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Lecture 10: Adjoint of a linear map

I Recall: In the following the field F would be either R or C.

I Definition 9.1: Let (V , 〈·, ·〉) be an inner product space. Two
vectors u, v in V are said to be mutually orthogonal if
〈u, v〉 = 0.

I More generally, two subsets S ,T of V are said to be mutually
orthogonal if

〈u, v〉 = 0, ∀u ∈ S , v ∈ T .



Lecture 10: Adjoint of a linear map

I Recall: In the following the field F would be either R or C.
I Definition 9.1: Let (V , 〈·, ·〉) be an inner product space. Two

vectors u, v in V are said to be mutually orthogonal if
〈u, v〉 = 0.

I More generally, two subsets S ,T of V are said to be mutually
orthogonal if

〈u, v〉 = 0, ∀u ∈ S , v ∈ T .



Lecture 10: Adjoint of a linear map

I Recall: In the following the field F would be either R or C.
I Definition 9.1: Let (V , 〈·, ·〉) be an inner product space. Two

vectors u, v in V are said to be mutually orthogonal if
〈u, v〉 = 0.

I More generally, two subsets S ,T of V are said to be mutually
orthogonal if

〈u, v〉 = 0, ∀u ∈ S , v ∈ T .



Basic properties

I Proposition 9.3: Suppose {v1, v2, . . . , vm} is an orthogonal
collection of non-zero vectors in an inner product space
(V , 〈·, ·〉). Then the collection {v1, v2, . . . , vn} is linearly
independent.

I Proof. Suppose c1v1 + · · ·+ cmvm = 0.

I For any j , 1 ≤ j ≤ m, taking inner product with vj , as
〈vj , vi 〉 = δij〈vj , vj〉, we get

0 = 〈vj , c1v1 + · · ·+ cnvn〉 = cj〈vj , vj〉.

I Therefore cj = 0, ∀j , as 〈vj , vj〉 6= 0. �
I Corollary 9.4: Suppose {v1, . . . , vm} is a set of mutually

orthogonal non-zero vectors in an inner product space V , then

m ≤ dimV .

I Proof. This is clear, as the dimension of V is same as the
maximum possible size of linearly independent sets. �
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Orthonormal basis

I A vector v in V is said to be a unit vector if ‖v‖ = 1. Note
that if y ∈ V is non-zero then v := y

‖y‖ is a unit vector.

I If {v1, . . . , vn} is a collection of mutually orthogonal non-zero
vectors, then { v1

‖v1‖ , . . . ,
vn
‖vn‖} is a collection of mutually

orthogonal unit vectors.

I Definition 9.5: Let (V , 〈·, ·〉) be an inner product space. Then
a basis {v1, v2, . . . , vn} is said to be an orthonormal basis if

〈vi , vj〉 =

{
1 if i = j ;
0 if i 6= j .

I In other words, an orthonormal basis is a basis consisting of
mutually orthogonal unit vectors.

I Example 9.6: For Rn (or Cn) the standard basis
{e1, e2, . . . , en}, where ej is the vector whose j-th coordinate
is one and all other coordinates are equal to zero, is an
orthonormal basis with respect to the standard inner product.
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A formula for coefficients

I What is the advantage of having an orthonormal basis instead
of ordinary basis? This is answered by the following theorem.

I It gives a formula for the coefficients in the expansion of any
vector in terms of the basis.

I Theorem 9.7: Let {v1, v2, . . . , vn} be an orthonormal basis of
an inner product space (V , 〈·, ·〉). Then for any vector w ∈ V ,

w =
n∑

j=1

〈vj ,w〉vj .
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Matrix of a linear map

I We recall how we define a matrix for a linear map from one
finite dimensional space to another on fixing bases for these
spaces.

I Let V , W be finite dimensional vector spaces over a field F.
Suppose B = {v1, . . . , vn} is a basis for V and
C = {w1, . . . ,wm} is a basis for W . In particular, the
dimension of V is n and the dimension of W is m.

I Let T : V →W be a linear map. We associate an m × n
matrix A to T as described below and call it the matrix of T
in bases B,C

I Fix any j , 1 ≤ j ≤ n and consider the basis vector vj .

I Now Tvj is a vector in W and C is a basis for W .
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Continuation

I Therefore, Tvj is a linear combination of wi ’s. Denote the
corresponding coefficients as aij ’s. That is, aij is determined
by requiring:

Tvj =
m∑
i=1

aijwi , 1 ≤ j ≤ n.

I This defines the m × n matrix A = [aij ]1≤i≤m;1≤j≤n and is
denoted as C[T ]B. Observe that if x =

∑n
j=1 xjvj then by

linearity

Tx =
n∑

j=1

xj(Tvj)

=
n∑

j=1

m∑
i=1

xj(aijwi )

=
m∑
i=1

[
n∑

j=1

aijxj ]wi .
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Continuation

I Conclusion: For a linear map T : V →W , the matrix of T in
bases B,C is the unique matrix A which satisfies

Tx =
m∑
i=1

[
n∑

j=1

aijxj ]wi .

for x =
∑n

j=1 xjvj .



Maps on inner product spaces

I Consider the set up as above, with additional assumptions
that V ,W are inner product spaces and B, C are orthonormal
bases.

I Recall that for any vector x ∈ V , if x =
∑n

j=1 xjvj then
xj = 〈vj , x〉 so that x =

∑n
j=1〈vj , x〉vj .

I Similarly, considering the orthonormal basis C in W , for fixed
j , Tvj =

∑m
i=1 aijwi implies that aij = 〈wi ,Tvj〉.

I For general x ∈ V , we get

Tx =
m∑
i=1

[
n∑

j=1

〈wi ,Tvj〉〈vj , x〉]wi

I We summarize this as a theorem.
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The matrix of a linear transformation under orthonormal
bases

I Theorem 10.1: Let V ,W be inner product spaces with
orthonormal bases B = {v1, . . . , vn} and C = {w1, . . . ,wm}
for some m, n ∈ N. Let T : V →W be a linear map. Then
the matrix of T in these bases is given by the m × n matrix
A = [aij ]1≤i≤m;1≤j≤n where

aij = 〈wi ,Tvj〉.

I Conversely, given any m × n matrix A = [aij ], there exists
unique linear map T : V →W satisfying

aij = 〈wi ,Tvj〉, 1 ≤ i ≤ m; 1 ≤ j ≤ n.

I Note that here:

Tvj =
m∑
i=1

〈wi ,Tvj〉wi =
m∑
i=1

aijwi .
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(Hermitian) adjoint

I Theorem 10.2: Let V ,W be finite dimensional inner product
spaces and let T : V →W be a linear map. Then there exists
a unique linear map S : W → V satisfying

〈Sy , x〉 = 〈y ,Tx〉, ∀x ∈ V , y ∈W .

I Proof. Choose an orthonormal basis B = {v1, . . . , vn} for V
and an orthornormal basis C = {w1, . . . ,wm} for W . (Note
that such orthonormal bases exist as we can apply
Gram-Schmidt orthogonalization on some bases).

I Let A = [aij ] be the matrix of T in this bases.

I Consider the n ×m matrix A∗ defined by

(A∗)ji = aij , 1 ≤ i ≤ m; 1 ≤ j ≤ n.

I We know that A∗ determines a linear map S : W → V
satisfying

〈vj ,Swi 〉 = (A∗)ji = aij .
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Continuation

I Taking complex conjugation, we have, 〈Swi , vj〉 = aij or

〈Swi , vj〉 = 〈wi ,Tvj〉, ∀1 ≤ i ≤ m; 1 ≤ j ≤ n.

I By linearity of S ,T we have
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I The uniqueness is clear,as we can see that any linear map S

with required property has the matrix A∗ as the matrix in the
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Basic properties of the adjoint

I Theorem 10.4: Let V ,W be finite dimensional inner product
spaces over a field F. Let T1 : V →W and T2 →W be linear
maps. Then

I (i) For c1, c2 ∈ F, (c1T1 + c2T2)∗ = c1T
∗
1 + c2T

∗
2 .

(Anti-linearity).

I (ii) ((T1)∗)∗ = T1. (Involution property).

I Proof. Exercise.



Basic properties of the adjoint

I Theorem 10.4: Let V ,W be finite dimensional inner product
spaces over a field F. Let T1 : V →W and T2 →W be linear
maps. Then

I (i) For c1, c2 ∈ F, (c1T1 + c2T2)∗ = c1T
∗
1 + c2T

∗
2 .

(Anti-linearity).

I (ii) ((T1)∗)∗ = T1. (Involution property).

I Proof. Exercise.



Basic properties of the adjoint

I Theorem 10.4: Let V ,W be finite dimensional inner product
spaces over a field F. Let T1 : V →W and T2 →W be linear
maps. Then

I (i) For c1, c2 ∈ F, (c1T1 + c2T2)∗ = c1T
∗
1 + c2T

∗
2 .

(Anti-linearity).

I (ii) ((T1)∗)∗ = T1. (Involution property).

I Proof. Exercise.



Basic properties of the adjoint

I Theorem 10.4: Let V ,W be finite dimensional inner product
spaces over a field F. Let T1 : V →W and T2 →W be linear
maps. Then

I (i) For c1, c2 ∈ F, (c1T1 + c2T2)∗ = c1T
∗
1 + c2T

∗
2 .

(Anti-linearity).

I (ii) ((T1)∗)∗ = T1. (Involution property).

I Proof. Exercise.



Composition

I Theorem 10.5: Let U,V ,W be finite dimensional inner
product spaces over a field F. Let S : U → V and
T : V →W be linear maps. Then

(TS)∗ = S∗T ∗.

I Proof. For x ∈ U and z ∈W ,

〈S∗T ∗z , x〉 = 〈T ∗z ,Sx〉 = 〈z ,TSx〉.

I Now from the uniqueness of the adjoint, we get
(TS)∗ = S∗T ∗.

I END OF LECTURE 10.
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