

LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 9: Gram-Schmidt orthogonalization

- ▶ Recall: In the following the field \mathbb{F} would be either \mathbb{R} or \mathbb{C} .

Lecture 9: Gram-Schmidt orthogonalization

- ▶ Recall: In the following the field \mathbb{F} would be either \mathbb{R} or \mathbb{C} .
- ▶ Let V be a vector space.

Lecture 9: Gram-Schmidt orthogonalization

- ▶ Recall: In the following the field \mathbb{F} would be either \mathbb{R} or \mathbb{C} .
- ▶ Let V be a vector space.
- ▶ A collection of vectors $\{v_1, v_2, \dots, v_n\}$ is said to be linearly independent if

$$c_1 v_1 + c_2 v_2 + \cdots + c_n v_n = 0$$

implies $c_1 = c_2 = \cdots = c_n = 0$.

Lecture 9: Gram-Schmidt orthogonalization

- ▶ Recall: In the following the field \mathbb{F} would be either \mathbb{R} or \mathbb{C} .
- ▶ Let V be a vector space.
- ▶ A collection of vectors $\{v_1, v_2, \dots, v_n\}$ is said to be linearly independent if

$$c_1 v_1 + c_2 v_2 + \cdots + c_n v_n = 0$$

implies $c_1 = c_2 = \cdots = c_n = 0$.

- ▶ A linearly independent collection of vectors $\{v_1, v_2, \dots, v_n\}$ is a basis for V if

$$V = \text{span}\{v_1, v_2, \dots, v_n\},$$

Lecture 9: Gram-Schmidt orthogonalization

- ▶ Recall: In the following the field \mathbb{F} would be either \mathbb{R} or \mathbb{C} .
- ▶ Let V be a vector space.
- ▶ A collection of vectors $\{v_1, v_2, \dots, v_n\}$ is said to be linearly independent if

$$c_1 v_1 + c_2 v_2 + \cdots + c_n v_n = 0$$

implies $c_1 = c_2 = \cdots = c_n = 0$.

- ▶ A linearly independent collection of vectors $\{v_1, v_2, \dots, v_n\}$ is a basis for V if

$$V = \text{span}\{v_1, v_2, \dots, v_n\},$$

- ▶ that is, given any vector $x \in V$, there exist, c_1, c_2, \dots, c_n in \mathbb{F} such that $x = c_1 v_1 + c_2 v_2 + \cdots + c_n v_n$. Note that given x , these coefficients are uniquely determined due to linear independence of v_j 's.

Orthogonality

- ▶ **Definition 9.1:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Two vectors u, v in V are said to be **mutually orthogonal** if $\langle u, v \rangle = 0$.

Orthogonality

- ▶ **Definition 9.1:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Two vectors u, v in V are said to be **mutually orthogonal** if $\langle u, v \rangle = 0$.
- ▶ More generally, two subsets S, T of V are said to be **mutually orthogonal** if

$$\langle u, v \rangle = 0, \quad \forall u \in S, v \in T.$$

Orthogonality

- ▶ **Definition 9.1:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Two vectors u, v in V are said to be **mutually orthogonal** if $\langle u, v \rangle = 0$.
- ▶ More generally, two subsets S, T of V are said to be **mutually orthogonal** if

$$\langle u, v \rangle = 0, \quad \forall u \in S, v \in T.$$

- ▶ **Theorem 9.2 (The Pythagorean theorem for inner product spaces:)** Suppose v, w are mutually orthogonal vectors in an inner product space V . Then

$$\|v + w\|^2 = \|v\|^2 + \|w\|^2.$$

Orthogonality

- ▶ **Definition 9.1:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Two vectors u, v in V are said to be **mutually orthogonal** if $\langle u, v \rangle = 0$.
- ▶ More generally, two subsets S, T of V are said to be **mutually orthogonal** if

$$\langle u, v \rangle = 0, \quad \forall u \in S, v \in T.$$

- ▶ **Theorem 9.2 (The Pythagorean theorem for inner product spaces:)** Suppose v, w are mutually orthogonal vectors in an inner product space V . Then

$$\|v + w\|^2 = \|v\|^2 + \|w\|^2.$$

- ▶ **Proof.** We have

$$\begin{aligned}\|v + w\|^2 &= \langle v + w, v + w \rangle \\ &= \langle v, v \rangle + \langle w, w \rangle \\ &= \|v\|^2 + \|w\|^2,\end{aligned}$$

Orthogonality

- ▶ **Definition 9.1:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Two vectors u, v in V are said to be **mutually orthogonal** if $\langle u, v \rangle = 0$.
- ▶ More generally, two subsets S, T of V are said to be **mutually orthogonal** if

$$\langle u, v \rangle = 0, \quad \forall u \in S, v \in T.$$

- ▶ **Theorem 9.2 (The Pythagorean theorem for inner product spaces:)** Suppose v, w are mutually orthogonal vectors in an inner product space V . Then

$$\|v + w\|^2 = \|v\|^2 + \|w\|^2.$$

- ▶ **Proof.** We have

$$\begin{aligned}\|v + w\|^2 &= \langle v + w, v + w \rangle \\ &= \langle v, v \rangle + \langle w, w \rangle \\ &= \|v\|^2 + \|w\|^2,\end{aligned}$$

- ▶ as cross-terms are equal to zero due to orthogonality.

Basic properties

- ▶ **Proposition 9.3:** Suppose $\{v_1, v_2, \dots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \dots, v_n\}$ is linearly independent.

Basic properties

- ▶ **Proposition 9.3:** Suppose $\{v_1, v_2, \dots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \dots, v_n\}$ is linearly independent.
- ▶ **Proof.** Suppose $c_1 v_1 + \dots + c_m v_m = 0$.

Basic properties

- ▶ **Proposition 9.3:** Suppose $\{v_1, v_2, \dots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \dots, v_n\}$ is linearly independent.
- ▶ **Proof.** Suppose $c_1 v_1 + \dots + c_m v_m = 0$.
- ▶ For any j , $1 \leq j \leq m$, taking inner product with v_j , as $\langle v_j, v_i \rangle = \delta_{ij} \langle v_j, v_j \rangle$, we get

$$0 = \langle v_j, c_1 v_1 + \dots + c_m v_m \rangle = c_j \langle v_j, v_j \rangle.$$

Basic properties

- ▶ **Proposition 9.3:** Suppose $\{v_1, v_2, \dots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \dots, v_n\}$ is linearly independent.
- ▶ **Proof.** Suppose $c_1 v_1 + \dots + c_m v_m = 0$.
- ▶ For any j , $1 \leq j \leq m$, taking inner product with v_j , as $\langle v_j, v_i \rangle = \delta_{ij} \langle v_j, v_j \rangle$, we get

$$0 = \langle v_j, c_1 v_1 + \dots + c_m v_m \rangle = c_j \langle v_j, v_j \rangle.$$

- ▶ Therefore $c_j = 0$, $\forall j$, as $\langle v_j, v_j \rangle \neq 0$. ■

Basic properties

- ▶ **Proposition 9.3:** Suppose $\{v_1, v_2, \dots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \dots, v_n\}$ is linearly independent.
- ▶ **Proof.** Suppose $c_1 v_1 + \dots + c_m v_m = 0$.
- ▶ For any j , $1 \leq j \leq m$, taking inner product with v_j , as $\langle v_j, v_i \rangle = \delta_{ij} \langle v_j, v_j \rangle$, we get

$$0 = \langle v_j, c_1 v_1 + \dots + c_m v_m \rangle = c_j \langle v_j, v_j \rangle.$$

- ▶ Therefore $c_j = 0$, $\forall j$, as $\langle v_j, v_j \rangle \neq 0$. ■
- ▶ **Corollary 9.4:** Suppose $\{v_1, \dots, v_m\}$ is a set of mutually orthogonal non-zero vectors in an inner product space V , then

$$m \leq \dim V.$$

Basic properties

- ▶ **Proposition 9.3:** Suppose $\{v_1, v_2, \dots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \dots, v_n\}$ is linearly independent.

- ▶ **Proof.** Suppose $c_1 v_1 + \dots + c_m v_m = 0$.

- ▶ For any j , $1 \leq j \leq m$, taking inner product with v_j , as $\langle v_j, v_i \rangle = \delta_{ij} \langle v_j, v_j \rangle$, we get

$$0 = \langle v_j, c_1 v_1 + \dots + c_m v_m \rangle = c_j \langle v_j, v_j \rangle.$$

- ▶ Therefore $c_j = 0$, $\forall j$, as $\langle v_j, v_j \rangle \neq 0$. ■

- ▶ **Corollary 9.4:** Suppose $\{v_1, \dots, v_m\}$ is a set of mutually orthogonal non-zero vectors in an inner product space V , then

$$m \leq \dim V.$$

- ▶ **Proof.** This is clear, as the dimension of V is same as the maximum possible size of linearly independent sets. ■

Orthonormal basis

- ▶ A vector v in V is said to be a unit vector if $\|v\| = 1$. Note that if $y \in V$ is non-zero then $v := \frac{y}{\|y\|}$ is a unit vector.

Orthonormal basis

- ▶ A vector v in V is said to be a unit vector if $\|v\| = 1$. Note that if $y \in V$ is non-zero then $v := \frac{y}{\|y\|}$ is a unit vector.
- ▶ If $\{v_1, \dots, v_n\}$ is a collection of mutually orthogonal non-zero vectors, then $\{\frac{v_1}{\|v_1\|}, \dots, \frac{v_n}{\|v_n\|}\}$ is a collection of mutually orthogonal unit vectors.

Orthonormal basis

- ▶ A vector v in V is said to be a unit vector if $\|v\| = 1$. Note that if $y \in V$ is non-zero then $v := \frac{y}{\|y\|}$ is a unit vector.
- ▶ If $\{v_1, \dots, v_n\}$ is a collection of mutually orthogonal non-zero vectors, then $\{\frac{v_1}{\|v_1\|}, \dots, \frac{v_n}{\|v_n\|}\}$ is a collection of mutually orthogonal unit vectors.
- ▶ **Definition 9.5:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then a basis $\{v_1, v_2, \dots, v_n\}$ is said to be an **orthonormal basis** if

$$\langle v_i, v_j \rangle = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

Orthonormal basis

- ▶ A vector v in V is said to be a unit vector if $\|v\| = 1$. Note that if $y \in V$ is non-zero then $v := \frac{y}{\|y\|}$ is a unit vector.
- ▶ If $\{v_1, \dots, v_n\}$ is a collection of mutually orthogonal non-zero vectors, then $\{\frac{v_1}{\|v_1\|}, \dots, \frac{v_n}{\|v_n\|}\}$ is a collection of mutually orthogonal unit vectors.
- ▶ **Definition 9.5:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then a basis $\{v_1, v_2, \dots, v_n\}$ is said to be an **orthonormal basis** if

$$\langle v_i, v_j \rangle = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

- ▶ In other words, an orthonormal basis is a basis consisting of mutually orthogonal unit vectors.

Orthonormal basis

- ▶ A vector v in V is said to be a unit vector if $\|v\| = 1$. Note that if $y \in V$ is non-zero then $v := \frac{y}{\|y\|}$ is a unit vector.
- ▶ If $\{v_1, \dots, v_n\}$ is a collection of mutually orthogonal non-zero vectors, then $\{\frac{v_1}{\|v_1\|}, \dots, \frac{v_n}{\|v_n\|}\}$ is a collection of mutually orthogonal unit vectors.
- ▶ **Definition 9.5:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then a basis $\{v_1, v_2, \dots, v_n\}$ is said to be an **orthonormal basis** if

$$\langle v_i, v_j \rangle = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

- ▶ In other words, an orthonormal basis is a basis consisting of mutually orthogonal unit vectors.
- ▶ **Example 9.6:** For \mathbb{R}^n (or \mathbb{C}^n) the standard basis $\{e_1, e_2, \dots, e_n\}$, where e_j is the vector whose j -th coordinate is one and all other coordinates are equal to zero, is an orthonormal basis with respect to the standard inner product.

A formula for coefficients

- ▶ What is the advantage of having an orthonormal basis instead of ordinary basis? This is answered by the following theorem.

A formula for coefficients

- ▶ What is the advantage of having an orthonormal basis instead of ordinary basis? This is answered by the following theorem.
- ▶ It gives a formula for the coefficients in the expansion of any vector in terms of the basis.

A formula for coefficients

- ▶ What is the advantage of having an orthonormal basis instead of ordinary basis? This is answered by the following theorem.
- ▶ It gives a formula for the coefficients in the expansion of any vector in terms of the basis.
- ▶ **Theorem 9.7:** Let $\{v_1, v_2, \dots, v_n\}$ be an orthonormal basis of an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then for any vector $w \in V$,

$$w = \sum_{j=1}^n \langle v_j, w \rangle v_j.$$

A formula for coefficients

- ▶ What is the advantage of having an orthonormal basis instead of ordinary basis? This is answered by the following theorem.
- ▶ It gives a formula for the coefficients in the expansion of any vector in terms of the basis.
- ▶ **Theorem 9.7:** Let $\{v_1, v_2, \dots, v_n\}$ be an orthonormal basis of an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then for any vector $w \in V$,

$$w = \sum_{j=1}^n \langle v_j, w \rangle v_j.$$

- ▶ **Proof.** As $\{v_1, v_2, \dots, v_n\}$ is a basis for V , $w = \sum_{i=1}^n c_i v_i$ for some c_1, c_2, \dots, c_n in \mathbb{F} .

Continuation

- ▶ Now for any j , using linearity of the inner product in second variable,

$$\begin{aligned}\langle v_j, w \rangle &= \langle v_j, \sum_{i=1}^n c_i v_i \rangle \\ &= \sum_{i=1}^n c_i \langle v_j, v_i \rangle \\ &= \sum_{i=1}^n c_i \delta_{ji} \\ &= c_j.\end{aligned}$$

Continuation

- ▶ Now for any j , using linearity of the inner product in second variable,

$$\begin{aligned}\langle v_j, w \rangle &= \langle v_j, \sum_{i=1}^n c_i v_i \rangle \\ &= \sum_{i=1}^n c_i \langle v_j, v_i \rangle \\ &= \sum_{i=1}^n c_i \delta_{ji} \\ &= c_j.\end{aligned}$$

- ▶ As this is true for every j , $w = \sum_{j=1}^n \langle v_j, w \rangle v_j$. ■

Gram-Schmidt orthogonalization

- ▶ **Gram-Schmidt Orthogonalization** : This is an iterative scheme to obtain an orthonormal basis out of a given basis.

Gram-Schmidt orthogonalization

- ▶ **Gram-Schmidt Orthogonalization** : This is an iterative scheme to obtain an orthonormal basis out of a given basis.
- ▶ Let $\{u_1, u_2, \dots, u_n\}$ be a basis of an inner product space $(V, \langle \cdot, \cdot \rangle)$.

Gram-Schmidt orthogonalization

- ▶ **Gram-Schmidt Orthogonalization** : This is an iterative scheme to obtain an orthonormal basis out of a given basis.
- ▶ Let $\{u_1, u_2, \dots, u_n\}$ be a basis of an inner product space $(V, \langle \cdot, \cdot \rangle)$.
- ▶ Since $\{u_1, \dots, u_n\}$ are linearly independent each of them is non-zero.

Gram-Schmidt orthogonalization

- ▶ **Gram-Schmidt Orthogonalization** : This is an iterative scheme to obtain an orthonormal basis out of a given basis.
- ▶ Let $\{u_1, u_2, \dots, u_n\}$ be a basis of an inner product space $(V, \langle \cdot, \cdot \rangle)$.
- ▶ Since $\{u_1, \dots, u_n\}$ are linearly independent each of them is non-zero.
- ▶ In particular, $\|u_1\| \neq 0$.

Gram-Schmidt orthogonalization

- ▶ **Gram-Schmidt Orthogonalization** : This is an iterative scheme to obtain an orthonormal basis out of a given basis.
- ▶ Let $\{u_1, u_2, \dots, u_n\}$ be a basis of an inner product space $(V, \langle \cdot, \cdot \rangle)$.
- ▶ Since $\{u_1, \dots, u_n\}$ are linearly independent each of them is non-zero.
- ▶ In particular, $\|u_1\| \neq 0$.
- ▶ Take $y_1 = u_1$ and $v_1 = \frac{u_1}{\|u_1\|}$.

Continuation

- ▶ Take $y_2 = u_2 - \langle v_1, u_2 \rangle v_1$.

Continuation

- ▶ Take $y_2 = u_2 - \langle v_1, u_2 \rangle v_1$.
- ▶ We claim that y_2 is orthogonal to v_1 .

Continuation

- ▶ Take $y_2 = u_2 - \langle v_1, u_2 \rangle v_1$.
- ▶ We claim that y_2 is orthogonal to v_1 .
- ▶ In fact,

$$\begin{aligned}\langle v_1, y_2 \rangle &= \langle v_1, u_2 - \langle v_1, u_2 \rangle v_1 \rangle \\ &= \langle v_1, u_2 \rangle - \langle v_1, u_2 \rangle \\ &= 0\end{aligned}$$

as $\langle v_1, v_1 \rangle = 1$.

Continuation

- ▶ Take $y_2 = u_2 - \langle v_1, u_2 \rangle v_1$.
- ▶ We claim that y_2 is orthogonal to v_1 .
- ▶ In fact,

$$\begin{aligned}\langle v_1, y_2 \rangle &= \langle v_1, u_2 - \langle v_1, u_2 \rangle v_1 \rangle \\ &= \langle v_1, u_2 \rangle - \langle v_1, u_2 \rangle \\ &= 0\end{aligned}$$

as $\langle v_1, v_1 \rangle = 1$.

- ▶ Also as u_1, u_2 are linearly independent, $y_2 \neq 0$.

Continuation

- ▶ Take $y_2 = u_2 - \langle v_1, u_2 \rangle v_1$.
- ▶ We claim that y_2 is orthogonal to v_1 .
- ▶ In fact,

$$\begin{aligned}\langle v_1, y_2 \rangle &= \langle v_1, u_2 - \langle v_1, u_2 \rangle v_1 \rangle \\ &= \langle v_1, u_2 \rangle - \langle v_1, u_2 \rangle \\ &= 0\end{aligned}$$

as $\langle v_1, v_1 \rangle = 1$.

- ▶ Also as u_1, u_2 are linearly independent, $y_2 \neq 0$.
- ▶ Now take, $v_2 = \frac{y_2}{\|y_2\|}$.

Continuation

- ▶ Take $y_2 = u_2 - \langle v_1, u_2 \rangle v_1$.
- ▶ We claim that y_2 is orthogonal to v_1 .
- ▶ In fact,

$$\begin{aligned}\langle v_1, y_2 \rangle &= \langle v_1, u_2 - \langle v_1, u_2 \rangle v_1 \rangle \\ &= \langle v_1, u_2 \rangle - \langle v_1, u_2 \rangle \\ &= 0\end{aligned}$$

as $\langle v_1, v_1 \rangle = 1$.

- ▶ Also as u_1, u_2 are linearly independent, $y_2 \neq 0$.
- ▶ Now take, $v_2 = \frac{y_2}{\|y_2\|}$.
- ▶ This way, $\{v_1, v_2\}$ are orthonormal (that is, they have norm one and are mutually orthogonal.)

Continuation

- ▶ Inductively, after we construct $\{v_1, v_2, \dots, v_k\}$ such that they are orthonormal and

$$\text{span } \{v_1, v_2, \dots, v_k\} = \text{span } \{u_1, u_2, \dots, u_k\},$$

Continuation

- ▶ Inductively, after we construct $\{v_1, v_2, \dots, v_k\}$ such that they are orthonormal and

$$\text{span } \{v_1, v_2, \dots, v_k\} = \text{span } \{u_1, u_2, \dots, u_k\},$$

- ▶ we take

$$y_{k+1} = u_{k+1} - \sum_{j=1}^k \langle v_j, u_{k+1} \rangle v_j.$$

Continuation

- ▶ Inductively, after we construct $\{v_1, v_2, \dots, v_k\}$ such that they are orthonormal and

$$\text{span } \{v_1, v_2, \dots, v_k\} = \text{span } \{u_1, u_2, \dots, u_k\},$$

- ▶ we take

$$y_{k+1} = u_{k+1} - \sum_{j=1}^k \langle v_j, u_{k+1} \rangle v_j.$$

- ▶ Now, for any $1 \leq i \leq k$,

$$\langle v_i, y_{k+1} \rangle = \langle v_i, u_{k+1} \rangle - \langle v_i, u_{k+1} \rangle = 0.$$

- ▶ $y_{k+1} \neq 0$ follows as

$$u_{k+1} \notin \text{span } \{v_1, \dots, v_k\} = \text{span } \{u_1, \dots, u_k\}.$$

Continuation

- ▶ Inductively, after we construct $\{v_1, v_2, \dots, v_k\}$ such that they are orthonormal and

$$\text{span } \{v_1, v_2, \dots, v_k\} = \text{span } \{u_1, u_2, \dots, u_k\},$$

- ▶ we take

$$y_{k+1} = u_{k+1} - \sum_{j=1}^k \langle v_j, u_{k+1} \rangle v_j.$$

- ▶ Now, for any $1 \leq i \leq k$,

$$\langle v_i, y_{k+1} \rangle = \langle v_i, u_{k+1} \rangle - \langle v_i, u_{k+1} \rangle = 0.$$

- ▶ $y_{k+1} \neq 0$ follows as

$$u_{k+1} \notin \text{span } \{v_1, \dots, v_k\} = \text{span } \{u_1, \dots, u_k\}.$$

- ▶ Then take $v_{k+1} = \frac{y_{k+1}}{\|y_{k+1}\|}$.

Continuation

- ▶ Inductively, after we construct $\{v_1, v_2, \dots, v_k\}$ such that they are orthonormal and

$$\text{span } \{v_1, v_2, \dots, v_k\} = \text{span } \{u_1, u_2, \dots, u_k\},$$

- ▶ we take

$$y_{k+1} = u_{k+1} - \sum_{j=1}^k \langle v_j, u_{k+1} \rangle v_j.$$

- ▶ Now, for any $1 \leq i \leq k$,

$$\langle v_i, y_{k+1} \rangle = \langle v_i, u_{k+1} \rangle - \langle v_i, u_{k+1} \rangle = 0.$$

- ▶ $y_{k+1} \neq 0$ follows as

$$u_{k+1} \notin \text{span } \{v_1, \dots, v_k\} = \text{span } \{u_1, \dots, u_k\}.$$

- ▶ Then take $v_{k+1} = \frac{y_{k+1}}{\|y_{k+1}\|}$.

- ▶ We see that $\{v_1, \dots, v_{k+1}\}$ are orthonormal and $\text{span } \{v_1, \dots, v_{k+1}\} = \{u_1, \dots, u_{k+1}\}$ so that the induction can be continued.

Continuation

- ▶ Continuing this way, up to $k = n$, we have an ortho-normal collection $\{v_1, v_2, \dots, v_n\}$. Since it spans whole of V it is an orthonormal basis. ■

Continuation

- ▶ Continuing this way, up to $k = n$, we have an ortho-normal collection $\{v_1, v_2, \dots, v_n\}$. Since it spans whole of V it is an orthonormal basis. ■
- ▶ Remark: The formula of Gram-Schmidt orthogonalization:

$$v_{k+1} = \frac{u_{k+1} - \sum_{j=1}^k \langle v_j, u_{k+1} \rangle v_j}{\|u_{k+1} - \sum_{j=1}^k \langle v_j, u_{k+1} \rangle v_j\|}$$

is worth remembering.

Continuation

- ▶ Continuing this way, up to $k = n$, we have an ortho-normal collection $\{v_1, v_2, \dots, v_n\}$. Since it spans whole of V it is an orthonormal basis. ■
- ▶ Remark: The formula of Gram-Schmidt orthogonalization:

$$v_{k+1} = \frac{u_{k+1} - \sum_{j=1}^k \langle v_j, u_{k+1} \rangle v_j}{\|u_{k+1} - \sum_{j=1}^k \langle v_j, u_{k+1} \rangle v_j\|}$$

is worth remembering.

- ▶ Exercise: Obtain an orthonormal basis for \mathbb{R}^3 by Gram-Schmidt orthogonalization applied to the basis:

$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

Continuation

- ▶ Continuing this way, up to $k = n$, we have an ortho-normal collection $\{v_1, v_2, \dots, v_n\}$. Since it spans whole of V it is an orthonormal basis. ■
- ▶ Remark: The formula of Gram-Schmidt orthogonalization:

$$v_{k+1} = \frac{u_{k+1} - \sum_{j=1}^k \langle v_j, u_{k+1} \rangle v_j}{\|u_{k+1} - \sum_{j=1}^k \langle v_j, u_{k+1} \rangle v_j\|}$$

is worth remembering.

- ▶ Exercise: Obtain an orthonormal basis for \mathbb{R}^3 by Gram-Schmidt orthogonalization applied to the basis:

$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

- ▶ END OF LECTURE 9.