii) $\langle x, x \rangle \geq 0$ for all x in V . (Positivity.)
- ▶ (iv) $\langle x, x \rangle = 0$ if and only if $x = 0$. (Definiteness.)

Definitions

- ▶ **Definition 7.3:** Let V be a vector space over a field \mathbb{F} where \mathbb{F} is either \mathbb{R} or \mathbb{C} .
- ▶ An inner product on V is a map

$$\langle \cdot, \cdot \rangle : V \times V \rightarrow \mathbb{F}$$

such that

- ▶ (i) $\langle x, cy + dz \rangle = c\langle x, y \rangle + d\langle x, z \rangle$, for all $x, y, z \in V, c, d \in \mathbb{F}$ (Linearity in second variable.)
- ▶ (ii) $\langle y, x \rangle = \overline{\langle x, y \rangle}$ for all $x, y \in V$. (Conjugate Symmetry.)
- ▶ (iii) $\langle x, x \rangle \geq 0$ for all x in V . (Positivity.)
- ▶ (iv) $\langle x, x \rangle = 0$ if and only if $x = 0$. (Definiteness.)
- ▶ Some authors take inner product as linear in the first variable. It is a matter of convention. A vector space with a specified inner product is called an inner product space.

Linearity or anti-linearity in the first variable

- ▶ If the field $\mathbb{F} = \mathbb{R}$, from linearity and symmetry of the inner-product we get also linearity in the first variable.

Linearity or anti-linearity in the first variable

- ▶ If the field $\mathbb{F} = \mathbb{R}$, from linearity and symmetry of the inner-product we get also linearity in the first variable.
- ▶ That is, $\langle cx + dy, z \rangle = c\langle x, z \rangle + d\langle y, z \rangle$, for all $x, y, z \in V, c, d \in \mathbb{F}$ (Linearity in first variable.)

Linearity or anti-linearity in the first variable

- ▶ If the field $\mathbb{F} = \mathbb{R}$, from linearity and symmetry of the inner-product we get also linearity in the first variable.
- ▶ That is, $\langle cx + dy, z \rangle = c\langle x, z \rangle + d\langle y, z \rangle$, for all $x, y, z \in V, c, d \in \mathbb{F}$ (Linearity in first variable.)
- ▶ On the other hand if the field $\mathbb{F} = \mathbb{C}$, from linearity and symmetry of the inner-product we get anti-linearity in the first variable.

Linearity or anti-linearity in the first variable

- ▶ If the field $\mathbb{F} = \mathbb{R}$, from linearity and symmetry of the inner-product we get also linearity in the first variable.
- ▶ That is, $\langle cx + dy, z \rangle = c\langle x, z \rangle + d\langle y, z \rangle$, for all $x, y, z \in V, c, d \in \mathbb{F}$ (Linearity in first variable.)
- ▶ On the other hand if the field $\mathbb{F} = \mathbb{C}$, from linearity and symmetry of the inner-product we get anti-linearity in the first variable.
- ▶ That is, $\langle cx + dy, z \rangle = \bar{c}\langle x, z \rangle + \bar{d}\langle y, z \rangle$, for all $x, y, z \in V, c, d \in \mathbb{F}$ (Linearity in the second variable.)

\mathbb{R}^2 .

- On \mathbb{R}^2 , for any $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$,

$$(\langle x, x \rangle)^{\frac{1}{2}} = (x_1^2 + x_2^2)^{\frac{1}{2}}$$

is the distance of point x from the origin $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

\mathbb{R}^2 .

- On \mathbb{R}^2 , for any $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$,

$$(\langle x, x \rangle)^{\frac{1}{2}} = (x_1^2 + x_2^2)^{\frac{1}{2}}$$

is the distance of point x from the origin $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

- More generally the distance between any two points $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ is

$$((x_1 - y_1)^2 + (x_2 - y_2)^2))^{\frac{1}{2}} = (\langle (x - y), (x - y) \rangle)^{\frac{1}{2}}.$$

\mathbb{R}^2 .

- On \mathbb{R}^2 , for any $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$,

$$(\langle x, x \rangle)^{\frac{1}{2}} = (x_1^2 + x_2^2)^{\frac{1}{2}}$$

is the distance of point x from the origin $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

- More generally the distance between any two points $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ is

$$((x_1 - y_1)^2 + (x_2 - y_2)^2))^{\frac{1}{2}} = (\langle (x - y), (x - y) \rangle)^{\frac{1}{2}}.$$

- This suggests the following definitions.

The norm on an inner product space

- ▶ **Definition 7.5:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then the **norm** of a vector $x \in V$ is defined as

$$\|x\| = (\langle x, x \rangle)^{\frac{1}{2}}.$$

The norm on an inner product space

- ▶ **Definition 7.5:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then the **norm** of a vector $x \in V$ is defined as

$$\|x\| = (\langle x, x \rangle)^{\frac{1}{2}}.$$

- ▶ If x, y are vectors in V , the distance of y from x is defined as

$$d(x, y) = \|y - x\|.$$

The norm on an inner product space

- ▶ **Definition 7.5:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then the **norm** of a vector $x \in V$ is defined as

$$\|x\| = (\langle x, x \rangle)^{\frac{1}{2}}.$$

- ▶ If x, y are vectors in V , the distance of y from x is defined as

$$d(x, y) = \|y - x\|.$$

- ▶ The 'distance function' $d : V \rightarrow V \rightarrow \mathbb{R}$ is also known as **metric**.

Basic properties of the norm

- **Theorem 7.6:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space and let $\| \cdot \|$ be the associated norm on V . Then

Basic properties of the norm

- ▶ **Theorem 7.6:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space and let $\| \cdot \|$ be the associated norm on V . Then
- ▶ (i) $\|x\| \geq 0$ for all $x \in V$ and $\|x\| = 0$ if and only if $x = 0$.

Basic properties of the norm

- ▶ **Theorem 7.6:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space and let $\| \cdot \|$ be the associated norm on V . Then
- ▶ (i) $\|x\| \geq 0$ for all $x \in V$ and $\|x\| = 0$ if and only if $x = 0$.
- ▶ (ii) $\|ax\| = |a|\|x\|$, $\forall a \in \mathbb{F}$ and $x \in V$.

Basic properties of the norm

- ▶ **Theorem 7.6:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space and let $\|\cdot\|$ be the associated norm on V . Then
- ▶ (i) $\|x\| \geq 0$ for all $x \in V$ and $\|x\| = 0$ if and only if $x = 0$.
- ▶ (ii) $\|ax\| = |a|\|x\|$, $\forall a \in \mathbb{F}$ and $x \in V$.
- ▶ (iii) $\|x + y\| \leq \|x\| + \|y\|$, $\forall x, y \in V$.

Continuation

- ▶ **Proof.** (i) This is clear, as $\langle x, x \rangle \geq 0$ for all x and $\langle x, x \rangle = 0$ if and only if $x = 0$.

Continuation

- ▶ **Proof.** (i) This is clear, as $\langle x, x \rangle \geq 0$ for all x and $\langle x, x \rangle = 0$ if and only if $x = 0$.
- ▶ (ii) We have,

$$\langle ax, ax \rangle = \bar{a} \cdot a \langle x, x \rangle = |a|^2 \langle xx \rangle$$

from anti-linearity of the inner product in the first variable and linear in the second variable. Now (ii) is immediate.

Continuation

- ▶ **Proof.** (i) This is clear, as $\langle x, x \rangle \geq 0$ for all x and $\langle x, x \rangle = 0$ if and only if $x = 0$.
- ▶ (ii) We have,

$$\langle ax, ax \rangle = \bar{a} \cdot a \langle x, x \rangle = |a|^2 \langle x, x \rangle$$

from anti-linearity of the inner product in the first variable and linear in the second variable. Now (ii) is immediate.

- ▶ (iii) This is a consequence of Cauchy-Schwarz inequality and will be proved in the next class.

Cauchy-Schwarz inequality

- ▶ You may have seen the inequality

$$\sum_{j=1}^n a_j b_j \leq \left(\sum_{j=1}^n a_j^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^n b_j^2 \right)^{\frac{1}{2}}$$

for $n \in \mathbb{N}$ and real numbers $a_j, b_j, 1 \leq j \leq n$. Here we have a generalization of this result. Cauchy-Schwarz inequality is among the most important inequalities of mathematics.

Cauchy-Schwarz inequality

- ▶ You may have seen the inequality

$$\sum_{j=1}^n a_j b_j \leq \left(\sum_{j=1}^n a_j^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^n b_j^2 \right)^{\frac{1}{2}}$$

for $n \in \mathbb{N}$ and real numbers $a_j, b_j, 1 \leq j \leq n$. Here we have a generalization of this result. Cauchy-Schwarz inequality is among the most important inequalities of mathematics.

Cauchy-Schwarz inequality

- ▶ You may have seen the inequality

$$\sum_{j=1}^n a_j b_j \leq \left(\sum_{j=1}^n a_j^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^n b_j^2 \right)^{\frac{1}{2}}$$

for $n \in \mathbb{N}$ and real numbers $a_j, b_j, 1 \leq j \leq n$. Here we have a generalization of this result. Cauchy-Schwarz inequality is among the most important inequalities of mathematics.

- ▶ **Theorem 8.1 (Cauchy-Schwarz inequality):** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space over a field \mathbb{F} (where \mathbb{F} is \mathbb{R} or \mathbb{C} .) Then for x, y in V ,

$$|\langle x, y \rangle| \leq \|x\| \cdot \|y\|.$$

Cauchy-Schwarz inequality

- ▶ You may have seen the inequality

$$\sum_{j=1}^n a_j b_j \leq \left(\sum_{j=1}^n a_j^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^n b_j^2 \right)^{\frac{1}{2}}$$

for $n \in \mathbb{N}$ and real numbers $a_j, b_j, 1 \leq j \leq n$. Here we have a generalization of this result. Cauchy-Schwarz inequality is among the most important inequalities of mathematics.

- ▶ **Theorem 8.1 (Cauchy-Schwarz inequality):** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space over a field \mathbb{F} (where \mathbb{F} is \mathbb{R} or \mathbb{C} .) Then for x, y in V ,

$$|\langle x, y \rangle| \leq \|x\| \cdot \|y\|.$$

Cauchy-Schwarz inequality

- ▶ You may have seen the inequality

$$\sum_{j=1}^n a_j b_j \leq \left(\sum_{j=1}^n a_j^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^n b_j^2 \right)^{\frac{1}{2}}$$

for $n \in \mathbb{N}$ and real numbers $a_j, b_j, 1 \leq j \leq n$. Here we have a generalization of this result. Cauchy-Schwarz inequality is among the most important inequalities of mathematics.

- ▶ **Theorem 8.1 (Cauchy-Schwarz inequality):** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space over a field \mathbb{F} (where \mathbb{F} is \mathbb{R} or \mathbb{C} .) Then for x, y in V ,

$$|\langle x, y \rangle| \leq \|x\| \cdot \|y\|.$$

- ▶ The equality takes place if and only if x, y are linearly dependent.

Cauchy-Schwarz inequality

- ▶ You may have seen the inequality

$$\sum_{j=1}^n a_j b_j \leq \left(\sum_{j=1}^n a_j^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^n b_j^2 \right)^{\frac{1}{2}}$$

for $n \in \mathbb{N}$ and real numbers $a_j, b_j, 1 \leq j \leq n$. Here we have a generalization of this result. Cauchy-Schwarz inequality is among the most important inequalities of mathematics.

- ▶ **Theorem 8.1 (Cauchy-Schwarz inequality):** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space over a field \mathbb{F} (where \mathbb{F} is \mathbb{R} or \mathbb{C} .) Then for x, y in V ,

$$|\langle x, y \rangle| \leq \|x\| \cdot \|y\|.$$

- ▶ The equality takes place if and only if x, y are linearly dependent.
- ▶ Case (i): $\langle x, x \rangle = 0$. This means $x = 0$. Now $\langle 0, y \rangle = \langle 0 + 0, y \rangle = \langle 0, y \rangle + \langle 0, y \rangle$. This implies $\langle x, y \rangle = 0$.

Cauchy-Schwarz inequality

- ▶ You may have seen the inequality

$$\sum_{j=1}^n a_j b_j \leq \left(\sum_{j=1}^n a_j^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^n b_j^2 \right)^{\frac{1}{2}}$$

for $n \in \mathbb{N}$ and real numbers $a_j, b_j, 1 \leq j \leq n$. Here we have a generalization of this result. Cauchy-Schwarz inequality is among the most important inequalities of mathematics.

- ▶ **Theorem 8.1 (Cauchy-Schwarz inequality):** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space over a field \mathbb{F} (where \mathbb{F} is \mathbb{R} or \mathbb{C} .) Then for x, y in V ,

$$|\langle x, y \rangle| \leq \|x\| \cdot \|y\|.$$

- ▶ The equality takes place if and only if x, y are linearly dependent.
- ▶ Case (i): $\langle x, x \rangle = 0$. This means $x = 0$. Now $\langle 0, y \rangle = \langle 0 + 0, y \rangle = \langle 0, y \rangle + \langle 0, y \rangle$. This implies $\langle x, y \rangle = 0$.
- ▶ Hence the required inequality is trivially true and is an equality.

Continuation

- ▶ Case (ii): $\langle x, x \rangle \neq 0$.

Continuation

- ▶ Case (ii): $\langle x, x \rangle \neq 0$.
- ▶ Consider the vector $z := y - \frac{\langle x, y \rangle}{\langle x, x \rangle} x$.

Continuation

- ▶ Case (ii): $\langle x, x \rangle \neq 0$.
- ▶ Consider the vector $z := y - \frac{\langle x, y \rangle}{\langle x, x \rangle} x$.
- ▶ We know $\langle z, z \rangle \geq 0$.

Continuation

- ▶ Case (ii): $\langle x, x \rangle \neq 0$.
- ▶ Consider the vector $z := y - \frac{\langle x, y \rangle}{\langle x, x \rangle} x$.
- ▶ We know $\langle z, z \rangle \geq 0$.
- ▶ Recalling that $\|x\|^2 = \langle x, x \rangle$ and using anti-linearity of the inner-product in the first variable and linearity in the second variable we get:

Continuation

- ▶ Case (ii): $\langle x, x \rangle \neq 0$.
- ▶ Consider the vector $z := y - \frac{\langle x, y \rangle}{\langle x, x \rangle} x$.
- ▶ We know $\langle z, z \rangle \geq 0$.
- ▶ Recalling that $\|x\|^2 = \langle x, x \rangle$ and using anti-linearity of the inner-product in the first variable and linearity in the second variable we get:
 - ▶

$$\begin{aligned} 0 &\leq \langle y - \frac{\langle x, y \rangle}{\langle x, x \rangle} x, y - \frac{\langle x, y \rangle}{\langle x, x \rangle} x \rangle \\ &= \|y\|^2 - 2 \frac{|\langle x, y \rangle|^2}{\|x\|^2} + \frac{|\langle x, y \rangle|^2 \cdot \|x\|^2}{\|x\|^4} \\ &= \|y\|^2 - \frac{|\langle x, y \rangle|^2}{\|x\|^2}, \end{aligned}$$

Continuation

- ▶ Case (ii): $\langle x, x \rangle \neq 0$.
- ▶ Consider the vector $z := y - \frac{\langle x, y \rangle}{\langle x, x \rangle} x$.
- ▶ We know $\langle z, z \rangle \geq 0$.
- ▶ Recalling that $\|x\|^2 = \langle x, x \rangle$ and using anti-linearity of the inner-product in the first variable and linearity in the second variable we get:
 - ▶

$$\begin{aligned} 0 &\leq \langle y - \frac{\langle x, y \rangle}{\langle x, x \rangle} x, y - \frac{\langle x, y \rangle}{\langle x, x \rangle} x \rangle \\ &= \|y\|^2 - 2 \frac{|\langle x, y \rangle|^2}{\|x\|^2} + \frac{|\langle x, y \rangle|^2 \cdot \|x\|^2}{\|x\|^4} \\ &= \|y\|^2 - \frac{|\langle x, y \rangle|^2}{\|x\|^2}, \end{aligned}$$

- ▶ which is same as $|\langle x, y \rangle|^2 \leq \|x\|^2 \|y\|^2$.

Continuation

- ▶ Case (ii): $\langle x, x \rangle \neq 0$.
- ▶ Consider the vector $z := y - \frac{\langle x, y \rangle}{\langle x, x \rangle} x$.
- ▶ We know $\langle z, z \rangle \geq 0$.
- ▶ Recalling that $\|x\|^2 = \langle x, x \rangle$ and using anti-linearity of the inner-product in the first variable and linearity in the second variable we get:
 - ▶

$$\begin{aligned} 0 &\leq \langle y - \frac{\langle x, y \rangle}{\langle x, x \rangle} x, y - \frac{\langle x, y \rangle}{\langle x, x \rangle} x \rangle \\ &= \|y\|^2 - 2 \frac{|\langle x, y \rangle|^2}{\|x\|^2} + \frac{|\langle x, y \rangle|^2 \cdot \|x\|^2}{\|x\|^4} \\ &= \|y\|^2 - \frac{|\langle x, y \rangle|^2}{\|x\|^2}, \end{aligned}$$

- ▶ which is same as $|\langle x, y \rangle|^2 \leq \|x\|^2 \|y\|^2$.
- ▶ Taking positive square root, we have the required inequality.

The case of equality

- ▶ Case (i): $\langle x, x \rangle = 0$. Here $x = 0$ and hence x, y are linearly dependent.

The case of equality

- ▶ Case (i): $\langle x, x \rangle = 0$. Here $x = 0$ and hence x, y are linearly dependent.
- ▶ Case (ii): $\langle x, x \rangle \neq 0$.

The case of equality

- ▶ Case (i): $\langle x, x \rangle = 0$. Here $x = 0$ and hence x, y are linearly dependent.
- ▶ Case (ii): $\langle x, x \rangle \neq 0$.
- ▶ From the proof of Cauchy-Schwarz inequality, to have equality, we must have $z = 0$, where

$$z = y - \frac{\langle x, y \rangle}{\langle x, x \rangle} x.$$

The case of equality

- ▶ Case (i): $\langle x, x \rangle = 0$. Here $x = 0$ and hence x, y are linearly dependent.
- ▶ Case (ii): $\langle x, x \rangle \neq 0$.
- ▶ From the proof of Cauchy-Schwarz inequality, to have equality, we must have $z = 0$, where

$$z = y - \frac{\langle x, y \rangle}{\langle x, x \rangle} x.$$

- ▶ Hence z is a scalar multiple of x . In particular, x, y are linearly dependent.
- ▶ **Exercise:** We proved the Cauchy-Schwarz inequality with the assumption of definiteness, that is $\langle x, x \rangle = 0$ implies $x = 0$. Prove the inequality without this assumption. (Hint: Consider the function $p(t) = \|y - t\langle x, y \rangle x\|^2$ for $t \in \mathbb{R}$.)

Triangle inequality

- ▶ Recall that we wanted to show

$$\|x + y\| \leq \|x\| + \|y\|$$

for $x, y \in V$.

Triangle inequality

- ▶ Recall that we wanted to show

$$\|x + y\| \leq \|x\| + \|y\|$$

for $x, y \in V$.

- ▶ Now using Cauchy-Schwarz inequality,

$$\begin{aligned}\langle x + y, x + y \rangle &= \|x\|^2 + \|y\|^2 + \langle x, y \rangle + \langle y, x \rangle \\ &= \|x\|^2 + \|y\|^2 + 2 \operatorname{Re} \langle x, y \rangle \\ &\leq \|x\|^2 + \|y\|^2 + 2|\langle x, y \rangle| \\ &\leq \|x\|^2 + \|y\|^2 + 2\|x\|\cdot\|y\| \\ &= (\|x\| + \|y\|)^2.\end{aligned}$$

Triangle inequality

- ▶ Recall that we wanted to show

$$\|x + y\| \leq \|x\| + \|y\|$$

for $x, y \in V$.

- ▶ Now using Cauchy-Schwarz inequality,

$$\begin{aligned}\langle x + y, x + y \rangle &= \|x\|^2 + \|y\|^2 + \langle x, y \rangle + \langle y, x \rangle \\ &= \|x\|^2 + \|y\|^2 + 2 \operatorname{Re} \langle x, y \rangle \\ &\leq \|x\|^2 + \|y\|^2 + 2|\langle x, y \rangle| \\ &\leq \|x\|^2 + \|y\|^2 + 2\|x\|\|y\| \\ &= (\|x\| + \|y\|)^2.\end{aligned}$$

- ▶ Taking positive square root we have the required inequality.
■.

Triangle inequality for the metric

- ▶ In any inner product space $(V, \langle \cdot, \cdot \rangle)$ we have the **metric** (distance function) as

$$d(x, y) = \|y - x\|.$$

Triangle inequality for the metric

- ▶ In any inner product space $(V, \langle \cdot, \cdot \rangle)$ we have the **metric** (distance function) as

$$d(x, y) = \|y - x\|.$$

- ▶ We observe that d satisfies:

Triangle inequality for the metric

- ▶ In any inner product space $(V, \langle \cdot, \cdot \rangle)$ we have the **metric** (distance function) as

$$d(x, y) = \|y - x\|.$$

- ▶ We observe that d satisfies:
 - ▶ (i) $d(x, y) \geq 0$ for every x, y in V and $d(x, y) = 0$ if and only if $x = y$ (Positivity and definiteness).

Triangle inequality for the metric

- ▶ In any inner product space $(V, \langle \cdot, \cdot \rangle)$ we have the **metric** (distance function) as

$$d(x, y) = \|y - x\|.$$

- ▶ We observe that d satisfies:
 - ▶ (i) $d(x, y) \geq 0$ for every x, y in V and $d(x, y) = 0$ if and only if $x = y$ (Positivity and definiteness).
 - ▶ (ii) $d(x, y) = d(y, x)$ for all x, y in V (symmetry).

Triangle inequality for the metric

- ▶ In any inner product space $(V, \langle \cdot, \cdot \rangle)$ we have the **metric** (distance function) as

$$d(x, y) = \|y - x\|.$$

- ▶ We observe that d satisfies:
 - ▶ (i) $d(x, y) \geq 0$ for every x, y in V and $d(x, y) = 0$ if and only if $x = y$ (Positivity and definiteness).
 - ▶ (ii) $d(x, y) = d(y, x)$ for all x, y in V (symmetry).
 - ▶ (iii) $d(x, y) \leq d(x, z) + d(z, y)$ for all x, y, z in V . (triangle inequality).

Triangle inequality for the metric

- ▶ In any inner product space $(V, \langle \cdot, \cdot \rangle)$ we have the **metric** (distance function) as

$$d(x, y) = \|y - x\|.$$

- ▶ We observe that d satisfies:
 - ▶ (i) $d(x, y) \geq 0$ for every x, y in V and $d(x, y) = 0$ if and only if $x = y$ (Positivity and definiteness).
 - ▶ (ii) $d(x, y) = d(y, x)$ for all x, y in V (symmetry).
 - ▶ (iii) $d(x, y) \leq d(x, z) + d(z, y)$ for all x, y, z in V . (triangle inequality).
- ▶ All these are immediate from respective properties of the norm.

Parallelogram law

- **Theorem 8.2:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then for any x, y in V :

Parallelogram law

- ▶ **Theorem 8.2:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then for any x, y in V :
- ▶

$$\|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2.$$

Parallelogram law

- ▶ **Theorem 8.2:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then for any x, y in V :
- ▶

$$\|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2.$$

- ▶ **Proof.** This is clear by direct computation:

$$\begin{aligned} & \|x + y\|^2 + \|x - y\|^2 \\ = & \langle x + y, x + y \rangle + \langle x - y, x - y \rangle \\ = & 2\langle x, x \rangle + 2\langle y, y \rangle \end{aligned}$$

Parallelogram law

- ▶ **Theorem 8.2:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then for any x, y in V :
- ▶

$$\|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2.$$

- ▶ **Proof.** This is clear by direct computation:

$$\begin{aligned} & \|x + y\|^2 + \|x - y\|^2 \\ = & \langle x + y, x + y \rangle + \langle x - y, x - y \rangle \\ = & 2\langle x, x \rangle + 2\langle y, y \rangle \end{aligned}$$

- ▶ as all cross-terms cancel with each other.

Parallelogram law

- ▶ **Theorem 8.2:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then for any x, y in V :
- ▶

$$\|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2.$$

- ▶ **Proof.** This is clear by direct computation:

$$\begin{aligned} & \|x + y\|^2 + \|x - y\|^2 \\ &= \langle x + y, x + y \rangle + \langle x - y, x - y \rangle \\ &= 2\langle x, x \rangle + 2\langle y, y \rangle \end{aligned}$$

- ▶ as all cross-terms cancel with each other.
- ▶ **Exercise:** Find out as to why this is called parallelogram law.

Recovering the inner product from the norm

- ▶ It is possible to compute the inner product from the norm using the following formulae.

Recovering the inner product from the norm

- ▶ It is possible to compute the inner product from the norm using the following formulae.
- ▶ **Theorem 8.3:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space over \mathbb{R} . Then for any $x, y \in V$

$$\langle x, y \rangle = \frac{1}{4}(\|x + y\|^2 - \|x - y\|^2).$$

Recovering the inner product from the norm

- ▶ It is possible to compute the inner product from the norm using the following formulae.
- ▶ **Theorem 8.3:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space over \mathbb{R} . Then for any $x, y \in V$

$$\langle x, y \rangle = \frac{1}{4}(\|x + y\|^2 - \|x - y\|^2).$$

- ▶ **Proof.** We have,

$$\|x + y\|^2 = \|x\|^2 + \|y\|^2 + \langle x, y \rangle + \langle y, x \rangle$$

By symmetry,

$$\|x + y\|^2 = \|x\|^2 + \|y\|^2 + 2\langle x, y \rangle.$$

Recovering the inner product from the norm

- ▶ It is possible to compute the inner product from the norm using the following formulae.
- ▶ **Theorem 8.3:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space over \mathbb{R} . Then for any $x, y \in V$

$$\langle x, y \rangle = \frac{1}{4}(\|x + y\|^2 - \|x - y\|^2).$$

- ▶ **Proof.** We have,

$$\|x + y\|^2 = \|x\|^2 + \|y\|^2 + \langle x, y \rangle + \langle y, x \rangle$$

By symmetry,

$$\|x + y\|^2 = \|x\|^2 + \|y\|^2 + 2\langle x, y \rangle.$$

- ▶ Similarly,

$$\|(x - y)\|^2 = \|x\|^2 + \|y\|^2 - 2\langle x, y \rangle.$$

Recovering the inner product from the norm

- ▶ It is possible to compute the inner product from the norm using the following formulae.
- ▶ **Theorem 8.3:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space over \mathbb{R} . Then for any $x, y \in V$

$$\langle x, y \rangle = \frac{1}{4}(\|x + y\|^2 - \|x - y\|^2).$$

- ▶ **Proof.** We have,

$$\|x + y\|^2 = \|x\|^2 + \|y\|^2 + \langle x, y \rangle + \langle y, x \rangle$$

By symmetry,

$$\|x + y\|^2 = \|x\|^2 + \|y\|^2 + 2\langle x, y \rangle.$$

- ▶ Similarly,

$$\|(x - y)\|^2 = \|x\|^2 + \|y\|^2 - 2\langle x, y \rangle.$$

- ▶ Now the result is clear by taking the difference of two equations and dividing by four.

Continuation

► Theorem 8.4 (polarization identity): Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space over \mathbb{C} . Then for any $x, y \in V$

$$\langle x, y \rangle = \frac{1}{4} \sum_{n=0}^3 (-i)^n \|x + i^n y\|^2.$$

Continuation

► Theorem 8.4 (polarization identity): Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space over \mathbb{C} . Then for any $x, y \in V$

$$\langle x, y \rangle = \frac{1}{4} \sum_{n=0}^3 (-i)^n \|x + i^n y\|^2.$$

Continuation

► Theorem 8.4 (polarization identity): Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space over \mathbb{C} . Then for any $x, y \in V$

$$\langle x, y \rangle = \frac{1}{4} \sum_{n=0}^3 (-i)^n \|x + i^n y\|^2.$$

Continuation

- **Theorem 8.4 (polarization identity):** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space over \mathbb{C} . Then for any $x, y \in V$

$$\langle x, y \rangle = \frac{1}{4} \sum_{n=0}^3 (-i)^n \|x + i^n y\|^2.$$

- **Proof.** The proof is by direct computation.

Continuation

- **Theorem 8.4 (polarization identity):** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space over \mathbb{C} . Then for any $x, y \in V$

$$\langle x, y \rangle = \frac{1}{4} \sum_{n=0}^3 (-i)^n \|x + i^n y\|^2.$$

- **Proof.** The proof is by direct computation.
- Recall: $i^2 = -1, i^3 = -i, i^4 = 1$ and $\bar{i} = -i$.

Continuation

► **Theorem 8.4 (polarization identity):** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space over \mathbb{C} . Then for any $x, y \in V$

$$\langle x, y \rangle = \frac{1}{4} \sum_{n=0}^3 (-i)^n \|x + i^n y\|^2.$$

► **Proof.** The proof is by direct computation.
► Recall: $i^2 = -1$, $i^3 = -i$, $i^4 = 1$ and $\bar{i} = -i$.
► Now

$$(-i)^0 \|x + i^0 y\|^2 = \|x\|^2 + \|y\|^2 + \langle x, y \rangle + \langle y, x \rangle.$$

$$(-i)^1 \|x + i^1 y\|^2 = (-i)\|x\|^2 + (-i)\|y\|^2 + \langle x, y \rangle + (-i)^2 \langle y, x \rangle$$

$$(-i)^2 \|x + i^2 y\|^2 = -\|x\|^2 - \|y\|^2 + \langle x, y \rangle + (-1).(-1) \langle y, x \rangle$$

$$(-i)^3 \|x + i^3 y\|^2 = i\|x\|^2 + i\|y\|^2 + \langle x, y \rangle + (i).(i) \langle y, x \rangle$$

Continuation

► **Theorem 8.4 (polarization identity):** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space over \mathbb{C} . Then for any $x, y \in V$

$$\langle x, y \rangle = \frac{1}{4} \sum_{n=0}^3 (-i)^n \|x + i^n y\|^2.$$

► **Proof.** The proof is by direct computation.
► Recall: $i^2 = -1$, $i^3 = -i$, $i^4 = 1$ and $\bar{i} = -i$.
► Now

$$(-i)^0 \|x + i^0 y\|^2 = \|x\|^2 + \|y\|^2 + \langle x, y \rangle + \langle y, x \rangle.$$

$$(-i)^1 \|x + i^1 y\|^2 = (-i)\|x\|^2 + (-i)\|y\|^2 + \langle x, y \rangle + (-i)^2 \langle y, x \rangle$$

$$(-i)^2 \|x + i^2 y\|^2 = -\|x\|^2 - \|y\|^2 + \langle x, y \rangle + (-1).(-1) \langle y, x \rangle$$

$$(-i)^3 \|x + i^3 y\|^2 = i\|x\|^2 + i\|y\|^2 + \langle x, y \rangle + (i).(i) \langle y, x \rangle$$

► Adding these equations and dividing by 4 we have the theorem. ■.

Continuation

- **Theorem 8.4 (polarization identity):** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space over \mathbb{C} . Then for any $x, y \in V$

$$\langle x, y \rangle = \frac{1}{4} \sum_{n=0}^3 (-i)^n \|x + i^n y\|^2.$$

- **Proof.** The proof is by direct computation.
- Recall: $i^2 = -1$, $i^3 = -i$, $i^4 = 1$ and $\bar{i} = -i$.
- Now

$$(-i)^0 \|x + i^0 y\|^2 = \|x\|^2 + \|y\|^2 + \langle x, y \rangle + \langle y, x \rangle.$$

$$(-i)^1 \|x + i^1 y\|^2 = (-i)\|x\|^2 + (-i)\|y\|^2 + \langle x, y \rangle + (-i)^2 \langle y, x \rangle$$

$$(-i)^2 \|x + i^2 y\|^2 = -\|x\|^2 - \|y\|^2 + \langle x, y \rangle + (-1).(-1) \langle y, x \rangle$$

$$(-i)^3 \|x + i^3 y\|^2 = i\|x\|^2 + i\|y\|^2 + \langle x, y \rangle + (i).(i) \langle y, x \rangle$$

- Adding these equations and dividing by 4 we have the theorem. ■.
- The formula of this theorem is known as **polarization identity**.

Continuation

- **Theorem 8.4 (polarization identity):** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space over \mathbb{C} . Then for any $x, y \in V$

$$\langle x, y \rangle = \frac{1}{4} \sum_{n=0}^3 (-i)^n \|x + i^n y\|^2.$$

- **Proof.** The proof is by direct computation.
- Recall: $i^2 = -1$, $i^3 = -i$, $i^4 = 1$ and $\bar{i} = -i$.
- Now

$$(-i)^0 \|x + i^0 y\|^2 = \|x\|^2 + \|y\|^2 + \langle x, y \rangle + \langle y, x \rangle.$$

$$(-i)^1 \|x + i^1 y\|^2 = (-i)\|x\|^2 + (-i)\|y\|^2 + \langle x, y \rangle + (-i)^2 \langle y, x \rangle$$

$$(-i)^2 \|x + i^2 y\|^2 = -\|x\|^2 - \|y\|^2 + \langle x, y \rangle + (-1).(-1) \langle y, x \rangle$$

$$(-i)^3 \|x + i^3 y\|^2 = i\|x\|^2 + i\|y\|^2 + \langle x, y \rangle + (i).(i) \langle y, x \rangle$$

- Adding these equations and dividing by 4 we have the theorem. ■.
- The formula of this theorem is known as **polarization identity**.
- **END OF LECTURE 8.**