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» Definition 9.1: Let (V/,(-,-)) be an inner product space. Two
vectors u, v in V are said to be mutually orthogonal if
(u,v) =0.

» More generally, two subsets S, T of V are said to be mutually
orthogonal if

(u,v) =0, YueS,veT.
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Basic properties

» Proposition 9.3: Suppose {v1, v2,...,Vp} is an orthogonal
collection of non-zero vectors in an inner product space
(V,(-,)). Then the collection {vi,va,...,v,} is linearly
independent.

» Proof. Suppose civi + -+ + CmVm = 0.
» For any j, 1 < j < m, taking inner product with v;, as
(v, vi) = 0ij(vj, vj), we get
0= (vj,cavi+ -+ cav) = (v}, vj).
» Therefore ¢; =0, Vj, as (vj,vj;) #0. B

» Corollary 9.4: Suppose {vi,...,Vn} is a set of mutually
orthogonal non-zero vectors in an inner product space V, then

m<dimV.

» Proof. This is clear, as the dimension of V is same as the
maximum possible size of linearly independent sets. ll
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Orthonormal basis

» A vector v in V is said to be a unit vector if ||v|| = 1. Note

that if y € V is non-zero then v := ”};—” is a unit vector.
» If {v1,...,vn} is a collection of mutually orthogonal non-zero
vectors, then {”‘;—1”, ce H“i—”H} is a collection of mutually

orthogonal unit vectors.

» Definition 9.5: Let (V/, (-,-)) be an inner product space. Then
a basis {v1,va, ..., vy} is said to be an orthonormal basis if

1 ifi=;
<""’"f>:{ 0 if i#j.

» In other words, an orthonormal basis is a basis consisting of
mutually orthogonal unit vectors.

» Example 9.6: For R” (or C") the standard basis
{e1,e2,...,en}, where ¢ is the vector whose j-th coordinate
is one and all other coordinates are equal to zero, is an
orthonormal basis with respect to the standard inner product.
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A formula for coefficients

» What is the advantage of having an orthonormal basis instead
of ordinary basis? This is answered by the following theorem.

> It gives a formula for the coefficients in the expansion of any
vector in terms of the basis.

» Theorem 9.7: Let {vi,v2,...,Vv,} be an orthonormal basis of
an inner product space (V, (-,-)). Then for any vector w € V,

n

w = Z<Vjv W>VJ"

j=1
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» We recall how we define a matrix for a linear map from one
finite dimensional space to another on fixing bases for these
spaces.

» Let V, W be finite dimensional vector spaces over a field F.
Suppose B = {v1,...,v,} is a basis for V and
C={wi,...,wn} is a basis for W. In particular, the
dimension of V is n and the dimension of W is m.

> Let T:V — W be a linear map. We associate an m x n
matrix A to T as described below and call it the matrix of T
in bases B, C

» Fix any j,1 < j < n and consider the basis vector v;.

» Now Tv; is a vector in W and C is a basis for V.
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Continuation

» Therefore, Tv; is a linear combination of w;'s. Denote the
corresponding coefficients as a;i's. That is, aj; is determined
by requiring:

m
Tvi=) ajw, 1<j<n.
i=1
» This defines the m x n matrix A = [ajj]i<i<m;1<j<n and is

denoted as ¢[T]s. Observe that if x = 7, x;v; then by
linearity

Tx = Y x(Tv)
j=1
= > > x(ayw)

j=1 i=1

= > 1> aplw

=1 /=1



Continuation

» Conclusion: For a linear map T : V — W, the matrix of T in
bases B, C is the unique matrix A which satisfies

Tx = Z[Z ajjixj|wi.

i=1 j=1

— n . .
for x =3 1 xj-
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Maps on inner product spaces

» Consider the set up as above, with additional assumptions
that V, W are inner product spaces and B, C are orthonormal
bases.

» Recall that for any vector x € V, if x = 21’7:1
n

Xj = <vj,x> so that x = Zj:1<‘/jyx>‘/j'

xjvj then

» Similarly, considering the orthonormal basis C in W, for fixed
J» Tvi =3 ajw; implies that aj = (w;, Tv;).

» For general x € V, we get

T = 31> twi, Ty vy ) 1w

i=1 j=1

» We summarize this as a theorem.
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The matrix of a linear transformation under orthonormal
bases

» Theorem 10.1: Let V, W be inner product spaces with
orthonormal bases B = {vi,...,v,} and C = {wy,..., wn}
for some m,n € N. Let T : V — W be a linear map. Then
the matrix of T in these bases is given by the m x n matrix

A = [ajj]1<i<m;1<j<n Where
aj = <Wi7 TVJ>

» Conversely, given any m x n matrix A = [ajj], there exists
unique linear map T : V — W satisfying

aj = (wj, Tvj), 1<i<m1<j<n.

> Note that here:

m

Tv; = Z<W,, Tvj)w; = Zauw,

i=1
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> Theorem 10.2: Let V, W be finite dimensional inner product
spaces and let T : V — W be a linear map. Then there exists
a unique linear map S : W — V satisfying

(Sy,x) ={y, Tx), Vxe V,yc W.

» Proof. Choose an orthonormal basis B = {v1,...,v,} for V
and an orthornormal basis C = {wi, ..., wy} for W. (Note
that such orthonormal bases exist as we can apply
Gram-Schmidt orthogonalization on some bases).

» Let A = [ajj] be the matrix of T in this bases.

» Consider the n x m matrix A* defined by

(Aji=a5, 1<i<ml<j<n.

> We know that A* determines a linear map S: W — V
satisfying
(vj, Swi) = (A")ji = aj.



Continuation

» Taking complex conjugation, we have, (Sw;, v;) = ajj or

(Swi,vj) =(w;, Tvj), V1<i<ml<j<n.



Continuation

» Taking complex conjugation, we have, (Sw;, v;) = ajj or
(Swi,vj) =(w;, Tvj), V1<i<ml<j<n.
» By linearity of S, T we have
(Sy,x)y =y, Tx), Vxe V,y e W.



Continuation

» Taking complex conjugation, we have, (Sw;, v;) = ajj or
(Swi,vj) =(w;, Tvj), V1<i<ml<j<n.
» By linearity of S, T we have
(Sy,x)y =y, Tx), Vxe V,y e W.

» This proves the existence.



Continuation

» Taking complex conjugation, we have, (Sw;, v;) = ajj or
(Swi,vj) = (wi, Tyj), VI<i<m1l<j<n.
» By linearity of S, T we have
(Sy,x)y =y, Tx), Vxe V,y e W.

» This proves the existence.

» The uniqueness is clear,as we can see that any linear map S
with required property has the matrix A* as the matrix in the
given bases. W



Continuation

» Taking complex conjugation, we have, (Sw;, v;) = ajj or
(Swi,vj) = (wi, Tyj), VI<i<m1l<j<n.
» By linearity of S, T we have
(Sy,x)y =y, Tx), Vxe V,y e W.

» This proves the existence.

» The uniqueness is clear,as we can see that any linear map S
with required property has the matrix A* as the matrix in the
given bases. W

» Definition 10.3: Let V, W be finite dimensional inner
product spaces and let T : V — W be a linear map. Then
the unique linear map S : W — V satisfying

(Sy,x) =(y, Tx), xeV,yeW,

is known as the (Hermitian) adjoint of T and is denoted by
T,
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Basic properties of the adjoint

» Theorem 10.4: Let V, W be finite dimensional inner product
spaces over a field F. Let T; : V — W and T, — W be linear
maps. Then

> (YForca,ocl, (aTi+ah) =al;f +aT;.
(Anti-linearity).

» (ii) ((T1)*)* = T1. (Involution property).

> Proof. Exercise.



Composition

» Theorem 10.5: Let U, V, W be finite dimensional inner
product spaces over a field F. Let S: U — V and
T :V — W be linear maps. Then

(TS) = §°T~.



Composition

» Theorem 10.5: Let U, V, W be finite dimensional inner
product spaces over a field F. Let S: U — V and
T :V — W be linear maps. Then

(TS)"=S5"T"
» Proof. For x € U and z € W,

(§*T*z,x) = (T"z,5x) = (z, TSx).



Composition

» Theorem 10.5: Let U, V, W be finite dimensional inner
product spaces over a field F. Let S: U — V and
T :V — W be linear maps. Then

(TS)"=S5"T"
» Proof. For x € U and z € W,
(§*T*z,x) = (T"z,5x) = (z, TSx).

» Now from the uniqueness of the adjoint, we get
(TS)* =S*T*.



Composition

» Theorem 10.5: Let U, V, W be finite dimensional inner
product spaces over a field F. Let S: U — V and
T :V — W be linear maps. Then
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» END OF LECTURE 10.



