

LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 10: Adjoint of a linear map

- ▶ Recall: In the following the field \mathbb{F} would be either \mathbb{R} or \mathbb{C} .

Lecture 10: Adjoint of a linear map

- ▶ Recall: In the following the field \mathbb{F} would be either \mathbb{R} or \mathbb{C} .
- ▶ **Definition 9.1:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Two vectors u, v in V are said to be **mutually orthogonal** if $\langle u, v \rangle = 0$.

Lecture 10: Adjoint of a linear map

- ▶ Recall: In the following the field \mathbb{F} would be either \mathbb{R} or \mathbb{C} .
- ▶ **Definition 9.1:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Two vectors u, v in V are said to be **mutually orthogonal** if $\langle u, v \rangle = 0$.
- ▶ More generally, two subsets S, T of V are said to be **mutually orthogonal** if

$$\langle u, v \rangle = 0, \quad \forall u \in S, v \in T.$$

Basic properties

- ▶ **Proposition 9.3:** Suppose $\{v_1, v_2, \dots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \dots, v_n\}$ is linearly independent.

Basic properties

- ▶ **Proposition 9.3:** Suppose $\{v_1, v_2, \dots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \dots, v_n\}$ is linearly independent.
- ▶ **Proof.** Suppose $c_1 v_1 + \dots + c_m v_m = 0$.

Basic properties

- ▶ **Proposition 9.3:** Suppose $\{v_1, v_2, \dots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \dots, v_n\}$ is linearly independent.
- ▶ **Proof.** Suppose $c_1 v_1 + \dots + c_m v_m = 0$.
- ▶ For any j , $1 \leq j \leq m$, taking inner product with v_j , as $\langle v_j, v_i \rangle = \delta_{ij} \langle v_j, v_j \rangle$, we get

$$0 = \langle v_j, c_1 v_1 + \dots + c_m v_m \rangle = c_j \langle v_j, v_j \rangle.$$

Basic properties

- ▶ **Proposition 9.3:** Suppose $\{v_1, v_2, \dots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \dots, v_n\}$ is linearly independent.
- ▶ **Proof.** Suppose $c_1 v_1 + \dots + c_m v_m = 0$.
- ▶ For any j , $1 \leq j \leq m$, taking inner product with v_j , as $\langle v_j, v_i \rangle = \delta_{ij} \langle v_j, v_j \rangle$, we get

$$0 = \langle v_j, c_1 v_1 + \dots + c_m v_m \rangle = c_j \langle v_j, v_j \rangle.$$

- ▶ Therefore $c_j = 0$, $\forall j$, as $\langle v_j, v_j \rangle \neq 0$. ■

Basic properties

- ▶ **Proposition 9.3:** Suppose $\{v_1, v_2, \dots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \dots, v_n\}$ is linearly independent.
- ▶ **Proof.** Suppose $c_1 v_1 + \dots + c_m v_m = 0$.
- ▶ For any j , $1 \leq j \leq m$, taking inner product with v_j , as $\langle v_j, v_i \rangle = \delta_{ij} \langle v_j, v_j \rangle$, we get

$$0 = \langle v_j, c_1 v_1 + \dots + c_m v_m \rangle = c_j \langle v_j, v_j \rangle.$$

- ▶ Therefore $c_j = 0$, $\forall j$, as $\langle v_j, v_j \rangle \neq 0$. ■
- ▶ **Corollary 9.4:** Suppose $\{v_1, \dots, v_m\}$ is a set of mutually orthogonal non-zero vectors in an inner product space V , then

$$m \leq \dim V.$$

Basic properties

- ▶ **Proposition 9.3:** Suppose $\{v_1, v_2, \dots, v_m\}$ is an orthogonal collection of non-zero vectors in an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then the collection $\{v_1, v_2, \dots, v_n\}$ is linearly independent.

- ▶ **Proof.** Suppose $c_1 v_1 + \dots + c_m v_m = 0$.

- ▶ For any j , $1 \leq j \leq m$, taking inner product with v_j , as $\langle v_j, v_i \rangle = \delta_{ij} \langle v_j, v_j \rangle$, we get

$$0 = \langle v_j, c_1 v_1 + \dots + c_m v_m \rangle = c_j \langle v_j, v_j \rangle.$$

- ▶ Therefore $c_j = 0$, $\forall j$, as $\langle v_j, v_j \rangle \neq 0$. ■

- ▶ **Corollary 9.4:** Suppose $\{v_1, \dots, v_m\}$ is a set of mutually orthogonal non-zero vectors in an inner product space V , then

$$m \leq \dim V.$$

- ▶ **Proof.** This is clear, as the dimension of V is same as the maximum possible size of linearly independent sets. ■

Orthonormal basis

- ▶ A vector v in V is said to be a unit vector if $\|v\| = 1$. Note that if $y \in V$ is non-zero then $v := \frac{y}{\|y\|}$ is a unit vector.

Orthonormal basis

- ▶ A vector v in V is said to be a unit vector if $\|v\| = 1$. Note that if $y \in V$ is non-zero then $v := \frac{y}{\|y\|}$ is a unit vector.
- ▶ If $\{v_1, \dots, v_n\}$ is a collection of mutually orthogonal non-zero vectors, then $\{\frac{v_1}{\|v_1\|}, \dots, \frac{v_n}{\|v_n\|}\}$ is a collection of mutually orthogonal unit vectors.

Orthonormal basis

- ▶ A vector v in V is said to be a unit vector if $\|v\| = 1$. Note that if $y \in V$ is non-zero then $v := \frac{y}{\|y\|}$ is a unit vector.
- ▶ If $\{v_1, \dots, v_n\}$ is a collection of mutually orthogonal non-zero vectors, then $\{\frac{v_1}{\|v_1\|}, \dots, \frac{v_n}{\|v_n\|}\}$ is a collection of mutually orthogonal unit vectors.
- ▶ **Definition 9.5:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then a basis $\{v_1, v_2, \dots, v_n\}$ is said to be an **orthonormal basis** if

$$\langle v_i, v_j \rangle = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

Orthonormal basis

- ▶ A vector v in V is said to be a unit vector if $\|v\| = 1$. Note that if $y \in V$ is non-zero then $v := \frac{y}{\|y\|}$ is a unit vector.
- ▶ If $\{v_1, \dots, v_n\}$ is a collection of mutually orthogonal non-zero vectors, then $\{\frac{v_1}{\|v_1\|}, \dots, \frac{v_n}{\|v_n\|}\}$ is a collection of mutually orthogonal unit vectors.
- ▶ **Definition 9.5:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then a basis $\{v_1, v_2, \dots, v_n\}$ is said to be an **orthonormal basis** if

$$\langle v_i, v_j \rangle = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

- ▶ In other words, an orthonormal basis is a basis consisting of mutually orthogonal unit vectors.

Orthonormal basis

- ▶ A vector v in V is said to be a unit vector if $\|v\| = 1$. Note that if $y \in V$ is non-zero then $v := \frac{y}{\|y\|}$ is a unit vector.
- ▶ If $\{v_1, \dots, v_n\}$ is a collection of mutually orthogonal non-zero vectors, then $\{\frac{v_1}{\|v_1\|}, \dots, \frac{v_n}{\|v_n\|}\}$ is a collection of mutually orthogonal unit vectors.
- ▶ **Definition 9.5:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then a basis $\{v_1, v_2, \dots, v_n\}$ is said to be an **orthonormal basis** if

$$\langle v_i, v_j \rangle = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

- ▶ In other words, an orthonormal basis is a basis consisting of mutually orthogonal unit vectors.
- ▶ **Example 9.6:** For \mathbb{R}^n (or \mathbb{C}^n) the standard basis $\{e_1, e_2, \dots, e_n\}$, where e_j is the vector whose j -th coordinate is one and all other coordinates are equal to zero, is an orthonormal basis with respect to the standard inner product.

A formula for coefficients

- ▶ What is the advantage of having an orthonormal basis instead of ordinary basis? This is answered by the following theorem.

A formula for coefficients

- ▶ What is the advantage of having an orthonormal basis instead of ordinary basis? This is answered by the following theorem.
- ▶ It gives a formula for the coefficients in the expansion of any vector in terms of the basis.

A formula for coefficients

- ▶ What is the advantage of having an orthonormal basis instead of ordinary basis? This is answered by the following theorem.
- ▶ It gives a formula for the coefficients in the expansion of any vector in terms of the basis.
- ▶ **Theorem 9.7:** Let $\{v_1, v_2, \dots, v_n\}$ be an orthonormal basis of an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then for any vector $w \in V$,

$$w = \sum_{j=1}^n \langle v_j, w \rangle v_j.$$

Matrix of a linear map

- We recall how we define a matrix for a linear map from one finite dimensional space to another on fixing bases for these spaces.

Matrix of a linear map

- ▶ We recall how we define a matrix for a linear map from one finite dimensional space to another on fixing bases for these spaces.
- ▶ Let V, W be finite dimensional vector spaces over a field \mathbb{F} . Suppose $\mathcal{B} = \{v_1, \dots, v_n\}$ is a basis for V and $\mathcal{C} = \{w_1, \dots, w_m\}$ is a basis for W . In particular, the dimension of V is n and the dimension of W is m .

Matrix of a linear map

- ▶ We recall how we define a matrix for a linear map from one finite dimensional space to another on fixing bases for these spaces.
- ▶ Let V, W be finite dimensional vector spaces over a field \mathbb{F} . Suppose $\mathcal{B} = \{v_1, \dots, v_n\}$ is a basis for V and $\mathcal{C} = \{w_1, \dots, w_m\}$ is a basis for W . In particular, the dimension of V is n and the dimension of W is m .
- ▶ Let $T : V \rightarrow W$ be a linear map. We associate an $m \times n$ matrix A to T as described below and call it the matrix of T in bases \mathcal{B}, \mathcal{C}

Matrix of a linear map

- ▶ We recall how we define a matrix for a linear map from one finite dimensional space to another on fixing bases for these spaces.
- ▶ Let V, W be finite dimensional vector spaces over a field \mathbb{F} . Suppose $\mathcal{B} = \{v_1, \dots, v_n\}$ is a basis for V and $\mathcal{C} = \{w_1, \dots, w_m\}$ is a basis for W . In particular, the dimension of V is n and the dimension of W is m .
- ▶ Let $T : V \rightarrow W$ be a linear map. We associate an $m \times n$ matrix A to T as described below and call it the matrix of T in bases \mathcal{B}, \mathcal{C}
- ▶ Fix any $j, 1 \leq j \leq n$ and consider the basis vector v_j .

Matrix of a linear map

- ▶ We recall how we define a matrix for a linear map from one finite dimensional space to another on fixing bases for these spaces.
- ▶ Let V, W be finite dimensional vector spaces over a field \mathbb{F} . Suppose $\mathcal{B} = \{v_1, \dots, v_n\}$ is a basis for V and $\mathcal{C} = \{w_1, \dots, w_m\}$ is a basis for W . In particular, the dimension of V is n and the dimension of W is m .
- ▶ Let $T : V \rightarrow W$ be a linear map. We associate an $m \times n$ matrix A to T as described below and call it the matrix of T in bases \mathcal{B}, \mathcal{C}
- ▶ Fix any $j, 1 \leq j \leq n$ and consider the basis vector v_j .
- ▶ Now Tv_j is a vector in W and \mathcal{C} is a basis for W .

Continuation

- ▶ Therefore, Tv_j is a linear combination of w_i 's. Denote the corresponding coefficients as a_{ij} 's. That is, a_{ij} is determined by requiring:

$$Tv_j = \sum_{i=1}^m a_{ij} w_i, \quad 1 \leq j \leq n.$$

Continuation

- ▶ Therefore, Tv_j is a linear combination of w_i 's. Denote the corresponding coefficients as a_{ij} 's. That is, a_{ij} is determined by requiring:

$$Tv_j = \sum_{i=1}^m a_{ij} w_i, \quad 1 \leq j \leq n.$$

Continuation

- ▶ Therefore, Tv_j is a linear combination of w_i 's. Denote the corresponding coefficients as a_{ij} 's. That is, a_{ij} is determined by requiring:

$$Tv_j = \sum_{i=1}^m a_{ij} w_i, \quad 1 \leq j \leq n.$$

- ▶ This defines the $m \times n$ matrix $A = [a_{ij}]_{1 \leq i \leq m; 1 \leq j \leq n}$ and is denoted as $c[T]_{\mathcal{B}}$. Observe that if $x = \sum_{j=1}^n x_j v_j$ then by linearity

$$\begin{aligned} Tx &= \sum_{j=1}^n x_j (Tv_j) \\ &= \sum_{j=1}^n \sum_{i=1}^m x_j (a_{ij} w_i) \\ &= \sum_{i=1}^m \left[\sum_{j=1}^n a_{ij} x_j \right] w_i. \end{aligned}$$

Continuation

- ▶ **Conclusion:** For a linear map $T : V \rightarrow W$, the matrix of T in bases \mathcal{B}, \mathcal{C} is the unique matrix A which satisfies

$$Tx = \sum_{i=1}^m \left[\sum_{j=1}^n a_{ij} x_j \right] w_i.$$

for $x = \sum_{j=1}^n x_j v_j$.

Maps on inner product spaces

- ▶ Consider the set up as above, with additional assumptions that V, W are inner product spaces and \mathcal{B}, \mathcal{C} are orthonormal bases.

Maps on inner product spaces

- ▶ Consider the set up as above, with additional assumptions that V, W are inner product spaces and \mathcal{B}, \mathcal{C} are orthonormal bases.
- ▶ Recall that for any vector $x \in V$, if $x = \sum_{j=1}^n x_j v_j$ then $x_j = \langle v_j, x \rangle$ so that $x = \sum_{j=1}^n \langle v_j, x \rangle v_j$.

Maps on inner product spaces

- ▶ Consider the set up as above, with additional assumptions that V, W are inner product spaces and \mathcal{B}, \mathcal{C} are orthonormal bases.
- ▶ Recall that for any vector $x \in V$, if $x = \sum_{j=1}^n x_j v_j$ then $x_j = \langle v_j, x \rangle$ so that $x = \sum_{j=1}^n \langle v_j, x \rangle v_j$.
- ▶ Similarly, considering the orthonormal basis \mathcal{C} in W , for fixed j , $Tv_j = \sum_{i=1}^m a_{ij} w_i$ implies that $a_{ij} = \langle w_i, Tv_j \rangle$.

Maps on inner product spaces

- ▶ Consider the set up as above, with additional assumptions that V, W are inner product spaces and \mathcal{B}, \mathcal{C} are orthonormal bases.
- ▶ Recall that for any vector $x \in V$, if $x = \sum_{j=1}^n x_j v_j$ then $x_j = \langle v_j, x \rangle$ so that $x = \sum_{j=1}^n \langle v_j, x \rangle v_j$.
- ▶ Similarly, considering the orthonormal basis \mathcal{C} in W , for fixed j , $Tv_j = \sum_{i=1}^m a_{ij} w_i$ implies that $a_{ij} = \langle w_i, Tv_j \rangle$.
- ▶ For general $x \in V$, we get

$$Tx = \sum_{i=1}^m \left[\sum_{j=1}^n \langle w_i, Tv_j \rangle \langle v_j, x \rangle \right] w_i$$

Maps on inner product spaces

- ▶ Consider the set up as above, with additional assumptions that V, W are inner product spaces and \mathcal{B}, \mathcal{C} are orthonormal bases.
- ▶ Recall that for any vector $x \in V$, if $x = \sum_{j=1}^n x_j v_j$ then $x_j = \langle v_j, x \rangle$ so that $x = \sum_{j=1}^n \langle v_j, x \rangle v_j$.
- ▶ Similarly, considering the orthonormal basis \mathcal{C} in W , for fixed j , $Tv_j = \sum_{i=1}^m a_{ij} w_i$ implies that $a_{ij} = \langle w_i, Tv_j \rangle$.
- ▶ For general $x \in V$, we get

$$Tx = \sum_{i=1}^m \left[\sum_{j=1}^n \langle w_i, Tv_j \rangle \langle v_j, x \rangle \right] w_i$$

- ▶ We summarize this as a theorem.

The matrix of a linear transformation under orthonormal bases

- ▶ **Theorem 10.1:** Let V, W be inner product spaces with orthonormal bases $\mathcal{B} = \{v_1, \dots, v_n\}$ and $\mathcal{C} = \{w_1, \dots, w_m\}$ for some $m, n \in \mathbb{N}$. Let $T : V \rightarrow W$ be a linear map. Then the matrix of T in these bases is given by the $m \times n$ matrix $A = [a_{ij}]_{1 \leq i \leq m; 1 \leq j \leq n}$ where

$$a_{ij} = \langle w_i, T v_j \rangle.$$

The matrix of a linear transformation under orthonormal bases

- **Theorem 10.1:** Let V, W be inner product spaces with orthonormal bases $\mathcal{B} = \{v_1, \dots, v_n\}$ and $\mathcal{C} = \{w_1, \dots, w_m\}$ for some $m, n \in \mathbb{N}$. Let $T : V \rightarrow W$ be a linear map. Then the matrix of T in these bases is given by the $m \times n$ matrix $A = [a_{ij}]_{1 \leq i \leq m; 1 \leq j \leq n}$ where

$$a_{ij} = \langle w_i, T v_j \rangle.$$

- Conversely, given any $m \times n$ matrix $A = [a_{ij}]$, there exists unique linear map $T : V \rightarrow W$ satisfying

$$a_{ij} = \langle w_i, T v_j \rangle, \quad 1 \leq i \leq m; 1 \leq j \leq n.$$

The matrix of a linear transformation under orthonormal bases

- **Theorem 10.1:** Let V, W be inner product spaces with orthonormal bases $\mathcal{B} = \{v_1, \dots, v_n\}$ and $\mathcal{C} = \{w_1, \dots, w_m\}$ for some $m, n \in \mathbb{N}$. Let $T : V \rightarrow W$ be a linear map. Then the matrix of T in these bases is given by the $m \times n$ matrix $A = [a_{ij}]_{1 \leq i \leq m; 1 \leq j \leq n}$ where

$$a_{ij} = \langle w_i, T v_j \rangle.$$

- Conversely, given any $m \times n$ matrix $A = [a_{ij}]$, there exists unique linear map $T : V \rightarrow W$ satisfying

$$a_{ij} = \langle w_i, T v_j \rangle, \quad 1 \leq i \leq m; 1 \leq j \leq n.$$

- Note that here:

$$T v_j = \sum_{i=1}^m \langle w_i, T v_j \rangle w_i = \sum_{i=1}^m a_{ij} w_i.$$

(Hermitian) adjoint

► **Theorem 10.2:** Let V, W be finite dimensional inner product spaces and let $T : V \rightarrow W$ be a linear map. Then there exists a unique linear map $S : W \rightarrow V$ satisfying

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad \forall x \in V, y \in W.$$

(Hermitian) adjoint

- **Theorem 10.2:** Let V, W be finite dimensional inner product spaces and let $T : V \rightarrow W$ be a linear map. Then there exists a unique linear map $S : W \rightarrow V$ satisfying

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad \forall x \in V, y \in W.$$

- **Proof.** Choose an orthonormal basis $\mathcal{B} = \{v_1, \dots, v_n\}$ for V and an orthonormal basis $\mathcal{C} = \{w_1, \dots, w_m\}$ for W . (Note that such orthonormal bases exist as we can apply Gram-Schmidt orthogonalization on some bases).

(Hermitian) adjoint

- ▶ **Theorem 10.2:** Let V, W be finite dimensional inner product spaces and let $T : V \rightarrow W$ be a linear map. Then there exists a unique linear map $S : W \rightarrow V$ satisfying

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad \forall x \in V, y \in W.$$

- ▶ **Proof.** Choose an orthonormal basis $\mathcal{B} = \{v_1, \dots, v_n\}$ for V and an orthonormal basis $\mathcal{C} = \{w_1, \dots, w_m\}$ for W . (Note that such orthonormal bases exist as we can apply Gram-Schmidt orthogonalization on some bases).
- ▶ Let $A = [a_{ij}]$ be the matrix of T in these bases.

(Hermitian) adjoint

- ▶ **Theorem 10.2:** Let V, W be finite dimensional inner product spaces and let $T : V \rightarrow W$ be a linear map. Then there exists a unique linear map $S : W \rightarrow V$ satisfying

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad \forall x \in V, y \in W.$$

- ▶ **Proof.** Choose an orthonormal basis $\mathcal{B} = \{v_1, \dots, v_n\}$ for V and an orthonormal basis $\mathcal{C} = \{w_1, \dots, w_m\}$ for W . (Note that such orthonormal bases exist as we can apply Gram-Schmidt orthogonalization on some bases).
- ▶ Let $A = [a_{ij}]$ be the matrix of T in these bases.
- ▶ Consider the $n \times m$ matrix A^* defined by

$$(A^*)_{ji} = \overline{a_{ij}}, \quad 1 \leq i \leq m; 1 \leq j \leq n.$$

(Hermitian) adjoint

- ▶ **Theorem 10.2:** Let V, W be finite dimensional inner product spaces and let $T : V \rightarrow W$ be a linear map. Then there exists a unique linear map $S : W \rightarrow V$ satisfying

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad \forall x \in V, y \in W.$$

- ▶ **Proof.** Choose an orthonormal basis $\mathcal{B} = \{v_1, \dots, v_n\}$ for V and an orthonormal basis $\mathcal{C} = \{w_1, \dots, w_m\}$ for W . (Note that such orthonormal bases exist as we can apply Gram-Schmidt orthogonalization on some bases).
- ▶ Let $A = [a_{ij}]$ be the matrix of T in these bases.
- ▶ Consider the $n \times m$ matrix A^* defined by

$$(A^*)_{ji} = \overline{a_{ij}}, \quad 1 \leq i \leq m; 1 \leq j \leq n.$$

- ▶ We know that A^* determines a linear map $S : W \rightarrow V$ satisfying

$$\langle v_j, Sw_i \rangle = (A^*)_{ji} = \overline{a_{ij}}.$$

Continuation

- ▶ Taking complex conjugation, we have, $\langle Sw_i, v_j \rangle = a_{ij}$ or
$$\langle Sw_i, v_j \rangle = \langle w_i, Tv_j \rangle, \quad \forall 1 \leq i \leq m; 1 \leq j \leq n.$$

Continuation

- ▶ Taking complex conjugation, we have, $\langle Sw_i, v_j \rangle = a_{ij}$ or
$$\langle Sw_i, v_j \rangle = \langle w_i, Tv_j \rangle, \quad \forall 1 \leq i \leq m; 1 \leq j \leq n.$$
- ▶ By linearity of S, T we have

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad \forall x \in V, y \in W.$$

Continuation

- ▶ Taking complex conjugation, we have, $\langle Sw_i, v_j \rangle = a_{ij}$ or

$$\langle Sw_i, v_j \rangle = \langle w_i, Tv_j \rangle, \quad \forall 1 \leq i \leq m; 1 \leq j \leq n.$$

- ▶ By linearity of S, T we have

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad \forall x \in V, y \in W.$$

- ▶ This proves the existence.

Continuation

- ▶ Taking complex conjugation, we have, $\langle Sw_i, v_j \rangle = a_{ij}$ or

$$\langle Sw_i, v_j \rangle = \langle w_i, Tv_j \rangle, \quad \forall 1 \leq i \leq m; 1 \leq j \leq n.$$

- ▶ By linearity of S, T we have

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad \forall x \in V, y \in W.$$

- ▶ This proves the existence.
- ▶ The uniqueness is clear, as we can see that any linear map S with required property has the matrix A^* as the matrix in the given bases. ■

Continuation

- ▶ Taking complex conjugation, we have, $\langle Sw_i, v_j \rangle = a_{ij}$ or

$$\langle Sw_i, v_j \rangle = \langle w_i, Tv_j \rangle, \quad \forall 1 \leq i \leq m; 1 \leq j \leq n.$$

- ▶ By linearity of S, T we have

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad \forall x \in V, y \in W.$$

- ▶ This proves the existence.
- ▶ The uniqueness is clear, as we can see that any linear map S with required property has the matrix A^* as the matrix in the given bases. ■
- ▶ **Definition 10.3:** Let V, W be finite dimensional inner product spaces and let $T : V \rightarrow W$ be a linear map. Then the unique linear map $S : W \rightarrow V$ satisfying

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad x \in V, y \in W,$$

is known as the **(Hermitian) adjoint** of T and is denoted by T^* .

Basic properties of the adjoint

- **Theorem 10.4:** Let V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $T_1 : V \rightarrow W$ and $T_2 : W \rightarrow V$ be linear maps. Then

Basic properties of the adjoint

- ▶ **Theorem 10.4:** Let V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $T_1 : V \rightarrow W$ and $T_2 : W \rightarrow V$ be linear maps. Then
- ▶ (i) For $c_1, c_2 \in \mathbb{F}$, $(c_1 T_1 + c_2 T_2)^* = \overline{c_1} T_1^* + \overline{c_2} T_2^*$.
(Anti-linearity).

Basic properties of the adjoint

- ▶ **Theorem 10.4:** Let V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $T_1 : V \rightarrow W$ and $T_2 : W \rightarrow V$ be linear maps. Then
- ▶ (i) For $c_1, c_2 \in \mathbb{F}$, $(c_1 T_1 + c_2 T_2)^* = \overline{c_1} T_1^* + \overline{c_2} T_2^*$. (Anti-linearity).
- ▶ (ii) $((T_1)^*)^* = T_1$. (Involution property).

Basic properties of the adjoint

- ▶ **Theorem 10.4:** Let V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $T_1 : V \rightarrow W$ and $T_2 : W \rightarrow V$ be linear maps. Then
- ▶ (i) For $c_1, c_2 \in \mathbb{F}$, $(c_1 T_1 + c_2 T_2)^* = \overline{c_1} T_1^* + \overline{c_2} T_2^*$. (Anti-linearity).
- ▶ (ii) $((T_1)^*)^* = T_1$. (Involution property).
- ▶ **Proof.** Exercise.

Composition

- **Theorem 10.5:** Let U, V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $S : U \rightarrow V$ and $T : V \rightarrow W$ be linear maps. Then

$$(TS)^* = S^* T^*.$$

Composition

- **Theorem 10.5:** Let U, V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $S : U \rightarrow V$ and $T : V \rightarrow W$ be linear maps. Then

$$(TS)^* = S^* T^*.$$

- **Proof.** For $x \in U$ and $z \in W$,

$$\langle S^* T^* z, x \rangle = \langle T^* z, Sx \rangle = \langle z, TSx \rangle.$$

Composition

- **Theorem 10.5:** Let U, V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $S : U \rightarrow V$ and $T : V \rightarrow W$ be linear maps. Then

$$(TS)^* = S^* T^*.$$

- **Proof.** For $x \in U$ and $z \in W$,

$$\langle S^* T^* z, x \rangle = \langle T^* z, Sx \rangle = \langle z, TSx \rangle.$$

- Now from the uniqueness of the adjoint, we get
 $(TS)^* = S^* T^*$.

Composition

- **Theorem 10.5:** Let U, V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $S : U \rightarrow V$ and $T : V \rightarrow W$ be linear maps. Then

$$(TS)^* = S^* T^*.$$

- **Proof.** For $x \in U$ and $z \in W$,

$$\langle S^* T^* z, x \rangle = \langle T^* z, Sx \rangle = \langle z, TSx \rangle.$$

- Now from the uniqueness of the adjoint, we get $(TS)^* = S^* T^*$.
- **END OF LECTURE 10.**