

LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 11: Isometries and unitaries

- ▶ We recall a few things from the last lecture.

Lecture 11: Isometries and unitaries

- ▶ We recall a few things from the last lecture.
- ▶ **Definition 9.5:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then a basis $\{v_1, v_2, \dots, v_n\}$ is said to be an **orthonormal basis** if

$$\langle v_i, v_j \rangle = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

Lecture 11: Isometries and unitaries

- ▶ We recall a few things from the last lecture.
- ▶ **Definition 9.5:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then a basis $\{v_1, v_2, \dots, v_n\}$ is said to be an **orthonormal basis** if

$$\langle v_i, v_j \rangle = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

- ▶ In other words, an orthonormal basis is a basis consisting of mutually orthogonal unit vectors.

Lecture 11: Isometries and unitaries

- ▶ We recall a few things from the last lecture.
- ▶ **Definition 9.5:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then a basis $\{v_1, v_2, \dots, v_n\}$ is said to be an **orthonormal basis** if

$$\langle v_i, v_j \rangle = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

- ▶ In other words, an orthonormal basis is a basis consisting of mutually orthogonal unit vectors.
- ▶ **Example 9.6:** For \mathbb{R}^n (or \mathbb{C}^n) the standard basis $\{e_1, e_2, \dots, e_n\}$, where e_j is the vector whose j -th coordinate is one and all other coordinates are equal to zero, is an orthonormal basis with respect to the standard inner product.

A formula for coefficients

- ▶ What is the advantage of having an orthonormal basis instead of ordinary basis? This is answered by the following theorem.

A formula for coefficients

- ▶ What is the advantage of having an orthonormal basis instead of ordinary basis? This is answered by the following theorem.
- ▶ It gives a formula for the coefficients in the expansion of any vector in terms of the basis.

A formula for coefficients

- ▶ What is the advantage of having an orthonormal basis instead of ordinary basis? This is answered by the following theorem.
- ▶ It gives a formula for the coefficients in the expansion of any vector in terms of the basis.
- ▶ **Theorem 9.7:** Let $\{v_1, v_2, \dots, v_n\}$ be an orthonormal basis of an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then for any vector $w \in V$,

$$w = \sum_{j=1}^n \langle v_j, w \rangle v_j.$$

Matrix of a linear map

- We recall how we define a matrix for a linear map from one finite dimensional space to another on fixing bases for these spaces.

Matrix of a linear map

- ▶ We recall how we define a matrix for a linear map from one finite dimensional space to another on fixing bases for these spaces.
- ▶ Let V, W be finite dimensional vector spaces over a field \mathbb{F} . Suppose $\mathcal{B} = \{v_1, \dots, v_n\}$ is a basis for V and $\mathcal{C} = \{w_1, \dots, w_m\}$ is a basis for W . In particular, the dimension of V is n and the dimension of W is m .

Matrix of a linear map

- ▶ We recall how we define a matrix for a linear map from one finite dimensional space to another on fixing bases for these spaces.
- ▶ Let V, W be finite dimensional vector spaces over a field \mathbb{F} . Suppose $\mathcal{B} = \{v_1, \dots, v_n\}$ is a basis for V and $\mathcal{C} = \{w_1, \dots, w_m\}$ is a basis for W . In particular, the dimension of V is n and the dimension of W is m .
- ▶ Let $T : V \rightarrow W$ be a linear map. We associate an $m \times n$ matrix A to T as described below and call it the matrix of T in bases \mathcal{B}, \mathcal{C}

Matrix of a linear map

- ▶ We recall how we define a matrix for a linear map from one finite dimensional space to another on fixing bases for these spaces.
- ▶ Let V, W be finite dimensional vector spaces over a field \mathbb{F} . Suppose $\mathcal{B} = \{v_1, \dots, v_n\}$ is a basis for V and $\mathcal{C} = \{w_1, \dots, w_m\}$ is a basis for W . In particular, the dimension of V is n and the dimension of W is m .
- ▶ Let $T : V \rightarrow W$ be a linear map. We associate an $m \times n$ matrix A to T as described below and call it the matrix of T in bases \mathcal{B}, \mathcal{C}
- ▶ Fix any $j, 1 \leq j \leq n$ and consider the basis vector v_j .

Matrix of a linear map

- ▶ We recall how we define a matrix for a linear map from one finite dimensional space to another on fixing bases for these spaces.
- ▶ Let V, W be finite dimensional vector spaces over a field \mathbb{F} . Suppose $\mathcal{B} = \{v_1, \dots, v_n\}$ is a basis for V and $\mathcal{C} = \{w_1, \dots, w_m\}$ is a basis for W . In particular, the dimension of V is n and the dimension of W is m .
- ▶ Let $T : V \rightarrow W$ be a linear map. We associate an $m \times n$ matrix A to T as described below and call it the matrix of T in bases \mathcal{B}, \mathcal{C}
- ▶ Fix any $j, 1 \leq j \leq n$ and consider the basis vector v_j .
- ▶ Now Tv_j is a vector in W and \mathcal{C} is a basis for W .

Continuation

- ▶ Therefore, Tv_j is a linear combination of w_i 's. Denote the corresponding coefficients as a_{ij} 's. That is, a_{ij} is determined by requiring:

$$Tv_j = \sum_{i=1}^m a_{ij} w_i, \quad 1 \leq j \leq n.$$

Continuation

- ▶ Therefore, Tv_j is a linear combination of w_i 's. Denote the corresponding coefficients as a_{ij} 's. That is, a_{ij} is determined by requiring:

$$Tv_j = \sum_{i=1}^m a_{ij} w_i, \quad 1 \leq j \leq n.$$

Continuation

- ▶ Therefore, Tv_j is a linear combination of w_i 's. Denote the corresponding coefficients as a_{ij} 's. That is, a_{ij} is determined by requiring:

$$Tv_j = \sum_{i=1}^m a_{ij} w_i, \quad 1 \leq j \leq n.$$

- ▶ This defines the $m \times n$ matrix $A = [a_{ij}]_{1 \leq i \leq m; 1 \leq j \leq n}$ and is denoted as $c[T]_{\mathcal{B}}$. Observe that if $x = \sum_{j=1}^n x_j v_j$ then by linearity

$$\begin{aligned} Tx &= \sum_{j=1}^n x_j (Tv_j) \\ &= \sum_{j=1}^n \sum_{i=1}^m x_j (a_{ij} w_i) \\ &= \sum_{i=1}^m \left[\sum_{j=1}^n a_{ij} x_j \right] w_i. \end{aligned}$$

Continuation

- ▶ **Conclusion:** For a linear map $T : V \rightarrow W$, the matrix of T in bases \mathcal{B}, \mathcal{C} is the unique matrix A which satisfies

$$Tx = \sum_{i=1}^m \left[\sum_{j=1}^n a_{ij} x_j \right] w_i.$$

for $x = \sum_{j=1}^n x_j v_j$.

Maps on inner product spaces

- ▶ Consider the set up as above, with additional assumptions that V, W are inner product spaces and \mathcal{B}, \mathcal{C} are orthonormal bases.

Maps on inner product spaces

- ▶ Consider the set up as above, with additional assumptions that V, W are inner product spaces and \mathcal{B}, \mathcal{C} are orthonormal bases.
- ▶ Recall that for any vector $x \in V$, if $x = \sum_{j=1}^n x_j v_j$ then $x_j = \langle v_j, x \rangle$ so that $x = \sum_{j=1}^n \langle v_j, x \rangle v_j$.

Maps on inner product spaces

- ▶ Consider the set up as above, with additional assumptions that V, W are inner product spaces and \mathcal{B}, \mathcal{C} are orthonormal bases.
- ▶ Recall that for any vector $x \in V$, if $x = \sum_{j=1}^n x_j v_j$ then $x_j = \langle v_j, x \rangle$ so that $x = \sum_{j=1}^n \langle v_j, x \rangle v_j$.
- ▶ Similarly, considering the orthonormal basis \mathcal{C} in W , for fixed j , $Tv_j = \sum_{i=1}^m a_{ij} w_i$ implies that $a_{ij} = \langle w_i, Tv_j \rangle$.

Maps on inner product spaces

- ▶ Consider the set up as above, with additional assumptions that V, W are inner product spaces and \mathcal{B}, \mathcal{C} are orthonormal bases.
- ▶ Recall that for any vector $x \in V$, if $x = \sum_{j=1}^n x_j v_j$ then $x_j = \langle v_j, x \rangle$ so that $x = \sum_{j=1}^n \langle v_j, x \rangle v_j$.
- ▶ Similarly, considering the orthonormal basis \mathcal{C} in W , for fixed j , $Tv_j = \sum_{i=1}^m a_{ij} w_i$ implies that $a_{ij} = \langle w_i, Tv_j \rangle$.
- ▶ For general $x \in V$, we get

$$Tx = \sum_{i=1}^m \left[\sum_{j=1}^n \langle w_i, Tv_j \rangle \langle v_j, x \rangle \right] w_i$$

Maps on inner product spaces

- ▶ Consider the set up as above, with additional assumptions that V, W are inner product spaces and \mathcal{B}, \mathcal{C} are orthonormal bases.
- ▶ Recall that for any vector $x \in V$, if $x = \sum_{j=1}^n x_j v_j$ then $x_j = \langle v_j, x \rangle$ so that $x = \sum_{j=1}^n \langle v_j, x \rangle v_j$.
- ▶ Similarly, considering the orthonormal basis \mathcal{C} in W , for fixed j , $Tv_j = \sum_{i=1}^m a_{ij} w_i$ implies that $a_{ij} = \langle w_i, Tv_j \rangle$.
- ▶ For general $x \in V$, we get

$$Tx = \sum_{i=1}^m \left[\sum_{j=1}^n \langle w_i, Tv_j \rangle \langle v_j, x \rangle \right] w_i$$

- ▶ We summarize this as a theorem.

The matrix of a linear transformation under orthonormal bases

- ▶ **Theorem 10.1:** Let V, W be inner product spaces with orthonormal bases $\mathcal{B} = \{v_1, \dots, v_n\}$ and $\mathcal{C} = \{w_1, \dots, w_m\}$ for some $m, n \in \mathbb{N}$. Let $T : V \rightarrow W$ be a linear map. Then the matrix of T in these bases is given by the $m \times n$ matrix $A = [a_{ij}]_{1 \leq i \leq m; 1 \leq j \leq n}$ where

$$a_{ij} = \langle w_i, T v_j \rangle.$$

The matrix of a linear transformation under orthonormal bases

- **Theorem 10.1:** Let V, W be inner product spaces with orthonormal bases $\mathcal{B} = \{v_1, \dots, v_n\}$ and $\mathcal{C} = \{w_1, \dots, w_m\}$ for some $m, n \in \mathbb{N}$. Let $T : V \rightarrow W$ be a linear map. Then the matrix of T in these bases is given by the $m \times n$ matrix $A = [a_{ij}]_{1 \leq i \leq m; 1 \leq j \leq n}$ where

$$a_{ij} = \langle w_i, T v_j \rangle.$$

- Conversely, given any $m \times n$ matrix $A = [a_{ij}]$, there exists unique linear map $T : V \rightarrow W$ satisfying

$$a_{ij} = \langle w_i, T v_j \rangle, \quad 1 \leq i \leq m; 1 \leq j \leq n.$$

The matrix of a linear transformation under orthonormal bases

- **Theorem 10.1:** Let V, W be inner product spaces with orthonormal bases $\mathcal{B} = \{v_1, \dots, v_n\}$ and $\mathcal{C} = \{w_1, \dots, w_m\}$ for some $m, n \in \mathbb{N}$. Let $T : V \rightarrow W$ be a linear map. Then the matrix of T in these bases is given by the $m \times n$ matrix $A = [a_{ij}]_{1 \leq i \leq m; 1 \leq j \leq n}$ where

$$a_{ij} = \langle w_i, T v_j \rangle.$$

- Conversely, given any $m \times n$ matrix $A = [a_{ij}]$, there exists unique linear map $T : V \rightarrow W$ satisfying

$$a_{ij} = \langle w_i, T v_j \rangle, \quad 1 \leq i \leq m; 1 \leq j \leq n.$$

- Note that here:

$$T v_j = \sum_{i=1}^m \langle w_i, T v_j \rangle w_i = \sum_{i=1}^m a_{ij} w_i.$$

(Hermitian) adjoint

► **Theorem 10.2:** Let V, W be finite dimensional inner product spaces and let $T : V \rightarrow W$ be a linear map. Then there exists a unique linear map $S : W \rightarrow V$ satisfying

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad \forall x \in V, y \in W.$$

(Hermitian) adjoint

- ▶ **Theorem 10.2:** Let V, W be finite dimensional inner product spaces and let $T : V \rightarrow W$ be a linear map. Then there exists a unique linear map $S : W \rightarrow V$ satisfying

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad \forall x \in V, y \in W.$$

- ▶ **Proof.** Choose an orthonormal basis $\mathcal{B} = \{v_1, \dots, v_n\}$ for V and an orthonormal basis $\mathcal{C} = \{w_1, \dots, w_m\}$ for W . (Note that such orthonormal bases exist as we can apply Gram-Schmidt orthogonalization on some bases).

(Hermitian) adjoint

- ▶ **Theorem 10.2:** Let V, W be finite dimensional inner product spaces and let $T : V \rightarrow W$ be a linear map. Then there exists a unique linear map $S : W \rightarrow V$ satisfying

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad \forall x \in V, y \in W.$$

- ▶ **Proof.** Choose an orthonormal basis $\mathcal{B} = \{v_1, \dots, v_n\}$ for V and an orthonormal basis $\mathcal{C} = \{w_1, \dots, w_m\}$ for W . (Note that such orthonormal bases exist as we can apply Gram-Schmidt orthogonalization on some bases).
- ▶ Let $A = [a_{ij}]$ be the matrix of T in these bases.

(Hermitian) adjoint

- ▶ **Theorem 10.2:** Let V, W be finite dimensional inner product spaces and let $T : V \rightarrow W$ be a linear map. Then there exists a unique linear map $S : W \rightarrow V$ satisfying

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad \forall x \in V, y \in W.$$

- ▶ **Proof.** Choose an orthonormal basis $\mathcal{B} = \{v_1, \dots, v_n\}$ for V and an orthonormal basis $\mathcal{C} = \{w_1, \dots, w_m\}$ for W . (Note that such orthonormal bases exist as we can apply Gram-Schmidt orthogonalization on some bases).
- ▶ Let $A = [a_{ij}]$ be the matrix of T in these bases.
- ▶ Consider the $n \times m$ matrix A^* defined by

$$(A^*)_{ji} = \overline{a_{ij}}, \quad 1 \leq i \leq m; 1 \leq j \leq n.$$

(Hermitian) adjoint

- ▶ **Theorem 10.2:** Let V, W be finite dimensional inner product spaces and let $T : V \rightarrow W$ be a linear map. Then there exists a unique linear map $S : W \rightarrow V$ satisfying

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad \forall x \in V, y \in W.$$

- ▶ **Proof.** Choose an orthonormal basis $\mathcal{B} = \{v_1, \dots, v_n\}$ for V and an orthonormal basis $\mathcal{C} = \{w_1, \dots, w_m\}$ for W . (Note that such orthonormal bases exist as we can apply Gram-Schmidt orthogonalization on some bases).
- ▶ Let $A = [a_{ij}]$ be the matrix of T in these bases.
- ▶ Consider the $n \times m$ matrix A^* defined by

$$(A^*)_{ji} = \overline{a_{ij}}, \quad 1 \leq i \leq m; 1 \leq j \leq n.$$

- ▶ We know that A^* determines a linear map $S : W \rightarrow V$ satisfying

$$\langle v_j, Sw_i \rangle = (A^*)_{ji} = \overline{a_{ij}}.$$

Continuation

- ▶ Taking complex conjugation, we have, $\langle Sw_i, v_j \rangle = a_{ij}$ or
$$\langle Sw_i, v_j \rangle = \langle w_i, Tv_j \rangle, \quad \forall 1 \leq i \leq m; 1 \leq j \leq n.$$

Continuation

- ▶ Taking complex conjugation, we have, $\langle Sw_i, v_j \rangle = a_{ij}$ or
$$\langle Sw_i, v_j \rangle = \langle w_i, Tv_j \rangle, \quad \forall 1 \leq i \leq m; 1 \leq j \leq n.$$
- ▶ By linearity of S, T we have

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad \forall x \in V, y \in W.$$

Continuation

- ▶ Taking complex conjugation, we have, $\langle Sw_i, v_j \rangle = a_{ij}$ or

$$\langle Sw_i, v_j \rangle = \langle w_i, Tv_j \rangle, \quad \forall 1 \leq i \leq m; 1 \leq j \leq n.$$

- ▶ By linearity of S, T we have

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad \forall x \in V, y \in W.$$

- ▶ This proves the existence.

Continuation

- ▶ Taking complex conjugation, we have, $\langle Sw_i, v_j \rangle = a_{ij}$ or

$$\langle Sw_i, v_j \rangle = \langle w_i, Tv_j \rangle, \quad \forall 1 \leq i \leq m; 1 \leq j \leq n.$$

- ▶ By linearity of S, T we have

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad \forall x \in V, y \in W.$$

- ▶ This proves the existence.
- ▶ The uniqueness is clear, as we can see that any linear map S with required property has the matrix A^* as the matrix in the given bases. ■

Continuation

- ▶ Taking complex conjugation, we have, $\langle Sw_i, v_j \rangle = a_{ij}$ or

$$\langle Sw_i, v_j \rangle = \langle w_i, Tv_j \rangle, \quad \forall 1 \leq i \leq m; 1 \leq j \leq n.$$

- ▶ By linearity of S, T we have

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad \forall x \in V, y \in W.$$

- ▶ This proves the existence.
- ▶ The uniqueness is clear, as we can see that any linear map S with required property has the matrix A^* as the matrix in the given bases. ■
- ▶ **Definition 10.3:** Let V, W be finite dimensional inner product spaces and let $T : V \rightarrow W$ be a linear map. Then the unique linear map $S : W \rightarrow V$ satisfying

$$\langle Sy, x \rangle = \langle y, Tx \rangle, \quad x \in V, y \in W,$$

is known as the **(Hermitian) adjoint** of T and is denoted by T^* .

Basic properties of the adjoint

- **Theorem 10.4:** Let V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $T_1 : V \rightarrow W$ and $T_2 : W \rightarrow V$ be linear maps. Then

Basic properties of the adjoint

- ▶ **Theorem 10.4:** Let V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $T_1 : V \rightarrow W$ and $T_2 : W \rightarrow V$ be linear maps. Then
- ▶ (i) For $c_1, c_2 \in \mathbb{F}$, $(c_1 T_1 + c_2 T_2)^* = \overline{c_1} T_1^* + \overline{c_2} T_2^*$.
(Anti-linearity).

Basic properties of the adjoint

- ▶ **Theorem 10.4:** Let V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $T_1 : V \rightarrow W$ and $T_2 : W \rightarrow V$ be linear maps. Then
- ▶ (i) For $c_1, c_2 \in \mathbb{F}$, $(c_1 T_1 + c_2 T_2)^* = \overline{c_1} T_1^* + \overline{c_2} T_2^*$. (Anti-linearity).
- ▶ (ii) $((T_1)^*)^* = T_1$. (Involution property).

Basic properties of the adjoint

- ▶ **Theorem 10.4:** Let V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $T_1 : V \rightarrow W$ and $T_2 : W \rightarrow V$ be linear maps. Then
- ▶ (i) For $c_1, c_2 \in \mathbb{F}$, $(c_1 T_1 + c_2 T_2)^* = \overline{c_1} T_1^* + \overline{c_2} T_2^*$. (Anti-linearity).
- ▶ (ii) $((T_1)^*)^* = T_1$. (Involution property).
- ▶ **Proof.** Exercise.

Composition

- **Theorem 10.5:** Let U, V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $S : U \rightarrow V$ and $T : V \rightarrow W$ be linear maps. Then

$$(TS)^* = S^* T^*.$$

Composition

- **Theorem 10.5:** Let U, V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $S : U \rightarrow V$ and $T : V \rightarrow W$ be linear maps. Then

$$(TS)^* = S^* T^*.$$

- **Proof.** For $x \in U$ and $z \in W$,

$$\langle S^* T^* z, x \rangle = \langle T^* z, Sx \rangle = \langle z, TSx \rangle.$$

Composition

- **Theorem 10.5:** Let U, V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $S : U \rightarrow V$ and $T : V \rightarrow W$ be linear maps. Then

$$(TS)^* = S^* T^*.$$

- **Proof.** For $x \in U$ and $z \in W$,

$$\langle S^* T^* z, x \rangle = \langle T^* z, Sx \rangle = \langle z, TSx \rangle.$$

- Now from the uniqueness of the adjoint, we get
$$(TS)^* = S^* T^*.$$

Isometries and unitaries

- ▶ **Definition 11.1:** Let V, W be inner product spaces over a field \mathbb{F} . Then a linear map $S : V \rightarrow W$ is said to be an **isometry** if

$$\|Sx\| = \|x\|, \quad \forall x \in V.$$

A bijective isometry is said to be an **unitary**.

Isometries and unitaries

- ▶ **Definition 11.1:** Let V, W be inner product spaces over a field \mathbb{F} . Then a linear map $S : V \rightarrow W$ is said to be an **isometry** if

$$\|Sx\| = \|x\|, \quad \forall x \in V.$$

A bijective isometry is said to be an **unitary**.

- ▶ **Example 11.2:** Let $V = \mathbb{R}^2$ and $W = \mathbb{R}^3$. Then

Isometries and unitaries

- ▶ **Definition 11.1:** Let V, W be inner product spaces over a field \mathbb{F} . Then a linear map $S : V \rightarrow W$ is said to be an **isometry** if

$$\|Sx\| = \|x\|, \quad \forall x \in V.$$

A bijective isometry is said to be an **unitary**.

- ▶ **Example 11.2:** Let $V = \mathbb{R}^2$ and $W = \mathbb{R}^3$. Then
- ▶ (i) $S_1 : V \rightarrow V$ defined by

$$S_1 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ x_1 \end{pmatrix}$$

is a unitary.

Isometries and unitaries

- ▶ **Definition 11.1:** Let V, W be inner product spaces over a field \mathbb{F} . Then a linear map $S : V \rightarrow W$ is said to be an **isometry** if

$$\|Sx\| = \|x\|, \quad \forall x \in V.$$

A bijective isometry is said to be an **unitary**.

- ▶ **Example 11.2:** Let $V = \mathbb{R}^2$ and $W = \mathbb{R}^3$. Then
- ▶ (i) $S_1 : V \rightarrow V$ defined by

$$S_1 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ x_1 \end{pmatrix}$$

is a unitary.

- ▶ (ii) $S_2 : V \rightarrow W$ defined by

$$S_2 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}$$

is an isometry.

Continuation

- ▶ (iii) $S_3 : V \rightarrow V$ defined by

$$S_3 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \frac{x_1+x_2}{\sqrt{2}} \\ \frac{x_1-x_2}{\sqrt{2}} \end{pmatrix}$$

is a unitary.

Characterizations of isometries

- **Theorem 11.2:** Let V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $S : V \rightarrow W$ be a linear map. Then the following are equivalent:

Characterizations of isometries

- **Theorem 11.2:** Let V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $S : V \rightarrow W$ be a linear map. Then the following are equivalent:
 - (i) S is an isometry, that is, $\|Sx\| = \|x\|, \quad \forall x \in V$. (S preserves the norm.)

Characterizations of isometries

- **Theorem 11.2:** Let V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $S : V \rightarrow W$ be a linear map. Then the following are equivalent:
 - (i) S is an isometry, that is, $\|Sx\| = \|x\|, \quad \forall x \in V$. (S preserves the norm.)
 - (ii) S preserves the metric:

$$d(Sx, Sy) = d(x, y), \quad \forall x, y \in V$$

where $d(x, y) = \|y - x\|, \quad x, y \in V$.

Characterizations of isometries

- **Theorem 11.2:** Let V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $S : V \rightarrow W$ be a linear map. Then the following are equivalent:
 - (i) S is an isometry, that is, $\|Sx\| = \|x\|, \quad \forall x \in V$. (S preserves the norm.)
 - (ii) S preserves the metric:

$$d(Sx, Sy) = d(x, y), \quad \forall x, y \in V$$

where $d(x, y) = \|y - x\|, \quad x, y \in V$.

- (iii) S preserves the inner product:

$$\langle Sx, Sy \rangle = \langle x, y \rangle, \quad \forall x, y \in V.$$

Characterizations of isometries

- **Theorem 11.2:** Let V, W be finite dimensional inner product spaces over a field \mathbb{F} . Let $S : V \rightarrow W$ be a linear map. Then the following are equivalent:
 - (i) S is an isometry, that is, $\|Sx\| = \|x\|, \forall x \in V$. (S preserves the norm.)
 - (ii) S preserves the metric:

$$d(Sx, Sy) = d(x, y), \quad \forall x, y \in V$$

where $d(x, y) = \|y - x\|, x, y \in V$.

- (iii) S preserves the inner product:

$$\langle Sx, Sy \rangle = \langle x, y \rangle, \quad \forall x, y \in V.$$

- (iv) $S^*S = I_V$, where I_V denotes the identity of V .

Continuation

- **Proof.** $(i) \Rightarrow (ii)$. This is clear, as

$$d(Sx, Sy) = \|Sy - Sx\| = \|S(y - x)\| = \|y - x\| = d(x, y), \quad \forall x, y \in V$$

Continuation

- **Proof.** $(i) \Rightarrow (ii)$. This is clear, as

$$d(Sx, Sy) = \|Sy - Sx\| = \|S(y - x)\| = \|y - x\| = d(x, y), \quad \forall x, y \in V$$

- $(ii) \Rightarrow (i)$ is clear by taking $y = 0$.

Continuation

- **Proof.** $(i) \Rightarrow (ii)$. This is clear, as

$$d(Sx, Sy) = \|Sy - Sx\| = \|S(y - x)\| = \|y - x\| = d(x, y), \quad \forall x, y \in V$$

- $(ii) \Rightarrow (i)$ is clear by taking $y = 0$.
- $(i) \Rightarrow (iii)$. If $\mathbb{F} = \mathbb{R}$, we have

$$\begin{aligned}\langle Sx, Sy \rangle &= \frac{1}{4}(\langle S(x+y), S(x+y) \rangle - \langle S(x-y), S(x-y) \rangle) \\ &= \frac{1}{4}(\langle (x+y), (x+y) \rangle - \langle (x-y), (x-y) \rangle) \\ &= \langle x, y \rangle.\end{aligned}$$

Continuation

- **Proof.** $(i) \Rightarrow (ii)$. This is clear, as

$$d(Sx, Sy) = \|Sy - Sx\| = \|S(y - x)\| = \|y - x\| = d(x, y), \quad \forall x, y \in V$$

- $(ii) \Rightarrow (i)$ is clear by taking $y = 0$.
- $(i) \Rightarrow (iii)$. If $\mathbb{F} = \mathbb{R}$, we have

$$\begin{aligned}\langle Sx, Sy \rangle &= \frac{1}{4}(\langle S(x+y), S(x+y) \rangle - \langle S(x-y), S(x-y) \rangle) \\ &= \frac{1}{4}(\langle (x+y), (x+y) \rangle - \langle (x-y), (x-y) \rangle) \\ &= \langle x, y \rangle.\end{aligned}$$

- Similarly, using polarization identity we have the result for $\mathbb{F} = \mathbb{C}$.

Continuation

- ▶ (iii) \Rightarrow (iv) From the defining property of the adjoint and (iii): For x, y in V ,

$$\langle x, S^*Sy \rangle = \langle Sx, Sy \rangle = \langle x, y \rangle.$$

Continuation

- ▶ (iii) \Rightarrow (iv) From the defining property of the adjoint and (iii): For x, y in V ,

$$\langle x, S^*Sy \rangle = \langle Sx, Sy \rangle = \langle x, y \rangle.$$

- ▶ Hence

$$\langle x, (S^*S - I_V)y \rangle = 0, \quad \forall x, y \in V.$$

Continuation

- ▶ (iii) \Rightarrow (iv) From the defining property of the adjoint and (iii): For x, y in V ,

$$\langle x, S^*Sy \rangle = \langle Sx, Sy \rangle = \langle x, y \rangle.$$

- ▶ Hence

$$\langle x, (S^*S - I_V)y \rangle = 0, \quad \forall x, y \in V.$$

- ▶ For $y \in V$, taking $x = (S^*S - I_V)y$, we get

$$\langle (S^*S - I_V)y, (S^*S - I_V)y \rangle = 0,$$

Continuation

- ▶ (iii) \Rightarrow (iv) From the defining property of the adjoint and (iii): For x, y in V ,

$$\langle x, S^*Sy \rangle = \langle Sx, Sy \rangle = \langle x, y \rangle.$$

- ▶ Hence

$$\langle x, (S^*S - I_V)y \rangle = 0, \quad \forall x, y \in V.$$

- ▶ For $y \in V$, taking $x = (S^*S - I_V)y$, we get

$$\langle (S^*S - I_V)y, (S^*S - I_V)y \rangle = 0,$$

- ▶ or, $(S^*S - I_V)y = 0$ for all $y \in V$.

Continuation

- ▶ (iii) \Rightarrow (iv) From the defining property of the adjoint and (iii): For x, y in V ,

$$\langle x, S^*Sy \rangle = \langle Sx, Sy \rangle = \langle x, y \rangle.$$

- ▶ Hence

$$\langle x, (S^*S - I_V)y \rangle = 0, \quad \forall x, y \in V.$$

- ▶ For $y \in V$, taking $x = (S^*S - I_V)y$, we get

$$\langle (S^*S - I_V)y, (S^*S - I_V)y \rangle = 0,$$

- ▶ or, $(S^*S - I_V)y = 0$ for all $y \in V$.
- ▶ Equivalently $S^*S - I_V = 0$ or $S^*S = I_V$.

Continuation

- ▶ (iv) \Rightarrow (i) : For $x \in V$, we have

$$\begin{aligned}\langle Sx, Sx \rangle &= \langle x, S^*Sx \rangle \\ &= \langle x, x \rangle\end{aligned}$$

Continuation

- ▶ (iv) \Rightarrow (i) : For $x \in V$, we have

$$\begin{aligned}\langle Sx, Sx \rangle &= \langle x, S^*Sx \rangle \\ &= \langle x, x \rangle\end{aligned}$$

- ▶ This completes the proof of Theorem 11.2.

Continuation

- ▶ (iv) \Rightarrow (i) : For $x \in V$, we have

$$\begin{aligned}\langle Sx, Sx \rangle &= \langle x, S^*Sx \rangle \\ &= \langle x, x \rangle\end{aligned}$$

- ▶ This completes the proof of Theorem 11.2.
- ▶ **Corollary 11.3:** Suppose V, W are finite dimensional inner product spaces and $S : V \rightarrow W$ is an isometry. Then for any orthonormal collection $\{v_1, \dots, v_k\}$ in V , $\{Sv_1, \dots, Sv_k\}$ is orthonormal in W .

Continuation

- ▶ (iv) \Rightarrow (i) : For $x \in V$, we have

$$\begin{aligned}\langle Sx, Sx \rangle &= \langle x, S^*Sx \rangle \\ &= \langle x, x \rangle\end{aligned}$$

- ▶ This completes the proof of Theorem 11.2.
- ▶ **Corollary 11.3:** Suppose V, W are finite dimensional inner product spaces and $S : V \rightarrow W$ is an isometry. Then for any orthonormal collection $\{v_1, \dots, v_k\}$ in V , $\{Sv_1, \dots, Sv_k\}$ is orthonormal in W .
- ▶ **Proof:** Clear from (iii) of previous theorem. ■

Existence of isometries

- **Corollary 11.4:** Suppose V, W are finite dimensional inner product spaces on a field \mathbb{F} . Then there exists an isometry $S : V \rightarrow W$ if and only if $\dim(V) \leq \dim(W)$.

Existence of isometries

- ▶ **Corollary 11.4:** Suppose V, W are finite dimensional inner product spaces on a field \mathbb{F} . Then there exists an isometry $S : V \rightarrow W$ if and only if $\dim(V) \leq \dim(W)$.
- ▶ **Proof.** Suppose there exists an isometry $S : V \rightarrow W$.

Existence of isometries

- ▶ **Corollary 11.4:** Suppose V, W are finite dimensional inner product spaces on a field \mathbb{F} . Then there exists an isometry $S : V \rightarrow W$ if and only if $\dim(V) \leq \dim(W)$.
- ▶ **Proof.** Suppose there exists an isometry $S : V \rightarrow W$.
- ▶ If $\{v_1, \dots, v_n\}$ is an orthonormal basis of V , then $\{Sv_1, \dots, Sv_n\}$ is an orthonormal collection in W .

Existence of isometries

- ▶ **Corollary 11.4:** Suppose V, W are finite dimensional inner product spaces on a field \mathbb{F} . Then there exists an isometry $S : V \rightarrow W$ if and only if $\dim(V) \leq \dim(W)$.
- ▶ **Proof.** Suppose there exists an isometry $S : V \rightarrow W$.
- ▶ If $\{v_1, \dots, v_n\}$ is an orthonormal basis of V , then $\{Sv_1, \dots, Sv_n\}$ is an orthonormal collection in W .
- ▶ In particular, $\{Sv_1, \dots, Sv_n\}$ are linearly independent in W . Hence $\dim(W) \geq n = \dim(V)$.

Existence of isometries

- ▶ **Corollary 11.4:** Suppose V, W are finite dimensional inner product spaces on a field \mathbb{F} . Then there exists an isometry $S : V \rightarrow W$ if and only if $\dim(V) \leq \dim(W)$.
- ▶ **Proof.** Suppose there exists an isometry $S : V \rightarrow W$.
- ▶ If $\{v_1, \dots, v_n\}$ is an orthonormal basis of V , then $\{Sv_1, \dots, Sv_n\}$ is an orthonormal collection in W .
- ▶ In particular, $\{Sv_1, \dots, Sv_n\}$ are linearly independent in W . Hence $\dim(W) \geq n = \dim(V)$.
- ▶ The converse is an exercise.

Unitaries

- ▶ Recall that bijective isometries are called unitaries.

Unitaries

- ▶ Recall that bijective isometries are called unitaries.
- ▶ **Theorem 11.5:** Let V, W be finite dimensional inner product spaces and let $S : V \rightarrow W$ be a linear map. Then the following are equivalent:

Unitaries

- ▶ Recall that bijective isometries are called unitaries.
- ▶ **Theorem 11.5:** Let V, W be finite dimensional inner product spaces and let $S : V \rightarrow W$ be a linear map. Then the following are equivalent:
 - ▶ (i) S is a unitary;

Unitaries

- ▶ Recall that bijective isometries are called unitaries.
- ▶ **Theorem 11.5:** Let V, W be finite dimensional inner product spaces and let $S : V \rightarrow W$ be a linear map. Then the following are equivalent:
 - ▶ (i) S is a unitary;
 - ▶ (ii) $\langle Sx, Sy \rangle = \langle x, y \rangle$ for all x, y in X and S is onto.

Unitaries

- ▶ Recall that bijective isometries are called unitaries.
- ▶ **Theorem 11.5:** Let V, W be finite dimensional inner product spaces and let $S : V \rightarrow W$ be a linear map. Then the following are equivalent:
 - ▶ (i) S is a unitary;
 - ▶ (ii) $\langle Sx, Sy \rangle = \langle x, y \rangle$ for all x, y in X and S is onto.
 - ▶ (iii) $S^*S = I_V$ and $SS^* = I_W$.

Continuation

- ▶ **Proof:** $(i) \Rightarrow (ii)$ is clear as S is an isometry and is given to be bijective. In particular, it is onto.

Continuation

- ▶ **Proof:** $(i) \Rightarrow (ii)$ is clear as S is an isometry and is given to be bijective. In particular, it is onto.
- ▶ $(ii) \Rightarrow (iii)$. Assuming (ii) we already know that S is an isometry and consequently, $S^*S = I_V$.

Continuation

- ▶ **Proof:** $(i) \Rightarrow (ii)$ is clear as S is an isometry and is given to be bijective. In particular, it is onto.
- ▶ $(ii) \Rightarrow (iii)$. Assuming (ii) we already know that S is an isometry and consequently, $S^*S = I_V$.
- ▶ S is also given to be surjective. Suppose there exists x, y in V such that $Sx = Sy$.

Continuation

- ▶ **Proof:** $(i) \Rightarrow (ii)$ is clear as S is an isometry and is given to be bijective. In particular, it is onto.
- ▶ $(ii) \Rightarrow (iii)$. Assuming (ii) we already know that S is an isometry and consequently, $S^*S = I_V$.
- ▶ S is also given to be surjective. Suppose there exists x, y in V such that $Sx = Sy$.
- ▶ This means that $S(x - y) = 0$. Hence

$$0 = \langle S(x - y), S(x - y) \rangle = \langle (x - y), (x - y) \rangle.$$

Continuation

- ▶ **Proof:** $(i) \Rightarrow (ii)$ is clear as S is an isometry and is given to be bijective. In particular, it is onto.
- ▶ $(ii) \Rightarrow (iii)$. Assuming (ii) we already know that S is an isometry and consequently, $S^*S = I_V$.
- ▶ S is also given to be surjective. Suppose there exists x, y in V such that $Sx = Sy$.
- ▶ This means that $S(x - y) = 0$. Hence

$$0 = \langle S(x - y), S(x - y) \rangle = \langle (x - y), (x - y) \rangle.$$

- ▶ Consequently $x - y = 0$ or $x = y$. This shows that S is injective. Therefore S is invertible as a function.

Continuation

- ▶ **Proof:** $(i) \Rightarrow (ii)$ is clear as S is an isometry and is given to be bijective. In particular, it is onto.
- ▶ $(ii) \Rightarrow (iii)$. Assuming (ii) we already know that S is an isometry and consequently, $S^*S = I_V$.
- ▶ S is also given to be surjective. Suppose there exists x, y in V such that $Sx = Sy$.
- ▶ This means that $S(x - y) = 0$. Hence

$$0 = \langle S(x - y), S(x - y) \rangle = \langle (x - y), (x - y) \rangle.$$

- ▶ Consequently $x - y = 0$ or $x = y$. This shows that S is injective. Therefore S is invertible as a function.
- ▶ As $S^*S = I_V$, we get $S^* = S^{-1}$ and hence $SS^* = I_W$.

Continuation

- ▶ **Proof:** $(i) \Rightarrow (ii)$ is clear as S is an isometry and is given to be bijective. In particular, it is onto.
- ▶ $(ii) \Rightarrow (iii)$. Assuming (ii) we already know that S is an isometry and consequently, $S^*S = I_V$.
- ▶ S is also given to be surjective. Suppose there exists x, y in V such that $Sx = Sy$.
- ▶ This means that $S(x - y) = 0$. Hence

$$0 = \langle S(x - y), S(x - y) \rangle = \langle (x - y), (x - y) \rangle.$$

- ▶ Consequently $x - y = 0$ or $x = y$. This shows that S is injective. Therefore S is invertible as a function.
- ▶ As $S^*S = I_V$, we get $S^* = S^{-1}$ and hence $SS^* = I_W$.
- ▶ $(iii) \Rightarrow (i)$. Now as $S^*S = I_V$, S is isometric. As S is invertible, it is a bijection.

More on unitaries

- Corollary 11.6: Let V, W be finite dimensional inner product spaces.

More on unitaries

- ▶ **Corollary 11.6:** Let V, W be finite dimensional inner product spaces.
- ▶ (i) A linear map $S : V \rightarrow W$ is a unitary if and only if $S^* : W \rightarrow V$ is a unitary;

More on unitaries

- ▶ **Corollary 11.6:** Let V, W be finite dimensional inner product spaces.
- ▶ (i) A linear map $S : V \rightarrow W$ is a unitary if and only if $S^* : W \rightarrow V$ is a unitary;
- ▶ (ii) There exists a unitary $S : V \rightarrow W$ if and only if $\dim(V) = \dim(W)$;

More on unitaries

- ▶ **Corollary 11.6:** Let V, W be finite dimensional inner product spaces.
- ▶ (i) A linear map $S : V \rightarrow W$ is a unitary if and only if $S^* : W \rightarrow V$ is a unitary;
- ▶ (ii) There exists a unitary $S : V \rightarrow W$ if and only if $\dim(V) = \dim(W)$;
- ▶ (iii) Suppose $S : V \rightarrow W$ is a unitary. Then whenever $\{v_1, \dots, v_n\}$ is an orthonormal basis of V , $\{Sv_1, \dots, Sv_n\}$ is an orthonormal basis of W .

More on unitaries

- ▶ **Corollary 11.6:** Let V, W be finite dimensional inner product spaces.
- ▶ (i) A linear map $S : V \rightarrow W$ is a unitary if and only if $S^* : W \rightarrow V$ is a unitary;
- ▶ (ii) There exists a unitary $S : V \rightarrow W$ if and only if $\dim(V) = \dim(W)$;
- ▶ (iii) Suppose $S : V \rightarrow W$ is a unitary. Then whenever $\{v_1, \dots, v_n\}$ is an orthonormal basis of V , $\{Sv_1, \dots, Sv_n\}$ is an orthonormal basis of W .
- ▶ (iv) If $S : V \rightarrow W$ is a linear map such that it maps some orthonormal basis $\{v_1, \dots, v_n\}$ of V to some orthonormal basis $\{Sv_1, \dots, Sv_n\}$ of W , then S is a unitary.

More on unitaries

- ▶ **Corollary 11.6:** Let V, W be finite dimensional inner product spaces.
- ▶ (i) A linear map $S : V \rightarrow W$ is a unitary if and only if $S^* : W \rightarrow V$ is a unitary;
- ▶ (ii) There exists a unitary $S : V \rightarrow W$ if and only if $\dim(V) = \dim(W)$;
- ▶ (iii) Suppose $S : V \rightarrow W$ is a unitary. Then whenever $\{v_1, \dots, v_n\}$ is an orthonormal basis of V , $\{Sv_1, \dots, Sv_n\}$ is an orthonormal basis of W .
- ▶ (iv) If $S : V \rightarrow W$ is a linear map such that it maps some orthonormal basis $\{v_1, \dots, v_n\}$ of V to some orthonormal basis $\{Sv_1, \dots, Sv_n\}$ of W , then S is a unitary.
- ▶ (v) Suppose $S : V \rightarrow V$ is an isometry then it is a unitary.
- ▶ **Proof:** Exercise.

Matrices of unitaries

- ▶ **Definition 11.7:** An $n \times n$ complex matrix A is said to be a unitary matrix if and only if

$$A^*A = I = AA^*.$$

Matrices of unitaries

- ▶ **Definition 11.7:** An $n \times n$ complex matrix A is said to be a **unitary matrix** if and only if

$$A^*A = I = AA^*.$$

- ▶ Note that here $A^*A = I$ implies $I = AA^*$ and vice versa. Any unitary matrix is matrix of a unitary map in some orthonormal bases.

Matrices of unitaries

- ▶ **Definition 11.7:** An $n \times n$ complex matrix A is said to be a **unitary matrix** if and only if

$$A^*A = I = AA^*.$$

- ▶ Note that here $A^*A = I$ implies $I = AA^*$ and vice versa. Any unitary matrix is matrix of a unitary map in some orthonormal bases.
- ▶ Observe that an $n \times n$ complex matrix A is a unitary if and only if columns (equivalently rows) of A form an orthonormal basis of \mathbb{C}^n .

Matrices of unitaries

- ▶ **Definition 11.7:** An $n \times n$ complex matrix A is said to be a **unitary matrix** if and only if

$$A^*A = I = AA^*.$$

- ▶ Note that here $A^*A = I$ implies $I = AA^*$ and vice versa. Any unitary matrix is matrix of a unitary map in some orthonormal bases.
- ▶ Observe that an $n \times n$ complex matrix A is a unitary if and only if columns (equivalently rows) of A form an orthonormal basis of \mathbb{C}^n .
- ▶ **Definition 11.8:** An $n \times n$ real matrix A is said to be an **orthogonal matrix** if

$$A^t A = I = AA^t.$$

Matrices of unitaries

- ▶ **Definition 11.7:** An $n \times n$ complex matrix A is said to be a **unitary matrix** if and only if

$$A^*A = I = AA^*.$$

- ▶ Note that here $A^*A = I$ implies $I = AA^*$ and vice versa. Any unitary matrix is matrix of a unitary map in some orthonormal bases.
- ▶ Observe that an $n \times n$ complex matrix A is a unitary if and only if columns (equivalently rows) of A form an orthonormal basis of \mathbb{C}^n .
- ▶ **Definition 11.8:** An $n \times n$ real matrix A is said to be an **orthogonal matrix** if

$$A^t A = I = AA^t.$$

- ▶ Here too, $A^t A = I$ implies $AA^t = I$ and vice versa and these are matrices of unitary maps on finite dimensional real inner product spaces, on orthonormal bases.

Examples

► Examples 11.9: The following are orthogonal matrices: $\theta \in \mathbb{R}$.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix},$$

Examples

- Examples 11.9: The following are orthogonal matrices: $\theta \in \mathbb{R}$.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix},$$

- All permutation matrices are orthogonal matrices.

Examples

► Examples 11.9: The following are orthogonal matrices: $\theta \in \mathbb{R}$.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix},$$

► All permutation matrices are orthogonal matrices.

► Examples 11.10: The following are unitary matrices:

$$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & z_1 & 0 \\ 0 & 0 & z_2 \\ z_3 & 0 & 0 \end{bmatrix},$$

where $|z_1| = |z_2| = |z_3| = 1$.

Examples

- Examples 11.9: The following are orthogonal matrices: $\theta \in \mathbb{R}$.

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix},$$

- All permutation matrices are orthogonal matrices.
- Examples 11.10: The following are unitary matrices:

$$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & z_1 & 0 \\ 0 & 0 & z_2 \\ z_3 & 0 & 0 \end{bmatrix},$$

where $|z_1| = |z_2| = |z_3| = 1$.

- END OF LECTURE 11.