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Lecture 12: Orthogonal decomposition

I We recall a few things from previous lectures.

I Definition 9.5: Let (V , 〈·, ·〉) be an inner product space. Then
a basis {v1, v2, . . . , vn} is said to be an orthonormal basis if

〈vi , vj〉 =

{
1 if i = j ;
0 if i 6= j .

I In other words, an orthonormal basis is a basis consisting of
mutually orthogonal unit vectors.

I Example 9.6: For Rn (or Cn) the standard basis
{e1, e2, . . . , en}, where ej is the vector whose j-th coordinate
is one and all other coordinates are equal to zero, is an
orthonormal basis with respect to the standard inner product.
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A formula for coefficients

I What is the advantage of having an orthonormal basis instead
of ordinary basis? This is answered by the following theorem.

I It gives a formula for the coefficients in the expansion of any
vector in terms of the basis.

I Theorem 9.7: Let {v1, v2, . . . , vn} be an orthonormal basis of
an inner product space (V , 〈·, ·〉). Then for any vector w ∈ V ,

w =
n∑

j=1

〈vj ,w〉vj .
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Orthogonal complement

I Definition 12.1 Let S be a non-empty subset of an inner
product space V . Then the orthogonal complement of S is
defined as:

S⊥ = {v ∈ V : 〈x , v〉 = 0, ∀x ∈ S}.

I Example 12.2: Consider S ⊂ R3 where

S = {

 1
−1
0

 ,

 0
1
−1

}
I Then

S⊥ = {

 c
c
c

 : c ∈ R}.
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Continuation

I Proposition 12.2: Let S be a non-empty subset of an inner
product space V . Then S⊥ is a subspace of V . Further,
(S⊥)⊥ is a subspace containing S .

I Proof: We recall the definition of S⊥:

S⊥ = {v ∈ V : 〈x , v〉 = 0, ∀x ∈ S}.

I Now if v ,w ∈ S⊥ and c , d ∈ F: For x ∈ S ,

〈x , cv + dw〉 = c〈x , v〉+ d〈x ,w〉 = c .0 + d .0 = 0.

I Hence cv + dw ∈ S⊥. This proves that S⊥ is a subspace of V .

I It is easy to see that if x ∈ S then x ∈ (S⊥)⊥. Therefore
S ⊆ (S⊥)⊥.

I We have already seen that orthogonal complement of any
non-empty subset is a subspace. In particular, (S⊥)⊥ is a
subspace.
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R2 in R3

I Consider V = R3 with standard inner product.

I Consider the subspace

V0 = {

 x1
x2
0

 : x1, x2 ∈ R}

I Take V1 = (V0)⊥.

I Clearly,

V2 = {

 0
0
x3

 : x3 ∈ R}.
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Continuation

I We see that any vector x ∈ V decomposes uniquely as
x = y + z with y ∈ V0 and z ∈ V1.

I Indeed for

x =

 x1
x2
x3


the only choice is:

y =

 x1
x2
0

 ; z =

 0
0
x3

 .

I We want to show that this is a general phenomenon.
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Extending bases and orthonormal bases

I Theorem 12.4: Let V0 be a non-trivial subspace of a finite
dimensional vector space V . Then any basis of V0 extends to
a basis of V , that is, if {v1, v2, . . . , vk} is a basis of V0 then
there exists {vk+1, . . . , vn} such that {v1, . . . , vn} is a basis of
V .

I Proof: Take
Mk := span {v1, v2, . . . , vk}

I If Mk = V then V0 = V , {v1, . . . , vk} is a basis for V and so
no extension is required.

I If not, choose any vk+1 ∈ V \Mk . Then {v1, . . . , vk+1} is a
linearly independent set (Why?). Take

Mk+1 := span{v1, . . . , vk+1}.

I If V = Mk+1 then {v1, . . . , vk+1} is a basis for V and we are
done. If not, take vk+2 ∈ V \Mk+1 and continue the induction
process.
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Continuation

I The process terminates after a finite number of steps as V is
finite dimensional and so it can have at most dim (V ) linearly
independent elements.

I Therefore V = Mn for some n and {v1, . . . , vn} is a basis for
V .
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Extending orthonormal bases

I Theorem 12.5: Let V0 be a non-trivial subspace of a finite
dimensional inner product space V . Then any orthonormal
basis of V0 extends to an orthonormal basis of V , that is, if
{v1, v2, . . . , vk} is an orthonormal basis of V0 then there exists
{vk+1, . . . , vn} such that {v1, . . . , vn} is an orthonormal basis
of V .

I Proof: By the previous theorem we may extend {v1, . . . , vk}
to a basis {v1, . . . , vk ,wk+1, . . . ,wn} of V .

I Now apply the Gram-Schmidt procedure on
{v1, . . . , vk ,wk+1, . . . ,wn} to get an ortho-normal basis
{e1, . . . , en} of V .

I It is an elementary exercise to see that ej = vj for 1 ≤ j ≤ k
as v1, . . . , vk are already orthonormal. �
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Orthogonal complement of a subspace

I Consider the set up as above, that is, V0 is a non-trivial
subspace of a finite dimensional inner product space V .
Suppose {v1, . . . , vk} is an orthonormal basis of V0 and
{v1, . . . , vn} is an orthonormal basis of V .

I Take
V1 = span {vk+1, . . . , vn}.

I We claim that V1 = (V0)⊥ and {vk+1, . . . , vn} is an
ortho-normal basis of V1.

I The second part is obvious. We only need to prove
V1 = (V0)⊥.

I Note that 〈vi , vj〉 = 0 for all 1 ≤ i ≤ k and (k + 1) ≤ j ≤ n

I Therefore 〈
∑k

i=1 civi ,
∑n

j=(k+1) cjvj〉 for any scalars c1, . . . , cn.

I This shows 〈x , y〉 = 0 for all x ∈ V0 and y ∈ V1. Hence
V1 ⊆ (V0)⊥.
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Continuation

I Suppose x ∈ V⊥
0 .

I As {v1, . . . , vn} is an orthonormal basis of V , we get
x =
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I As x is orthogonal to V0, we get 〈vj , x〉 = 0 for 1 ≤ j ≤ k .

I Hence x =
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j=k+1〈vj , x〉vj and therefore x ∈ V1.

I This proves (V0)⊥ ⊆ V1 and completes the proof of our claim.
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Projection theorem

I Theorem 12.6: Let V0 be a subspace of a finite dimensional
inner product space V . Then every x ∈ V decomposes
uniquely as

x = y + z

where y ∈ V0 and z ∈ V⊥
0 .

I Proof: Suppose V0 = {0}. Then V⊥
0 = V and we can

decompose x as x = 0 + x , with 0 ∈ V0 and x ∈ V⊥
0 .

I If V0 6= {0}, choose an orthonormal basis {v1, . . . , vk} for V0.
Extend it to an orthonormal basis {v1, . . . , vn} of V .

I Now we know that any x ∈ V decomposes as

x =
n∑

j=1

〈vj , x〉vj
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x with y , y ′ ∈ V0 and z , z ′ ∈ V⊥

0 .
I We have,
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I Therefore y − y ′ = z ′ − z . As y , y ′ ∈ V0, y − y ′ ∈ V0.
I Also as z , z ′ ∈ V⊥

0 , y − y ′ = z ′ − z ∈ V⊥
0 .

I Hence 〈y − y ′, y − y ′〉 = 0. Consequently y = y ′ and z ′ = z .
This proves the uniqueness.
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A special case

I Suppose V is a finite dimensional inner product space and let
y be a non-zero vector in V .

I Consider the one dimensional space V0 = {cy : c ∈ F}.
I Now {v} is an ortho-normal basis for V0 where

v =
y

‖y‖
.

I Therefore any x ∈ V decomposes as x = 〈v , x〉v + z where z
is orthogonal to v .
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Continuation

I We have |z‖2 ≥ 0.

I This means that:

‖x − 〈v , x〉v‖2 ≥ 0.

I Here

‖x − 〈v , x〉v‖2 = 〈x , x〉 − 2|〈x , v〉|2 + |〈x , v〉|2

= ‖x‖2 − |〈x , v〉|2

= ‖x‖2 − |〈x , y

‖y‖
〉|2

I and the positivity of this is same as the Cauchy-Schwarz
inequality:

‖x‖2‖y‖2 ≥ ‖〈x , y〉|2.
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Continuation

I The equality holds, only when z = 0, that is when x ∈ span
{y}. (We have assumed y 6= 0.). This explains our proof of
Cauchy-Schwarz inequality.

I Exercise 12.7 : Consider examples of vectors in R2 and R3 and
try to understand the projection theorem in concrete cases.

I END OF LECTURE 12.
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