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Lecture 11: Isometries and unitaries

> We recall a few things from the last lecture.

» Definition 9.5: Let (V,(-,-)) be an inner product space. Then
a basis {v1,va,..., vy} is said to be an orthonormal basis if

(1 ifi=;

» In other words, an orthonormal basis is a basis consisting of
mutually orthogonal unit vectors.

» Example 9.6: For R” (or C") the standard basis
{e1,e, ..., en}, where ¢; is the vector whose j-th coordinate
is one and all other coordinates are equal to zero, is an
orthonormal basis with respect to the standard inner product.



A formula for coefficients

» What is the advantage of having an orthonormal basis instead
of ordinary basis? This is answered by the following theorem.



A formula for coefficients

» What is the advantage of having an orthonormal basis instead
of ordinary basis? This is answered by the following theorem.

> It gives a formula for the coefficients in the expansion of any
vector in terms of the basis.



A formula for coefficients

» What is the advantage of having an orthonormal basis instead
of ordinary basis? This is answered by the following theorem.

> It gives a formula for the coefficients in the expansion of any
vector in terms of the basis.

» Theorem 9.7: Let {vi,v2,...,Vv,} be an orthonormal basis of
an inner product space (V, (-,-)). Then for any vector w € V,

n

w = Z<Vjv W>VJ"

j=1
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Matrix of a linear map

» We recall how we define a matrix for a linear map from one
finite dimensional space to another on fixing bases for these
spaces.

» Let V, W be finite dimensional vector spaces over a field F.
Suppose B = {v1,...,v,} is a basis for V and
C={wi,...,wn} is a basis for W. In particular, the
dimension of V is n and the dimension of W is m.

> Let T:V — W be a linear map. We associate an m x n
matrix A to T as described below and call it the matrix of T
in bases B, C

» Fix any j,1 < j < n and consider the basis vector v;.

» Now Tv; is a vector in W and C is a basis for V.
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» Therefore, Tv; is a linear combination of w;'s. Denote the
corresponding coefficients as a;i's. That is, aj; is determined
by requiring:

m
Tvi=) ajw, 1<j<n.
i=1
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corresponding coefficients as a;i's. That is, aj; is determined
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» Therefore, Tv; is a linear combination of w;'s. Denote the
corresponding coefficients as a;i's. That is, aj; is determined
by requiring:

m
Tvi=) ajw, 1<j<n.
i=1
» This defines the m x n matrix A = [ajj]i<i<m;1<j<n and is

denoted as ¢[T]s. Observe that if x = 7, x;v; then by
linearity

Tx = Y x(Tv)
j=1
= > > x(ayw)

j=1 i=1

= > 1> aplw

=1 /=1
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» Conclusion: For a linear map T : V — W, the matrix of T in
bases B, C is the unique matrix A which satisfies

Tx = Z[Z ajjixj|wi.

i=1 j=1

— n . .
for x =3 1 xj-
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Maps on inner product spaces

» Consider the set up as above, with additional assumptions
that V, W are inner product spaces and B, C are orthonormal
bases.

» Recall that for any vector x € V, if x = 21’7:1
n

Xj = <vj,x> so that x = Zj:1<‘/jyx>‘/j'

xjvj then

» Similarly, considering the orthonormal basis C in W, for fixed
J» Tvi =3 ajw; implies that aj = (w;, Tv;).

» For general x € V, we get

T = 31> twi, Ty vy ) 1w

i=1 j=1

» We summarize this as a theorem.



The matrix of a linear transformation under orthonormal
bases
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The matrix of a linear transformation under orthonormal
bases

» Theorem 10.1: Let V, W be inner product spaces with
orthonormal bases B = {vi,...,v,} and C = {wy,..., wn}
for some m,n € N. Let T : V — W be a linear map. Then
the matrix of T in these bases is given by the m x n matrix

A = [ajj]1<i<m;1<j<n Where
aj = <Wi7 TVJ>

» Conversely, given any m x n matrix A = [ajj], there exists
unique linear map T : V — W satisfying

aj = (wj, Tvj), 1<i<m1<j<n.

> Note that here:

m

Tv; = Z<W,, Tvj)w; = Zauw,

i=1
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(Hermitian) adjoint

> Theorem 10.2: Let V, W be finite dimensional inner product
spaces and let T : V — W be a linear map. Then there exists
a unique linear map S : W — V satisfying

(Sy,x) ={y, Tx), Vxe V,yc W.

» Proof. Choose an orthonormal basis B = {v1,...,v,} for V
and an orthornormal basis C = {wi, ..., wy} for W. (Note
that such orthonormal bases exist as we can apply
Gram-Schmidt orthogonalization on some bases).

» Let A = [ajj] be the matrix of T in this bases.

» Consider the n x m matrix A* defined by

(Aji=a5, 1<i<ml<j<n.

> We know that A* determines a linear map S: W — V
satisfying
(vj, Swi) = (A")ji = aj.
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» Taking complex conjugation, we have, (Sw;, v;) = ajj or
(Swi,vj) = (wi, Tyj), VI<i<m1l<j<n.
» By linearity of S, T we have
(Sy,x)y =y, Tx), Vxe V,y e W.

» This proves the existence.

» The uniqueness is clear,as we can see that any linear map S
with required property has the matrix A* as the matrix in the
given bases. W

» Definition 10.3: Let V, W be finite dimensional inner
product spaces and let T : V — W be a linear map. Then
the unique linear map S : W — V satisfying

(Sy,x) =(y, Tx), xeV,yeW,

is known as the (Hermitian) adjoint of T and is denoted by
T,
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Basic properties of the adjoint

» Theorem 10.4: Let V, W be finite dimensional inner product
spaces over a field F. Let T; : V — W and T, — W be linear
maps. Then

> (YForca,ocl, (aTi+ah) =al;f +aT;.
(Anti-linearity).

» (ii) ((T1)*)* = T1. (Involution property).

> Proof. Exercise.
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Composition

» Theorem 10.5: Let U, V, W be finite dimensional inner
product spaces over a field F. Let S: U — V and
T :V — W be linear maps. Then

(TS)"=S5"T"
» Proof. For x € U and z € W,
(§*T*z,x) = (T"z,5x) = (z, TSx).

» Now from the uniqueness of the adjoint, we get
(TS)* =S5*T*.
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Isometries and unitaries

» Definition 11.1: Let V, W be inner product spaces over a field
F.. Then a linear map S : V — W is said to be an isometry if

15x[| = [IxI[, vx e V.

A bijective isometry is said to be an unitary.
» Example 11.2: Let V = R? and W = R3. Then
» (i) S1: V — V defined by

> ( . ) B ( \ )
X2 X1
is a unitary.

» (ii) So: V — W defined by

X A
+(2)- (5
X2 0

is an isometry.



Continuation

» (iii) S3: V — V defined by

is a unitary.
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Characterizations of isometries

» Theorem 11.2: Let V, W be finite dimensional inner product
spaces over a field F. Let S : V — W be a linear map. Then
the following are equivalent:

» (i) S is an isometry, that is, ||Sx|| = ||x||, Vx € V. (S
preserves the norm.)

» (ii) S preserves the metric:
d(Sx,Sy) =d(x,y), Vx,yeV

where d(va) = Hy—XH, X,y € V.

» (iii) S preserves the inner product:
(Sx,Sy) = (x,y), Vx,ye V.

» (iv) S*S = Iy, where Iy, denotes the identity of V.
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» Proof. (i) = (ii). This is clear, as

d(5x, Sy) = [|Sy=5x[| = IS(y=x)[| = lly=x]l = d(x,y), Vx,y € V
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» Proof. (i) = (ii). This is clear, as
d(Sx,Sy) = [[Sy=5x|| = [S(y=3)[| = lly=x][ = d(x,y), Vx,y € V

» (ii) = (i) is clear by taking y = 0.
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» Proof. (i) = (ii). This is clear, as
d(Sx,Sy) = [[Sy=5x|| = [S(y=3)[| = lly=x][ = d(x,y), Vx,y € V

» (ii) = (i) is clear by taking y = 0.
» (i) = (iii). f F =R, we have

(5x,5y) = %((5(X ), Sx+y)) = (Sx=y), S(x —y)))

- %(<(x +y), (x+y)) = ((x=y), (x —y)))

= (x¥).
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» Proof. (i) = (ii). This is clear, as
d(Sx,Sy) = [[Sy=5x|| = [S(y=3)[| = lly=x][ = d(x,y), Vx,y € V

» (ii) = (i) is clear by taking y = 0.
» (i) = (iii). f F =R, we have

(5x,5y) = %((5(X ), Sx+y)) = (Sx=y), S(x —y)))

- %(((x+y),(x+)/)> —((x =), (x=y))
= (x,y>.

» Similarly, using polarization identity we have the result for
F=C.
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» (iii) = (iv) From the defining property of the adjoint and
(iii): For x,y in V,

(x,5*Sy) = (Sx, Sy) = (x, y).
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» (iii) = (iv) From the defining property of the adjoint and
(iii): For x,y in V,

(x,5*Sy) = (Sx, Sy) = (x, y).

» Hence
(x,(5S — l)y) =0, Vx,y € V.
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» (iii) = (iv) From the defining property of the adjoint and
(iii): For x,y in V,

(x,5*Sy) = (Sx, Sy) = (x, y).

» Hence
(x,(5S — l)y) =0, Vx,y € V.

» For y € V, taking x = (§*S — Iv)y, we get

(575 =)y, (S*5 = Iv)y) =0,
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» (iii) = (iv) From the defining property of the adjoint and
(iii): For x,y in V,
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» Hence
(x,(§*S = Iv)y) =0, Vx,yeV.
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» (iii) = (iv) From the defining property of the adjoint and
(iii): For x,y in V,

(x,5*Sy) = (Sx, Sy) = (x, y).

» Hence
(x,(§*S = Iv)y) =0, Vx,yeV.

» For y € V, taking x = (§*S — Iv)y, we get
((5*S =)y, (5°S = Iv)y) =0,

» or, (§*S—Ily)y=0forally e V.
» Equivalently $*S — Iy =0 or 5*S = Iy.
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» (iv) = (i) : For x € V, we have

(5x,5x) =
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» (iv) = (i) : For x € V, we have

(5x,5x) = (x,5%Sx)

= <X7X>

» This completes the proof of Theorem 11.2.
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» (iv) = (i) : For x € V, we have

(5x,5x) = (x,5%Sx)

= <X7X>

» This completes the proof of Theorem 11.2.

» Corollary 11.3: Suppose V., W are finite dimensional inner
product spaces and S : V — W is an isometry. Then for any
orthonormal collection {vi,..., v} in V, {Svi,...,Sv} is
orthonormal in W.
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» (iv) = (i) : For x € V, we have

(5x,5x) = (x,5%Sx)

= <X7X>

» This completes the proof of Theorem 11.2.

» Corollary 11.3: Suppose V., W are finite dimensional inner
product spaces and S : V — W is an isometry. Then for any
orthonormal collection {vi,..., v} in V, {Svi,...,Sv} is
orthonormal in W.

» Proof: Clear from (iii) of previous theorem. B
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Existence of isometries

» Corollary 11.4: Suppose V., W are finite dimensional inner
product spaces on a field F. Then there exists an isometry
S:V — W if and only if dim(V) < dim(W).

» Proof. Suppose there exists an isometry S : V — W.

» If {vi,..., vy} is an orthonormal basis of V/, then
{Svi,...,Svp} is an orthonormal collection in W.
» In particular, {Svq,...,Sv,} are linearly independent in W.

Hence dim(W) > n = dim(V).

» The converse is an exercise.
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» Theorem 11.5: Let V, W be finite dimensional inner product
spaces and let S : V — W be a linear map. Then the
following are equivalent:

» (i) S is a unitary;



Unitaries

P Recall that bijective isometries are called unitaries.

» Theorem 11.5: Let V, W be finite dimensional inner product
spaces and let S : V — W be a linear map. Then the
following are equivalent:

» (i) S is a unitary;

» (i) (Sx,Sy) = (x,y) for all x,y in X and S is onto.



Unitaries

v

Recall that bijective isometries are called unitaries.

v

Theorem 11.5: Let V, W be finite dimensional inner product
spaces and let S : V — W be a linear map. Then the
following are equivalent:

v

(i) S is a unitary;
(i) (Sx, Sy) = (x,y) for all x,y in X and S is onto.
(iii) $*S = Iy and S5* = Iy.

vy



Continuation

» Proof: (i) = (ii) is clear as S is an isometry and is given to
be bijective. In particular, it is onto.



Continuation

» Proof: (i) = (ii) is clear as S is an isometry and is given to
be bijective. In particular, it is onto.

» (i) = (iii). Assuming (ii) we already know that S is an
isometry and consequently, $*S = Iy.



Continuation

» Proof: (i) = (ii) is clear as S is an isometry and is given to
be bijective. In particular, it is onto.

» (i) = (iii). Assuming (ii) we already know that S is an
isometry and consequently, $*S = Iy.

» S is also given to be surjective. Suppose there exists x,y in V
such that Sx = Sy.



Continuation

» Proof: (i) = (ii) is clear as S is an isometry and is given to
be bijective. In particular, it is onto.

» (i) = (iii). Assuming (ii) we already know that S is an
isometry and consequently, $*S = Iy.

» S is also given to be surjective. Suppose there exists x,y in V
such that Sx = Sy.

» This means that S(x — y) = 0. Hence

0=(5(x =), S(x=y)) =((x—y), (x =y))



Continuation

>

>

>

Proof: (i) = (ii) is clear as S is an isometry and is given to
be bijective. In particular, it is onto.

(if) = (iii). Assuming (ii) we already know that S is an
isometry and consequently, $*S = Iy.

S is also given to be surjective. Suppose there exists x, y in V
such that Sx = Sy.

This means that S(x — y) = 0. Hence

0=(5(x =), S(x=y)) =((x—y), (x =y))

Consequently x — y = 0 or x = y. This shows that S is
injective. Therefore S is invertible as a function.
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» Proof: (i) = (ii) is clear as S is an isometry and is given to
be bijective. In particular, it is onto.

» (i) = (iii). Assuming (ii) we already know that S is an
isometry and consequently, $*S = Iy.

» S is also given to be surjective. Suppose there exists x,y in V
such that Sx = Sy.

» This means that S(x — y) = 0. Hence

0=(5(x =), S(x=y)) =((x—y), (x =y))

» Consequently x — y = 0 or x = y. This shows that S is
injective. Therefore S is invertible as a function.

> As S*S = I, we get S* = S~ and hence S5* = .
» (iii) = (i). Now as S*S = Iy, S is isometric. As S is
invertible, it is a bijection.
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» Corollary 11.6: Let V, W be finite dimensional inner product
spaces.

» (i) A linear map S : V — W is a unitary if and only if
S*: W — V is a unitary;

» (ii) There exists a unitary S : V — W if and only if
dim(V) = dim(W);

» (iii) Suppose S : V — W is a unitary. Then whenever
{vi,...,va} is an orthonormal basis of V, {Sv1,...,Sv,} is
an orthonormal basis of W.
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Corollary 11.6: Let V, W be finite dimensional inner product
spaces.

(i) A linear map S : V — W is a unitary if and only if
S*: W — V is a unitary;

(ii) There exists a unitary S : V — W if and only if
dim(V) = dim(W);

(iii) Suppose S : V — W is a unitary. Then whenever
{vi,...,va} is an orthonormal basis of V, {Sv1,...,Sv,} is
an orthonormal basis of W.

(iv) If S: V — W is a linear map such that it maps some
orthonormal basis {v1,...,v,} of V to some orthonormal
basis {Sv1,...,Svp} of W, then S is a unitary.



More on unitaries

» Corollary 11.6: Let V, W be finite dimensional inner product
spaces.

» (i) A linear map S : V — W is a unitary if and only if
S*: W — V is a unitary;

» (ii) There exists a unitary S : V — W if and only if
dim(V) = dim(W);

» (iii) Suppose S : V — W is a unitary. Then whenever
{vi,...,va} is an orthonormal basis of V, {Sv1,...,Sv,} is
an orthonormal basis of W.

» (iv) If S: V — W is a linear map such that it maps some
orthonormal basis {v1,...,v,} of V to some orthonormal
basis {Sv1,...,Svp} of W, then S is a unitary.

» (v) Suppose S : V — V is an isometry then it is a unitary.

» Proof: Exercise.
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Matrices of unitaries

» Definition 11.7: An n X n complex matrix A is said to be a
unitary matrix if and only if

A'A =1 = AA™.

> Note that here A*A = [ implies | = AA* and vice versa. Any
unitary matrix is matrix of a unitary map in some orthonormal
bases.

» Observe that an n x n complex matrix A is a unitary if and
only if columns (equivalently rows) of A form an orthonormal
basis of C".

» Definition 11.8: An n X n real matrix A is said to be an
orthogonal matrix if

A'A = | = AAL.
» Here too, A'A = | implies AAt = | and vice versa and these

are matrices of unitary maps on finite dimensional real inner
product spaces, on orthonormal bases.
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» Examples 11.9: The following are orthogonal matrices:

01 cosf —sinf
1 0|’ | sinf cosf |’
P All permutation matrices are orthogonal matrices.

» Examples 11.10: The following are unitary matrices:

10 0 1 0 2 0
o il" 1ol |20 2
2300

where |z1| = |z| = |z|3 = 1.

0 € R.



Examples

» Examples 11.9: The following are orthogonal matrices: 6 € R.
01 cosf —sind
1 0| | sinf cosf |’

P All permutation matrices are orthogonal matrices.

» Examples 11.10: The following are unitary matrices:

10 01 0 2 0
o il" 1ol |20 2
2300

where |z1| = |z| = |z|3 = 1.
» END OF LECTURE 11.



