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Lecture 9: Gram-Schmidt orthogonalization

I Recall: In the following the field F would be either R or C.

I Let V be a vector space.

I A collection of vectors {v1, v2, . . . , vn} is said to be linearly
independent if

c1v1 + c2v2 + · · ·+ cnvn = 0

implies c1 = c2 = · · · = cn = 0.

I A linearly independent collection of vectors {v1, v2, . . . , vn} is
a basis for V if

V = span{v1, v2, . . . , vn},

I that is, given any vector x ∈ V , there exist, c1, c2, . . . , cn in F
such that x = c1v1 + c2v2 + · · ·+ cnvn. Note that given x ,
these coefficients are uniquely determined due to linear
independence of vj ’s.
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Orthogonality

I Definition 9.1: Let (V , 〈·, ·〉) be an inner product space. Two
vectors u, v in V are said to be mutually orthogonal if
〈u, v〉 = 0.

I More generally, two subsets S ,T of V are said to be mutually
orthogonal if

〈u, v〉 = 0, ∀u ∈ S , v ∈ T .

I Theorem 9.2 (The Pythagorean theorem for inner product
spaces:) Suppose v ,w are mutually orthogonal vectors in an
inner product space V . Then

‖v + w‖2 = ‖v‖2 + ‖w‖2.
I Proof. We have

‖v + w‖2 = 〈v + w , v + w〉
= 〈v , v〉+ 〈w ,w〉
= ‖v‖2 + ‖w‖2,

I as cross-terms are equal to zero due to orthogonality.
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Basic properties

I Proposition 9.3: Suppose {v1, v2, . . . , vm} is an orthogonal
collection of non-zero vectors in an inner product space
(V , 〈·, ·〉). Then the collection {v1, v2, . . . , vn} is linearly
independent.

I Proof. Suppose c1v1 + · · ·+ cmvm = 0.

I For any j , 1 ≤ j ≤ m, taking inner product with vj , as
〈vj , vi 〉 = δij〈vj , vj〉, we get

0 = 〈vj , c1v1 + · · ·+ cnvn〉 = cj〈vj , vj〉.

I Therefore cj = 0, ∀j , as 〈vj , vj〉 6= 0. �
I Corollary 9.4: Suppose {v1, . . . , vm} is a set of mutually

orthogonal non-zero vectors in an inner product space V , then

m ≤ dimV .

I Proof. This is clear, as the dimension of V is same as the
maximum possible size of linearly independent sets. �
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Orthonormal basis

I A vector v in V is said to be a unit vector if ‖v‖ = 1. Note
that if y ∈ V is non-zero then v := y

‖y‖ is a unit vector.

I If {v1, . . . , vn} is a collection of mutually orthogonal non-zero
vectors, then { v1

‖v1‖ , . . . ,
vn

‖vn‖} is a collection of mutually
orthogonal unit vectors.

I Definition 9.5: Let (V , 〈·, ·〉) be an inner product space. Then
a basis {v1, v2, . . . , vn} is said to be an orthonormal basis if

〈vi , vj〉 =

{
1 if i = j ;
0 if i 6= j .

I In other words, an orthonormal basis is a basis consisting of
mutually orthogonal unit vectors.

I Example 9.6: For Rn (or Cn) the standard basis
{e1, e2, . . . , en}, where ej is the vector whose j-th coordinate
is one and all other coordinates are equal to zero, is an
orthonormal basis with respect to the standard inner product.
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A formula for coefficients

I What is the advantage of having an orthonormal basis instead
of ordinary basis? This is answered by the following theorem.

I It gives a formula for the coefficients in the expansion of any
vector in terms of the basis.

I Theorem 9.7: Let {v1, v2, . . . , vn} be an orthonormal basis of
an inner product space (V , 〈·, ·〉). Then for any vector w ∈ V ,

w =
n∑

j=1

〈vj ,w〉vj .

I Proof. As {v1, v2, . . . , vn} is a basis for V , w =
∑n

i=1 civi for
some c1, c2, . . . , cn in F.
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Continuation

I Now for any j , using linearity of the inner product in second
variable,

〈vj ,w〉 = 〈vj ,
n∑

i=1

civi 〉

=
n∑

i=1

ci 〈vj , vi 〉

=
n∑

i=1

ciδji

= cj .

I As this is true for every j , w =
∑n

j=1〈vj ,w〉vj . �
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Gram-Schmidt orthogonalization

I Gram-Schmidt Orthogonalization : This is an iterative scheme
to obtain an orthonormal basis out of a given basis.

I Let {u1, u2, . . . , un} be a basis of an inner product space
(V , 〈·, ·〉).

I Since {u1, . . . un} are linearly independent each of them is
non-zero.

I In particular, ‖u1‖ 6= 0.

I Take y1 = u1 and v1 = u1
‖u1‖ .
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Continuation

I Take y2 = u2 − 〈v1, u2〉v1.

I We claim that y2 is orthogonal to v1.

I In fact,

〈v1, y2〉 = 〈v1, u2 − 〈v1, u2〉v1〉
= 〈v1, u2〉 − 〈v1, u2〉
= 0

as 〈v1, v1〉 = 1.

I Also as u1, u2 are linearly independent, y2 6= 0.

I Now take, v2 = y2
‖y2‖ .

I This way, {v1, v2} are orthonormal (that is, they have norm
one and are mutually orthogonal.)
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Continuation

I Inductively, after we construct {v1, v2, . . . , vk} such that they
are orthonormal and

span {v1, v2, . . . , vk} = span {u1, u2, . . . , uk},

I we take

yk+1 = uk+1 −
k∑

j=1

〈vj , uk+1〉vj .

I Now, for any 1 ≤ i ≤ k ,

〈vi , yk+1〉 = 〈vi , uk+1〉 − 〈vi , uk+1〉 = 0.

I yk+1 6= 0 follows as
uk+1 /∈ span {v1, . . . , vk} = span{u1, . . . , uk}.

I Then take vk+1 = yk+1

‖yk+1‖ .

I We see that {v1, . . . , vk+1} are orthonormal and
span {v1, . . . , vk+1} = {u1, . . . , uk+1} so that the induction
can be continued.
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Continuation

I Continuing this way, up to k = n, we have an ortho-normal
collection {v1, v2, . . . , vn}. Since it spans whole of V it is an
orthonormal basis. �

I Remark: The formula of Gram-Schmidt orthogonalization:

vk+1 =
uk+1 −

∑k
j=1〈vj , uk+1〉vj

‖uk+1 −
∑k

j=1〈vj , uk+1〉vj‖

is worth remembering.

I Exercise: Obtain an orthonormal basis for R3 by
Gram-Schmidt orthogonalization applied to the basis: 1

1
0

 ,

 0
1
1

 ,

 1
0
1


I END OF LECTURE 9.



Continuation

I Continuing this way, up to k = n, we have an ortho-normal
collection {v1, v2, . . . , vn}. Since it spans whole of V it is an
orthonormal basis. �

I Remark: The formula of Gram-Schmidt orthogonalization:

vk+1 =
uk+1 −

∑k
j=1〈vj , uk+1〉vj

‖uk+1 −
∑k

j=1〈vj , uk+1〉vj‖

is worth remembering.

I Exercise: Obtain an orthonormal basis for R3 by
Gram-Schmidt orthogonalization applied to the basis: 1

1
0

 ,

 0
1
1

 ,

 1
0
1


I END OF LECTURE 9.



Continuation

I Continuing this way, up to k = n, we have an ortho-normal
collection {v1, v2, . . . , vn}. Since it spans whole of V it is an
orthonormal basis. �

I Remark: The formula of Gram-Schmidt orthogonalization:

vk+1 =
uk+1 −

∑k
j=1〈vj , uk+1〉vj

‖uk+1 −
∑k

j=1〈vj , uk+1〉vj‖

is worth remembering.

I Exercise: Obtain an orthonormal basis for R3 by
Gram-Schmidt orthogonalization applied to the basis: 1

1
0

 ,

 0
1
1

 ,

 1
0
1



I END OF LECTURE 9.



Continuation

I Continuing this way, up to k = n, we have an ortho-normal
collection {v1, v2, . . . , vn}. Since it spans whole of V it is an
orthonormal basis. �

I Remark: The formula of Gram-Schmidt orthogonalization:

vk+1 =
uk+1 −

∑k
j=1〈vj , uk+1〉vj

‖uk+1 −
∑k

j=1〈vj , uk+1〉vj‖

is worth remembering.

I Exercise: Obtain an orthonormal basis for R3 by
Gram-Schmidt orthogonalization applied to the basis: 1

1
0

 ,

 0
1
1

 ,

 1
0
1


I END OF LECTURE 9.


