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Lecture 11: Isometries and unitaries

I We recall a few things from the last lecture.

I Definition 9.5: Let (V , 〈·, ·〉) be an inner product space. Then
a basis {v1, v2, . . . , vn} is said to be an orthonormal basis if

〈vi , vj〉 =

{
1 if i = j ;
0 if i 6= j .

I In other words, an orthonormal basis is a basis consisting of
mutually orthogonal unit vectors.

I Example 9.6: For Rn (or Cn) the standard basis
{e1, e2, . . . , en}, where ej is the vector whose j-th coordinate
is one and all other coordinates are equal to zero, is an
orthonormal basis with respect to the standard inner product.
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A formula for coefficients

I What is the advantage of having an orthonormal basis instead
of ordinary basis? This is answered by the following theorem.

I It gives a formula for the coefficients in the expansion of any
vector in terms of the basis.

I Theorem 9.7: Let {v1, v2, . . . , vn} be an orthonormal basis of
an inner product space (V , 〈·, ·〉). Then for any vector w ∈ V ,

w =
n∑

j=1

〈vj ,w〉vj .
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Matrix of a linear map

I We recall how we define a matrix for a linear map from one
finite dimensional space to another on fixing bases for these
spaces.

I Let V , W be finite dimensional vector spaces over a field F.
Suppose B = {v1, . . . , vn} is a basis for V and
C = {w1, . . . ,wm} is a basis for W . In particular, the
dimension of V is n and the dimension of W is m.

I Let T : V →W be a linear map. We associate an m × n
matrix A to T as described below and call it the matrix of T
in bases B,C

I Fix any j , 1 ≤ j ≤ n and consider the basis vector vj .

I Now Tvj is a vector in W and C is a basis for W .
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Continuation

I Therefore, Tvj is a linear combination of wi ’s. Denote the
corresponding coefficients as aij ’s. That is, aij is determined
by requiring:

Tvj =
m∑
i=1

aijwi , 1 ≤ j ≤ n.

I This defines the m × n matrix A = [aij ]1≤i≤m;1≤j≤n and is
denoted as C[T ]B. Observe that if x =

∑n
j=1 xjvj then by

linearity

Tx =
n∑

j=1

xj(Tvj)

=
n∑

j=1

m∑
i=1

xj(aijwi )

=
m∑
i=1

[
n∑

j=1

aijxj ]wi .
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Continuation

I Conclusion: For a linear map T : V →W , the matrix of T in
bases B,C is the unique matrix A which satisfies

Tx =
m∑
i=1

[
n∑

j=1

aijxj ]wi .

for x =
∑n

j=1 xjvj .



Maps on inner product spaces

I Consider the set up as above, with additional assumptions
that V ,W are inner product spaces and B, C are orthonormal
bases.

I Recall that for any vector x ∈ V , if x =
∑n

j=1 xjvj then
xj = 〈vj , x〉 so that x =

∑n
j=1〈vj , x〉vj .

I Similarly, considering the orthonormal basis C in W , for fixed
j , Tvj =

∑m
i=1 aijwi implies that aij = 〈wi ,Tvj〉.

I For general x ∈ V , we get

Tx =
m∑
i=1

[
n∑

j=1

〈wi ,Tvj〉〈vj , x〉]wi

I We summarize this as a theorem.
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The matrix of a linear transformation under orthonormal
bases

I Theorem 10.1: Let V ,W be inner product spaces with
orthonormal bases B = {v1, . . . , vn} and C = {w1, . . . ,wm}
for some m, n ∈ N. Let T : V →W be a linear map. Then
the matrix of T in these bases is given by the m × n matrix
A = [aij ]1≤i≤m;1≤j≤n where

aij = 〈wi ,Tvj〉.

I Conversely, given any m × n matrix A = [aij ], there exists
unique linear map T : V →W satisfying

aij = 〈wi ,Tvj〉, 1 ≤ i ≤ m; 1 ≤ j ≤ n.

I Note that here:

Tvj =
m∑
i=1

〈wi ,Tvj〉wi =
m∑
i=1

aijwi .
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(Hermitian) adjoint

I Theorem 10.2: Let V ,W be finite dimensional inner product
spaces and let T : V →W be a linear map. Then there exists
a unique linear map S : W → V satisfying

〈Sy , x〉 = 〈y ,Tx〉, ∀x ∈ V , y ∈W .

I Proof. Choose an orthonormal basis B = {v1, . . . , vn} for V
and an orthornormal basis C = {w1, . . . ,wm} for W . (Note
that such orthonormal bases exist as we can apply
Gram-Schmidt orthogonalization on some bases).

I Let A = [aij ] be the matrix of T in this bases.

I Consider the n ×m matrix A∗ defined by

(A∗)ji = aij , 1 ≤ i ≤ m; 1 ≤ j ≤ n.

I We know that A∗ determines a linear map S : W → V
satisfying

〈vj ,Swi 〉 = (A∗)ji = aij .
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Continuation

I Taking complex conjugation, we have, 〈Swi , vj〉 = aij or

〈Swi , vj〉 = 〈wi ,Tvj〉, ∀1 ≤ i ≤ m; 1 ≤ j ≤ n.

I By linearity of S ,T we have

〈Sy , x〉 = 〈y ,Tx〉, ∀x ∈ V , y ∈W .

I This proves the existence.
I The uniqueness is clear,as we can see that any linear map S

with required property has the matrix A∗ as the matrix in the
given bases. �

I Definition 10.3: Let V ,W be finite dimensional inner
product spaces and let T : V →W be a linear map. Then
the unique linear map S : W → V satisfying

〈Sy , x〉 = 〈y ,Tx〉, x ∈ V , y ∈W ,

is known as the (Hermitian) adjoint of T and is denoted by
T ∗.
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Basic properties of the adjoint

I Theorem 10.4: Let V ,W be finite dimensional inner product
spaces over a field F. Let T1 : V →W and T2 →W be linear
maps. Then

I (i) For c1, c2 ∈ F, (c1T1 + c2T2)∗ = c1T
∗
1 + c2T

∗
2 .

(Anti-linearity).

I (ii) ((T1)∗)∗ = T1. (Involution property).

I Proof. Exercise.
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Composition

I Theorem 10.5: Let U,V ,W be finite dimensional inner
product spaces over a field F. Let S : U → V and
T : V →W be linear maps. Then

(TS)∗ = S∗T ∗.

I Proof. For x ∈ U and z ∈W ,

〈S∗T ∗z , x〉 = 〈T ∗z ,Sx〉 = 〈z ,TSx〉.

I Now from the uniqueness of the adjoint, we get
(TS)∗ = S∗T ∗.
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Isometries and unitaries

I Definition 11.1: Let V ,W be inner product spaces over a field
F.. Then a linear map S : V →W is said to be an isometry if

‖Sx‖ = ‖x‖, ∀x ∈ V .

A bijective isometry is said to be an unitary.

I Example 11.2: Let V = R2 and W = R3. Then
I (i) S1 : V → V defined by

S1

(
x1
x2

)
=

(
x2
x1

)
is a unitary.

I (ii) S2 : V →W defined by

S2

(
x1
x2

)
=

 x1
x2
0


is an isometry.
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Continuation

I (iii) S3 : V → V defined by

S3

(
x1
x2

)
=

(
x1+x2√

2
x1−x2√

2

)

is a unitary.



Characterizations of isometries

I Theorem 11.2: Let V ,W be finite dimensional inner product
spaces over a field F. Let S : V →W be a linear map. Then
the following are equivalent:

I (i) S is an isometry, that is, ‖Sx‖ = ‖x‖, ∀x ∈ V . (S
preserves the norm.)

I (ii) S preserves the metric:

d(Sx ,Sy) = d(x , y), ∀x , y ∈ V

where d(x , y) = ‖y − x‖, x , y ∈ V .

I (iii) S preserves the inner product:

〈Sx ,Sy〉 = 〈x , y〉, ∀x , y ∈ V .

I (iv) S∗S = IV , where IV denotes the identity of V .
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Continuation

I Proof. (i)⇒ (ii). This is clear, as

d(Sx , Sy) = ‖Sy−Sx‖ = ‖S(y−x)‖ = ‖y−x‖ = d(x , y), ∀x , y ∈ V .

I (ii)⇒ (i) is clear by taking y = 0.

I (i)⇒ (iii). If F = R, we have

〈Sx , Sy〉 =
1

4
(〈S(x + y),S(x + y)〉 − 〈S(x − y),S(x − y)〉)

=
1

4
(〈(x + y), (x + y)〉 − 〈(x − y), (x − y)〉)

= 〈x , y〉.

I Similarly, using polarization identity we have the result for
F = C.
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Continuation

I (iii)⇒ (iv) From the defining property of the adjoint and
(iii): For x , y in V ,

〈x ,S∗Sy〉 = 〈Sx ,Sy〉 = 〈x , y〉.

I Hence
〈x , (S∗S − IV )y〉 = 0, ∀x , y ∈ V .

I For y ∈ V , taking x = (S∗S − IV )y , we get

〈(S∗S − IV )y , (S∗S − IV )y〉 = 0,

I or, (S∗S − IV )y = 0 for all y ∈ V .

I Equivalently S∗S − IV = 0 or S∗S = IV .
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Continuation

I (iv)⇒ (i) : For x ∈ V , we have

〈Sx , Sx〉 = 〈x , S∗Sx〉
= 〈x , x〉

I This completes the proof of Theorem 11.2.

I Corollary 11.3: Suppose V ,W are finite dimensional inner
product spaces and S : V →W is an isometry. Then for any
orthonormal collection {v1, . . . , vk} in V , {Sv1, . . . ,Svk} is
orthonormal in W .

I Proof: Clear from (iii) of previous theorem. �
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Existence of isometries

I Corollary 11.4: Suppose V ,W are finite dimensional inner
product spaces on a field F. Then there exists an isometry
S : V →W if and only if dim(V ) ≤ dim(W ).

I Proof. Suppose there exists an isometry S : V →W .

I If {v1, . . . , vn} is an orthonormal basis of V , then
{Sv1, . . . ,Svn} is an orthonormal collection in W .

I In particular, {Sv1, . . . ,Svn} are linearly independent in W .
Hence dim(W ) ≥ n = dim(V ).

I The converse is an exercise.
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Unitaries

I Recall that bijective isometries are called unitaries.

I Theorem 11.5: Let V ,W be finite dimensional inner product
spaces and let S : V →W be a linear map. Then the
following are equivalent:

I (i) S is a unitary;

I (ii) 〈Sx ,Sy〉 = 〈x , y〉 for all x , y in X and S is onto.

I (iii) S∗S = IV and SS∗ = IW .
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Continuation

I Proof: (i)⇒ (ii) is clear as S is an isometry and is given to
be bijective. In particular, it is onto.

I (ii)⇒ (iii). Assuming (ii) we already know that S is an
isometry and consequently, S∗S = IV .

I S is also given to be surjective. Suppose there exists x , y in V
such that Sx = Sy .

I This means that S(x − y) = 0. Hence

0 = 〈S(x − y),S(x − y)〉 = 〈(x − y), (x − y)〉.

I Consequently x − y = 0 or x = y . This shows that S is
injective. Therefore S is invertible as a function.

I As S∗S = IV , we get S∗ = S−1 and hence SS∗ = IW .

I (iii)⇒ (i). Now as S∗S = IV , S is isometric. As S is
invertible, it is a bijection.
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More on unitaries

I Corollary 11.6: Let V ,W be finite dimensional inner product
spaces.

I (i) A linear map S : V →W is a unitary if and only if
S∗ : W → V is a unitary;

I (ii) There exists a unitary S : V →W if and only if
dim(V ) = dim(W );

I (iii) Suppose S : V →W is a unitary. Then whenever
{v1, . . . , vn} is an orthonormal basis of V , {Sv1, . . . ,Svn} is
an orthonormal basis of W .

I (iv) If S : V →W is a linear map such that it maps some
orthonormal basis {v1, . . . , vn} of V to some orthonormal
basis {Sv1, . . . ,Svn} of W , then S is a unitary.

I (v) Suppose S : V → V is an isometry then it is a unitary.

I Proof: Exercise.
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Matrices of unitaries

I Definition 11.7: An n × n complex matrix A is said to be a
unitary matrix if and only if

A∗A = I = AA∗.

I Note that here A∗A = I implies I = AA∗ and vice versa. Any
unitary matrix is matrix of a unitary map in some orthonormal
bases.

I Observe that an n × n complex matrix A is a unitary if and
only if columns (equivalently rows) of A form an orthonormal
basis of Cn.

I Definition 11.8: An n × n real matrix A is said to be an
orthogonal matrix if

AtA = I = AAt .

I Here too, AtA = I implies AAt = I and vice versa and these
are matrices of unitary maps on finite dimensional real inner
product spaces, on orthonormal bases.
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Examples

I Examples 11.9: The following are orthogonal matrices: θ ∈ R.[
0 1
1 0

]
,

[
cos θ − sin θ
sin θ cos θ

]
,

I All permutation matrices are orthogonal matrices.

I Examples 11.10: The following are unitary matrices:

[
1 0
0 i

]
,

[
0 1
1 0

]
,

 0 z1 0
0 0 z2
z3 0 0

 ,
where |z1| = |z2| = |z |3 = 1.

I END OF LECTURE 11.
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