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Recall: In the following the field F would be either R or C.

An inner product between two vectors x, y in V, usually
denoted by (x, y) would be a scalar (an element of F).

The main examples we have in mind are the following:

Definition 7.1: For n € N, consider the vector space R". The
standard inner product on R" is defined by:
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We note that (x, x) > 0 for every x in R” and (x,x) = 0 if
and only if x = 0.
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C".

» Definition 7.2: For n € N, consider the vector space C". The
standard inner product on C” is defined by:

X1 Y1
X2 y2 L
{ : ! : )= ZXJyJ
: : =1
Xn Yn

» Here also we note that (x, x) > 0 for every x in C” and
(x,x) =0if and only if x = 0.
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Definitions

» Definition 7.3: Let V be a vector space over a field F where F
is either R or C.

» An inner product on V is a map
(w):VxV—=F

such that

(i) (x,cy + dz) = c(x,y) + d(x, z), for all
x,y,z € V,c,d € F (Linearity in second variable.)

v

(i) (y,x) = (x,y) for all x,y € V. (Conjugate Symmetry.)
(iii) (x,x) > 0 for all x in V. (Positivity.)

(iv) (x,x) = 0 if and only if x = 0. (Definiteness.)

Some authors take inner product as linear in the first variable.

It is a matter of convention. A vector space with a specified
inner product is called an inner product space.

vvyyy
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» On R?, for any x = ( Xl >
X2

NI
N

(06, x))2 = (4 +3)
. : . . 0
is the distance of point x from the origin 0 )
> More generally the distance between any two points ( il )
2

and (yl > is
Y2

(1 = n)* + (2 — y2)?))

N =
N

=({((x—y),(x—y))2.

> This suggests the following definitions.



The norm on an inner product space

» Definition 7.5: Let (V/,(-,-)) be an inner product space. Then
the norm of a vector x € V is defined as

Ix]l = ((x,x))2.



The norm on an inner product space

» Definition 7.5: Let (V/,(-,-)) be an inner product space. Then
the norm of a vector x € V is defined as

Ix]l = ((x,x))2.

> If x,y are vectors in V, the distance of y from x is defined as

d(x,y) = lly = xII



The norm on an inner product space

» Definition 7.5: Let (V/,(-,-)) be an inner product space. Then
the norm of a vector x € V is defined as

1
[Ix]l = ((x,x))2.
> If x,y are vectors in V, the distance of y from x is defined as
d(x,y) = lly = x|

» The ‘distance function’ d : V — V — R is also known as
metric.



Basic properties of the norm

» Theorem 7.6: Let (V,(:,-)) be an inner product space and let
|| - || be the associated norm on V. Then



Basic properties of the norm

» Theorem 7.6: Let (V,(:,-)) be an inner product space and let
|| - || be the associated norm on V. Then

» (i) ||x]| > 0 for all x € V and ||x|| = 0 if and only if x = 0.



Basic properties of the norm

» Theorem 7.6: Let (V,(:,-)) be an inner product space and let
|| - || be the associated norm on V. Then

» (i) ||x|]| > 0 for all x € V and ||x|| = 0 if and only if x = 0.
> (i) [lax|| = |a[||lx]|, Va€F and x € V.



Basic properties of the norm

» Theorem 7.6: Let (V,(:,-)) be an inner product space and let
|| - || be the associated norm on V. Then

» (i) ||x|]| > 0 for all x € V and ||x|| = 0 if and only if x = 0.
> (i) [lax|| = |a[||lx]|, Va€F and x € V.
> (i) lx +yll < [l +llyll, vx,y € V.



Continuation

» Proof. (i) This is clear, as (x, x) > 0 for all x and (x, x) = 0 if
and only if x = 0.



Continuation

» Proof. (i) This is clear, as (x, x) > 0 for all x and (x, x) = 0 if
and only if x = 0.

» (ii) We have,
(ax, ax) = a.a(x, x) = |a|*(xx)

from anti-linearity of the inner product in the first variable and
linear in the second variable. Now (ii) is immediate.



Continuation

» Proof. (i) This is clear, as (x, x) > 0 for all x and (x, x) = 0 if
and only if x = 0.

» (ii) We have,
(ax, ax) = a.a(x, x) = |a|*(xx)

from anti-linearity of the inner product in the first variable and
linear in the second variable. Now (ii) is immediate.

» (iii) This is a consequence of Cauchy-Schwarz inequality and
will be proved in the next class.
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» You may have seen the inequality
n
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for n € N and real numbers a;, bj,1 < j < n. Here we have a
generalization of this result. Cauchy-Schwarz inequality is
among the most important inequalities of mathematics.

» Theorem 8.1 (Cauchy-Schwarz inequality): Let (V,(-,-)) be
an inner product space over a field F (where F is R or C.)
Then for x,y in V,

|0yl < X[y -

» The equality takes place if and only if x, y are linearly
dependent.
» Case (i): (x,x) =0. This means x = 0. Now
(0,y) =(040,y) =(0,y) + (0, y). This implies (x,y) = 0.
P Hence the required inequality is trivially true and is an
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Case (ii): (x,x) # 0.
Consider the vector z := y —
We know (z,z) > 0.
Recalling that ||x||> = (x, x) and using anti-linearity of the
inner-product in the first variable and linearity in the second
variable we get:
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Case (ii): (x,x) # 0.
Consider the vector z := y —
We know (z,z) > 0.
Recalling that ||x||> = (x, x) and using anti-linearity of the
inner-product in the first variable and linearity in the second
variable we get:

(%)
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.
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» which is same as |(x, y)|% < |Ix|?|ly|I?.
P> Taking positive square root, we have the required inequality.
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The case of equality

» Case (i): (x,x) =0. Here x =0 and hence x, y are linearly
dependent.

» Case (ii): (x,x) #0.

» From the proof of Cauchy-Schwarz inequality, to have
equality, we must have z = 0, where

_ o xy)
R

X.

> Hence z is a scalar multiple of x. In particular, x, y are
linearly dependent.

» Exercise: We proved the Cauchy-Schwarz inequality with the
assumption of definiteness, that is (x,x) = 0 implies x = 0.
Prove the inequality without this assumption. (Hint: Consider
the function p(t) = ||y — t{x, y)x||? for t € R.)
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» Taking positive square root we have the required inequality.
[}
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(distance function) as
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We observe that d satisfies:
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(i) d(x,y) > 0 for every x,y in V and d(x,y) = 0 if and only
if x =y (Positivity and definiteness).
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(ii) d(x,y) = d(y,x) for all x,y in V (symmetry).
(iii) d(x,y) < d(x,z) +d(z,y) for all x,y,z in V. (triangle
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Triangle inequality for the metric

» In any inner product space (V, (-, -)) we have the metric
(distance function) as

d(x,y) = lly = xII

> We observe that d satisfies:

» (i) d(x,y) >0 for every x,y in V and d(x,y) = 0 if and only
if x =y (Positivity and definiteness).

» (ii) d(x,y) = d(y,x) for all x,y in V (symmetry).

> (iii) d(x,y) < d(x,z)+d(z,y) for all x,y,z in V. (triangle
inequality).

» All these are immediate from respective properties of the
norm.
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» Theorem 8.2: Let (V,(:,-)) be an inner product space. Then
for any x,y in V:
I+ y 12+ lIx = yII? = 2l|x]1? + 2lly ||
» Proof. This is clear by direct computation:
Ix + y[I? + [Ix = |2

= (x+y,x+ty)+{x—y,x—y)
= 2(x,x) +2(y,y)

» as all cross-terms cancel with each other.

v

Exercise: Find out as to why this is called parallelogram law.
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Recovering the inner product from the norm

» It is possible to compute the inner product from the norm
using the following formulae.
» Theorem 8.3: Let (V,(-,-)) be an inner product space over
R. Then for any x,y € V
1
(o) = Ux vl = lx =y,
> Proof. We have,
Ix +y 112 = [IXI17 + [y 117 + (x, ¥) + (v, x)
By symmetry,
2 2 2
[+ y[I7 = 1Ix]I* + Iy ll* + 2(x, y)-
» Similarly,
1(x = )IIZ = [IxI2 + Iy l? = 2(x, y)-

» Now the result is clear by taking the difference of two
equations and dividing by four.
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» Theorem 8.4 (polarization identity): Let (V,(-,-)) be an
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3

1 . .
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» Proof. The proof is by direct computation.
» Recall: i?=—-1,3=—i,i*=1and = —i.
> Now
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» Theorem 8.4 (polarization identity): Let (V,(-,-)) be an
inner product space over C. Then for any x,y € V
3

1 \n n
(v = 5 Sl iy
n=0
» Proof. The proof is by direct computation.
» Recall: i?=—-1,3=—i,i*=1and = —i.
> Now
(=0°lx+ 012 = IIxIP+ Y12+ O, p) + (v %)
(=) Hx+ityl? = (=Dl + (DIl + (6 y) + (=) y. x)
(=2lx+ 2yl = =lIxI? = lIyl? + (o v) + (=1)(=1){y, )
(=Plx + Pyl = ilxl® +illy 12 + O y) + (0)-(){y, x)

> Adding these equations and dividing by 4 we have the
theorem. .



Continuation

» Theorem 8.4 (polarization identity): Let (V,(-,-)) be an
inner product space over C. Then for any x,y € V
3

(y) = 3 (i)t My
n=0
» Proof. The proof is by direct computation.
» Recall: i?=—-1,3=—i,i*=1and = —i.
> Now
(=)°lx +°y12 =[x+ Iy 12 + (xy) + (v, %)
(=) Hx+ iyl = (X + (DI + O v) + (=) (. x)
(=2lx+ 2yl = =lIxI? = lIyl? + (o v) + (=1)(=1){y, )
(=Plx + Pyl = ilxl® +illy 12 + O y) + (0)-(){y, x)
> Adding these equations and dividing by 4 we have the

theorem. .
» The formula of this theorem is known as polarization identity.



Continuation

» Theorem 8.4 (polarization identity): Let (V,(-,-)) be an
inner product space over C. Then for any x,y € V
3

(y) = 3 (i)t My
n=0
» Proof. The proof is by direct computation.
» Recall: i?=—-1,3=—i,i*=1and = —i.
> Now
(=)°lx +°y12 =[x+ Iy 12 + (xy) + (v, %)
(=) Hx+ iyl = (X + (DI + O v) + (=) (. x)
(=2lx+ 2yl = =lIxI? = lIyl? + (o v) + (=1)(=1){y, )
(=Plx + Pyl = ilxl® +illy 12 + O y) + (0)-(){y, x)
> Adding these equations and dividing by 4 we have the

theorem. .
» The formula of this theorem is known as polarization identity.
» END OF LECTURE 8.



