

LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 12: Orthogonal decomposition

- ▶ We recall a few things from previous lectures.

Lecture 12: Orthogonal decomposition

- ▶ We recall a few things from previous lectures.
- ▶ **Definition 9.5:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then a basis $\{v_1, v_2, \dots, v_n\}$ is said to be an **orthonormal basis** if

$$\langle v_i, v_j \rangle = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

Lecture 12: Orthogonal decomposition

- ▶ We recall a few things from previous lectures.
- ▶ **Definition 9.5:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then a basis $\{v_1, v_2, \dots, v_n\}$ is said to be an **orthonormal basis** if

$$\langle v_i, v_j \rangle = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

- ▶ In other words, an orthonormal basis is a basis consisting of mutually orthogonal unit vectors.

Lecture 12: Orthogonal decomposition

- ▶ We recall a few things from previous lectures.
- ▶ **Definition 9.5:** Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Then a basis $\{v_1, v_2, \dots, v_n\}$ is said to be an **orthonormal basis** if

$$\langle v_i, v_j \rangle = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j. \end{cases}$$

- ▶ In other words, an orthonormal basis is a basis consisting of mutually orthogonal unit vectors.
- ▶ **Example 9.6:** For \mathbb{R}^n (or \mathbb{C}^n) the standard basis $\{e_1, e_2, \dots, e_n\}$, where e_j is the vector whose j -th coordinate is one and all other coordinates are equal to zero, is an orthonormal basis with respect to the standard inner product.

A formula for coefficients

- ▶ What is the advantage of having an orthonormal basis instead of ordinary basis? This is answered by the following theorem.

A formula for coefficients

- ▶ What is the advantage of having an orthonormal basis instead of ordinary basis? This is answered by the following theorem.
- ▶ It gives a formula for the coefficients in the expansion of any vector in terms of the basis.

A formula for coefficients

- ▶ What is the advantage of having an orthonormal basis instead of ordinary basis? This is answered by the following theorem.
- ▶ It gives a formula for the coefficients in the expansion of any vector in terms of the basis.
- ▶ **Theorem 9.7:** Let $\{v_1, v_2, \dots, v_n\}$ be an orthonormal basis of an inner product space $(V, \langle \cdot, \cdot \rangle)$. Then for any vector $w \in V$,

$$w = \sum_{j=1}^n \langle v_j, w \rangle v_j.$$

Orthogonal complement

- ▶ **Definition 12.1** Let S be a non-empty subset of an inner product space V . Then the **orthogonal complement** of S is defined as:

$$S^\perp = \{v \in V : \langle x, v \rangle = 0, \quad \forall x \in S\}.$$

Orthogonal complement

- ▶ **Definition 12.1** Let S be a non-empty subset of an inner product space V . Then the **orthogonal complement** of S is defined as:

$$S^\perp = \{v \in V : \langle x, v \rangle = 0, \quad \forall x \in S\}.$$

- ▶ **Example 12.2:** Consider $S \subset \mathbb{R}^3$ where

$$S = \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\}$$

Orthogonal complement

- ▶ **Definition 12.1** Let S be a non-empty subset of an inner product space V . Then the **orthogonal complement** of S is defined as:

$$S^\perp = \{v \in V : \langle x, v \rangle = 0, \quad \forall x \in S\}.$$

- ▶ **Example 12.2:** Consider $S \subset \mathbb{R}^3$ where

$$S = \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\}$$

- ▶ Then

$$S^\perp = \left\{ \begin{pmatrix} c \\ c \\ c \end{pmatrix} : c \in \mathbb{R} \right\}.$$

Continuation

- ▶ **Proposition 12.2:** Let S be a non-empty subset of an inner product space V . Then S^\perp is a subspace of V . Further, $(S^\perp)^\perp$ is a subspace containing S .

Continuation

- ▶ **Proposition 12.2:** Let S be a non-empty subset of an inner product space V . Then S^\perp is a subspace of V . Further, $(S^\perp)^\perp$ is a subspace containing S .
- ▶ **Proof:** We recall the definition of S^\perp :

$$S^\perp = \{v \in V : \langle x, v \rangle = 0, \quad \forall x \in S\}.$$

Continuation

- ▶ **Proposition 12.2:** Let S be a non-empty subset of an inner product space V . Then S^\perp is a subspace of V . Further, $(S^\perp)^\perp$ is a subspace containing S .
- ▶ **Proof:** We recall the definition of S^\perp :

$$S^\perp = \{v \in V : \langle x, v \rangle = 0, \quad \forall x \in S\}.$$

- ▶ Now if $v, w \in S^\perp$ and $c, d \in \mathbb{F}$: For $x \in S$,

$$\langle x, cv + dw \rangle = c\langle x, v \rangle + d\langle x, w \rangle = c.0 + d.0 = 0.$$

Continuation

- ▶ **Proposition 12.2:** Let S be a non-empty subset of an inner product space V . Then S^\perp is a subspace of V . Further, $(S^\perp)^\perp$ is a subspace containing S .
- ▶ **Proof:** We recall the definition of S^\perp :

$$S^\perp = \{v \in V : \langle x, v \rangle = 0, \quad \forall x \in S\}.$$

- ▶ Now if $v, w \in S^\perp$ and $c, d \in \mathbb{F}$: For $x \in S$,
$$\langle x, cv + dw \rangle = c\langle x, v \rangle + d\langle x, w \rangle = c.0 + d.0 = 0.$$
- ▶ Hence $cv + dw \in S^\perp$. This proves that S^\perp is a subspace of V .

Continuation

- ▶ **Proposition 12.2:** Let S be a non-empty subset of an inner product space V . Then S^\perp is a subspace of V . Further, $(S^\perp)^\perp$ is a subspace containing S .
- ▶ **Proof:** We recall the definition of S^\perp :

$$S^\perp = \{v \in V : \langle x, v \rangle = 0, \quad \forall x \in S\}.$$

- ▶ Now if $v, w \in S^\perp$ and $c, d \in \mathbb{F}$: For $x \in S$,

$$\langle x, cv + dw \rangle = c\langle x, v \rangle + d\langle x, w \rangle = c.0 + d.0 = 0.$$

- ▶ Hence $cv + dw \in S^\perp$. This proves that S^\perp is a subspace of V .
- ▶ It is easy to see that if $x \in S$ then $x \in (S^\perp)^\perp$. Therefore $S \subseteq (S^\perp)^\perp$.

Continuation

- ▶ **Proposition 12.2:** Let S be a non-empty subset of an inner product space V . Then S^\perp is a subspace of V . Further, $(S^\perp)^\perp$ is a subspace containing S .
- ▶ **Proof:** We recall the definition of S^\perp :

$$S^\perp = \{v \in V : \langle x, v \rangle = 0, \quad \forall x \in S\}.$$

- ▶ Now if $v, w \in S^\perp$ and $c, d \in \mathbb{F}$: For $x \in S$,

$$\langle x, cv + dw \rangle = c\langle x, v \rangle + d\langle x, w \rangle = c.0 + d.0 = 0.$$

- ▶ Hence $cv + dw \in S^\perp$. This proves that S^\perp is a subspace of V .
- ▶ It is easy to see that if $x \in S$ then $x \in (S^\perp)^\perp$. Therefore $S \subseteq (S^\perp)^\perp$.
- ▶ We have already seen that orthogonal complement of any non-empty subset is a subspace. In particular, $(S^\perp)^\perp$ is a subspace.

\mathbb{R}^2 in \mathbb{R}^3

- ▶ Consider $V = \mathbb{R}^3$ with standard inner product.

\mathbb{R}^2 in \mathbb{R}^3

- ▶ Consider $V = \mathbb{R}^3$ with standard inner product.
- ▶ Consider the subspace

$$V_0 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} : x_1, x_2 \in \mathbb{R} \right\}$$

\mathbb{R}^2 in \mathbb{R}^3

- ▶ Consider $V = \mathbb{R}^3$ with standard inner product.
- ▶ Consider the subspace

$$V_0 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} : x_1, x_2 \in \mathbb{R} \right\}$$

- ▶ Take $V_1 = (V_0)^\perp$.

\mathbb{R}^2 in \mathbb{R}^3

- ▶ Consider $V = \mathbb{R}^3$ with standard inner product.
- ▶ Consider the subspace

$$V_0 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} : x_1, x_2 \in \mathbb{R} \right\}$$

- ▶ Take $V_1 = (V_0)^\perp$.
- ▶ Clearly,

$$V_2 = \left\{ \begin{pmatrix} 0 \\ 0 \\ x_3 \end{pmatrix} : x_3 \in \mathbb{R} \right\}.$$

Continuation

- We see that any vector $x \in V$ decomposes uniquely as $x = y + z$ with $y \in V_0$ and $z \in V_1$.

Continuation

- We see that any vector $x \in V$ decomposes uniquely as $x = y + z$ with $y \in V_0$ and $z \in V_1$.
- Indeed for

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

the only choice is:

$$y = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}; z = \begin{pmatrix} 0 \\ 0 \\ x_3 \end{pmatrix}.$$

Continuation

- ▶ We see that any vector $x \in V$ decomposes uniquely as $x = y + z$ with $y \in V_0$ and $z \in V_1$.
- ▶ Indeed for

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

the only choice is:

$$y = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}; z = \begin{pmatrix} 0 \\ 0 \\ x_3 \end{pmatrix}.$$

- ▶ We want to show that this is a general phenomenon.

Extending bases and orthonormal bases

- ▶ **Theorem 12.4:** Let V_0 be a non-trivial subspace of a finite dimensional vector space V . Then any basis of V_0 extends to a basis of V , that is, if $\{v_1, v_2, \dots, v_k\}$ is a basis of V_0 then there exists $\{v_{k+1}, \dots, v_n\}$ such that $\{v_1, \dots, v_n\}$ is a basis of V .

Extending bases and orthonormal bases

- ▶ **Theorem 12.4:** Let V_0 be a non-trivial subspace of a finite dimensional vector space V . Then any basis of V_0 extends to a basis of V , that is, if $\{v_1, v_2, \dots, v_k\}$ is a basis of V_0 then there exists $\{v_{k+1}, \dots, v_n\}$ such that $\{v_1, \dots, v_n\}$ is a basis of V .
- ▶ **Proof:** Take

$$M_k := \text{span} \{v_1, v_2, \dots, v_k\}$$

Extending bases and orthonormal bases

- ▶ **Theorem 12.4:** Let V_0 be a non-trivial subspace of a finite dimensional vector space V . Then any basis of V_0 extends to a basis of V , that is, if $\{v_1, v_2, \dots, v_k\}$ is a basis of V_0 then there exists $\{v_{k+1}, \dots, v_n\}$ such that $\{v_1, \dots, v_n\}$ is a basis of V .
- ▶ **Proof:** Take

$$M_k := \text{span} \{v_1, v_2, \dots, v_k\}$$

- ▶ If $M_k = V$ then $V_0 = V$, $\{v_1, \dots, v_k\}$ is a basis for V and so no extension is required.

Extending bases and orthonormal bases

- ▶ **Theorem 12.4:** Let V_0 be a non-trivial subspace of a finite dimensional vector space V . Then any basis of V_0 extends to a basis of V , that is, if $\{v_1, v_2, \dots, v_k\}$ is a basis of V_0 then there exists $\{v_{k+1}, \dots, v_n\}$ such that $\{v_1, \dots, v_n\}$ is a basis of V .
- ▶ **Proof:** Take

$$M_k := \text{span} \{v_1, v_2, \dots, v_k\}$$

- ▶ If $M_k = V$ then $V_0 = V$, $\{v_1, \dots, v_k\}$ is a basis for V and so no extension is required.
- ▶ If not, choose any $v_{k+1} \in V \setminus M_k$. Then $\{v_1, \dots, v_{k+1}\}$ is a linearly independent set (Why?). Take

$$M_{k+1} := \text{span}\{v_1, \dots, v_{k+1}\}.$$

Extending bases and orthonormal bases

- ▶ **Theorem 12.4:** Let V_0 be a non-trivial subspace of a finite dimensional vector space V . Then any basis of V_0 extends to a basis of V , that is, if $\{v_1, v_2, \dots, v_k\}$ is a basis of V_0 then there exists $\{v_{k+1}, \dots, v_n\}$ such that $\{v_1, \dots, v_n\}$ is a basis of V .
- ▶ **Proof:** Take

$$M_k := \text{span} \{v_1, v_2, \dots, v_k\}$$

- ▶ If $M_k = V$ then $V_0 = V$, $\{v_1, \dots, v_k\}$ is a basis for V and so no extension is required.
- ▶ If not, choose any $v_{k+1} \in V \setminus M_k$. Then $\{v_1, \dots, v_{k+1}\}$ is a linearly independent set (Why?). Take

$$M_{k+1} := \text{span}\{v_1, \dots, v_{k+1}\}.$$

- ▶ If $V = M_{k+1}$ then $\{v_1, \dots, v_{k+1}\}$ is a basis for V and we are done. If not, take $v_{k+2} \in V \setminus M_{k+1}$ and continue the induction process.

Continuation

- ▶ The process terminates after a finite number of steps as V is finite dimensional and so it can have at most $\dim(V)$ linearly independent elements.

Continuation

- ▶ The process terminates after a finite number of steps as V is finite dimensional and so it can have at most $\dim(V)$ linearly independent elements.
- ▶ Therefore $V = M_n$ for some n and $\{v_1, \dots, v_n\}$ is a basis for V .

Extending orthonormal bases

- ▶ **Theorem 12.5:** Let V_0 be a non-trivial subspace of a finite dimensional inner product space V . Then any orthonormal basis of V_0 extends to an orthonormal basis of V , that is, if $\{v_1, v_2, \dots, v_k\}$ is an orthonormal basis of V_0 then there exists $\{v_{k+1}, \dots, v_n\}$ such that $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .

Extending orthonormal bases

- ▶ **Theorem 12.5:** Let V_0 be a non-trivial subspace of a finite dimensional inner product space V . Then any orthonormal basis of V_0 extends to an orthonormal basis of V , that is, if $\{v_1, v_2, \dots, v_k\}$ is an orthonormal basis of V_0 then there exists $\{v_{k+1}, \dots, v_n\}$ such that $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .
- ▶ **Proof:** By the previous theorem we may extend $\{v_1, \dots, v_k\}$ to a basis $\{v_1, \dots, v_k, w_{k+1}, \dots, w_n\}$ of V .

Extending orthonormal bases

- ▶ **Theorem 12.5:** Let V_0 be a non-trivial subspace of a finite dimensional inner product space V . Then any orthonormal basis of V_0 extends to an orthonormal basis of V , that is, if $\{v_1, v_2, \dots, v_k\}$ is an orthonormal basis of V_0 then there exists $\{v_{k+1}, \dots, v_n\}$ such that $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .
- ▶ **Proof:** By the previous theorem we may extend $\{v_1, \dots, v_k\}$ to a basis $\{v_1, \dots, v_k, w_{k+1}, \dots, w_n\}$ of V .
- ▶ Now apply the Gram-Schmidt procedure on $\{v_1, \dots, v_k, w_{k+1}, \dots, w_n\}$ to get an ortho-normal basis $\{e_1, \dots, e_n\}$ of V .

Extending orthonormal bases

- ▶ **Theorem 12.5:** Let V_0 be a non-trivial subspace of a finite dimensional inner product space V . Then any orthonormal basis of V_0 extends to an orthonormal basis of V , that is, if $\{v_1, v_2, \dots, v_k\}$ is an orthonormal basis of V_0 then there exists $\{v_{k+1}, \dots, v_n\}$ such that $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .
- ▶ **Proof:** By the previous theorem we may extend $\{v_1, \dots, v_k\}$ to a basis $\{v_1, \dots, v_k, w_{k+1}, \dots, w_n\}$ of V .
- ▶ Now apply the Gram-Schmidt procedure on $\{v_1, \dots, v_k, w_{k+1}, \dots, w_n\}$ to get an ortho-normal basis $\{e_1, \dots, e_n\}$ of V .
- ▶ It is an elementary exercise to see that $e_j = v_j$ for $1 \leq j \leq k$ as v_1, \dots, v_k are already orthonormal. ■

Orthogonal complement of a subspace

- ▶ Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V . Suppose $\{v_1, \dots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .

Orthogonal complement of a subspace

- ▶ Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V . Suppose $\{v_1, \dots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .
- ▶ Take

$$V_1 = \text{span } \{v_{k+1}, \dots, v_n\}.$$

Orthogonal complement of a subspace

- ▶ Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V . Suppose $\{v_1, \dots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .
- ▶ Take

$$V_1 = \text{span} \{v_{k+1}, \dots, v_n\}.$$

- ▶ We claim that $V_1 = (V_0)^\perp$ and $\{v_{k+1}, \dots, v_n\}$ is an ortho-normal basis of V_1 .

Orthogonal complement of a subspace

- ▶ Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V . Suppose $\{v_1, \dots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .
- ▶ Take

$$V_1 = \text{span} \{v_{k+1}, \dots, v_n\}.$$

- ▶ We claim that $V_1 = (V_0)^\perp$ and $\{v_{k+1}, \dots, v_n\}$ is an ortho-normal basis of V_1 .
- ▶ The second part is obvious. We only need to prove $V_1 = (V_0)^\perp$.

Orthogonal complement of a subspace

- ▶ Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V . Suppose $\{v_1, \dots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .
- ▶ Take

$$V_1 = \text{span } \{v_{k+1}, \dots, v_n\}.$$

- ▶ We claim that $V_1 = (V_0)^\perp$ and $\{v_{k+1}, \dots, v_n\}$ is an ortho-normal basis of V_1 .
- ▶ The second part is obvious. We only need to prove $V_1 = (V_0)^\perp$.
- ▶ Note that $\langle v_i, v_j \rangle = 0$ for all $1 \leq i \leq k$ and $(k+1) \leq j \leq n$

Orthogonal complement of a subspace

- ▶ Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V . Suppose $\{v_1, \dots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .
- ▶ Take

$$V_1 = \text{span } \{v_{k+1}, \dots, v_n\}.$$

- ▶ We claim that $V_1 = (V_0)^\perp$ and $\{v_{k+1}, \dots, v_n\}$ is an ortho-normal basis of V_1 .
- ▶ The second part is obvious. We only need to prove $V_1 = (V_0)^\perp$.
- ▶ Note that $\langle v_i, v_j \rangle = 0$ for all $1 \leq i \leq k$ and $(k+1) \leq j \leq n$
- ▶ Therefore $\langle \sum_{i=1}^k c_i v_i, \sum_{j=(k+1)}^n c_j v_j \rangle$ for any scalars c_1, \dots, c_n .

Orthogonal complement of a subspace

- ▶ Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V . Suppose $\{v_1, \dots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .
- ▶ Take

$$V_1 = \text{span } \{v_{k+1}, \dots, v_n\}.$$

- ▶ We claim that $V_1 = (V_0)^\perp$ and $\{v_{k+1}, \dots, v_n\}$ is an ortho-normal basis of V_1 .
- ▶ The second part is obvious. We only need to prove $V_1 = (V_0)^\perp$.
- ▶ Note that $\langle v_i, v_j \rangle = 0$ for all $1 \leq i \leq k$ and $(k+1) \leq j \leq n$
- ▶ Therefore $\langle \sum_{i=1}^k c_i v_i, \sum_{j=(k+1)}^n c_j v_j \rangle$ for any scalars c_1, \dots, c_n .

Orthogonal complement of a subspace

- ▶ Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V . Suppose $\{v_1, \dots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .
- ▶ Take

$$V_1 = \text{span} \{v_{k+1}, \dots, v_n\}.$$

- ▶ We claim that $V_1 = (V_0)^\perp$ and $\{v_{k+1}, \dots, v_n\}$ is an ortho-normal basis of V_1 .
- ▶ The second part is obvious. We only need to prove $V_1 = (V_0)^\perp$.
- ▶ Note that $\langle v_i, v_j \rangle = 0$ for all $1 \leq i \leq k$ and $(k+1) \leq j \leq n$
- ▶ Therefore $\langle \sum_{i=1}^k c_i v_i, \sum_{j=(k+1)}^n c_j v_j \rangle = 0$ for any scalars c_1, \dots, c_n .
- ▶ This shows $\langle x, y \rangle = 0$ for all $x \in V_0$ and $y \in V_1$. Hence $V_1 \subseteq (V_0)^\perp$.

Continuation

- ▶ Suppose $x \in V_0^\perp$.

Continuation

- ▶ Suppose $x \in V_0^\perp$.
- ▶ As $\{v_1, \dots, v_n\}$ is an orthonormal basis of V , we get
$$x = \sum_{j=1}^n \langle v_j, x \rangle v_j.$$

Continuation

- ▶ Suppose $x \in V_0^\perp$.
- ▶ As $\{v_1, \dots, v_n\}$ is an orthonormal basis of V , we get
$$x = \sum_{j=1}^n \langle v_j, x \rangle v_j.$$
- ▶ As x is orthogonal to V_0 , we get $\langle v_j, x \rangle = 0$ for $1 \leq j \leq k$.

Continuation

- ▶ Suppose $x \in V_0^\perp$.
- ▶ As $\{v_1, \dots, v_n\}$ is an orthonormal basis of V , we get
$$x = \sum_{j=1}^n \langle v_j, x \rangle v_j.$$
- ▶ As x is orthogonal to V_0 , we get $\langle v_j, x \rangle = 0$ for $1 \leq j \leq k$.
- ▶ Hence $x = \sum_{j=k+1}^n \langle v_j, x \rangle v_j$ and therefore $x \in V_1$.

Continuation

- ▶ Suppose $x \in V_0^\perp$.
- ▶ As $\{v_1, \dots, v_n\}$ is an orthonormal basis of V , we get
$$x = \sum_{j=1}^n \langle v_j, x \rangle v_j.$$
- ▶ As x is orthogonal to V_0 , we get $\langle v_j, x \rangle = 0$ for $1 \leq j \leq k$.
- ▶ Hence $x = \sum_{j=k+1}^n \langle v_j, x \rangle v_j$ and therefore $x \in V_1$.
- ▶ This proves $(V_0)^\perp \subseteq V_1$ and completes the proof of our claim.

Projection theorem

- **Theorem 12.6:** Let V_0 be a subspace of a finite dimensional inner product space V . Then every $x \in V$ decomposes uniquely as

$$x = y + z$$

where $y \in V_0$ and $z \in V_0^\perp$.

Projection theorem

- **Theorem 12.6:** Let V_0 be a subspace of a finite dimensional inner product space V . Then every $x \in V$ decomposes uniquely as

$$x = y + z$$

where $y \in V_0$ and $z \in V_0^\perp$.

- **Proof:** Suppose $V_0 = \{0\}$. Then $V_0^\perp = V$ and we can decompose x as $x = 0 + x$, with $0 \in V_0$ and $x \in V_0^\perp$.

Projection theorem

- **Theorem 12.6:** Let V_0 be a subspace of a finite dimensional inner product space V . Then every $x \in V$ decomposes uniquely as

$$x = y + z$$

where $y \in V_0$ and $z \in V_0^\perp$.

- **Proof:** Suppose $V_0 = \{0\}$. Then $V_0^\perp = V$ and we can decompose x as $x = 0 + x$, with $0 \in V_0$ and $x \in V_0^\perp$.
- If $V_0 \neq \{0\}$, choose an orthonormal basis $\{v_1, \dots, v_k\}$ for V_0 . Extend it to an orthonormal basis $\{v_1, \dots, v_n\}$ of V .

Projection theorem

- **Theorem 12.6:** Let V_0 be a subspace of a finite dimensional inner product space V . Then every $x \in V$ decomposes uniquely as

$$x = y + z$$

where $y \in V_0$ and $z \in V_0^\perp$.

- **Proof:** Suppose $V_0 = \{0\}$. Then $V_0^\perp = V$ and we can decompose x as $x = 0 + x$, with $0 \in V_0$ and $x \in V_0^\perp$.
- If $V_0 \neq \{0\}$, choose an orthonormal basis $\{v_1, \dots, v_k\}$ for V_0 . Extend it to an orthonormal basis $\{v_1, \dots, v_n\}$ of V .
- Now we know that any $x \in V$ decomposes as

$$x = \sum_{j=1}^n \langle v_j, x \rangle v_j$$

Uniqueness

- ▶ Take

$$y = \sum_{j=1}^k \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^n \langle v_j, x \rangle v_j.$$

Uniqueness

- ▶ Take

$$y = \sum_{j=1}^k \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^n \langle v_j, x \rangle v_j.$$

- ▶ Clearly $y \in V_0$ and $z \in V_0^\perp$. This proves the existence.

Uniqueness

- ▶ Take

$$y = \sum_{j=1}^k \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^n \langle v_j, x \rangle v_j.$$

- ▶ Clearly $y \in V_0$ and $z \in V_0^\perp$. This proves the existence.
- ▶ Suppose $x = y + z$ and $x = y' + z'$ are two decompositions of x with $y, y' \in V_0$ and $z, z' \in V_0^\perp$.

Uniqueness

- ▶ Take

$$y = \sum_{j=1}^k \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^n \langle v_j, x \rangle v_j.$$

- ▶ Clearly $y \in V_0$ and $z \in V_0^\perp$. This proves the existence.
- ▶ Suppose $x = y + z$ and $x = y' + z'$ are two decompositions of x with $y, y' \in V_0$ and $z, z' \in V_0^\perp$.
- ▶ We have,

$$y + z = y' + z'.$$

Uniqueness

- ▶ Take

$$y = \sum_{j=1}^k \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^n \langle v_j, x \rangle v_j.$$

- ▶ Clearly $y \in V_0$ and $z \in V_0^\perp$. This proves the existence.
- ▶ Suppose $x = y + z$ and $x = y' + z'$ are two decompositions of x with $y, y' \in V_0$ and $z, z' \in V_0^\perp$.
- ▶ We have,

$$y + z = y' + z'.$$

- ▶ Therefore $y - y' = z' - z$. As $y, y' \in V_0$, $y - y' \in V_0$.

Uniqueness

- ▶ Take

$$y = \sum_{j=1}^k \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^n \langle v_j, x \rangle v_j.$$

- ▶ Clearly $y \in V_0$ and $z \in V_0^\perp$. This proves the existence.
- ▶ Suppose $x = y + z$ and $x = y' + z'$ are two decompositions of x with $y, y' \in V_0$ and $z, z' \in V_0^\perp$.
- ▶ We have,

$$y + z = y' + z'.$$

- ▶ Therefore $y - y' = z' - z$. As $y, y' \in V_0$, $y - y' \in V_0$.
- ▶ Also as $z, z' \in V_0^\perp$, $y - y' = z' - z \in V_0^\perp$.

Uniqueness

- ▶ Take

$$y = \sum_{j=1}^k \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^n \langle v_j, x \rangle v_j.$$

- ▶ Clearly $y \in V_0$ and $z \in V_0^\perp$. This proves the existence.
- ▶ Suppose $x = y + z$ and $x = y' + z'$ are two decompositions of x with $y, y' \in V_0$ and $z, z' \in V_0^\perp$.
- ▶ We have,

$$y + z = y' + z'.$$

- ▶ Therefore $y - y' = z' - z$. As $y, y' \in V_0$, $y - y' \in V_0$.
- ▶ Also as $z, z' \in V_0^\perp$, $y - y' = z' - z \in V_0^\perp$.
- ▶ Hence $\langle y - y', y - y' \rangle = 0$. Consequently $y = y'$ and $z' = z$.
This proves the uniqueness.

A special case

- ▶ Suppose V is a finite dimensional inner product space and let y be a non-zero vector in V .

A special case

- ▶ Suppose V is a finite dimensional inner product space and let y be a non-zero vector in V .
- ▶ Consider the one dimensional space $V_0 = \{cy : c \in \mathbb{F}\}$.

A special case

- ▶ Suppose V is a finite dimensional inner product space and let y be a non-zero vector in V .
- ▶ Consider the one dimensional space $V_0 = \{cy : c \in \mathbb{F}\}$.
- ▶ Now $\{v\}$ is an ortho-normal basis for V_0 where

$$v = \frac{y}{\|y\|}.$$

A special case

- ▶ Suppose V is a finite dimensional inner product space and let y be a non-zero vector in V .
- ▶ Consider the one dimensional space $V_0 = \{cy : c \in \mathbb{F}\}$.
- ▶ Now $\{v\}$ is an ortho-normal basis for V_0 where

$$v = \frac{y}{\|y\|}.$$

- ▶ Therefore any $x \in V$ decomposes as $x = \langle v, x \rangle v + z$ where z is orthogonal to v .

Continuation

- We have $|z|^2 \geq 0$.

Continuation

- ▶ We have $\|z\|^2 \geq 0$.
- ▶ This means that:

$$\|x - \langle v, x \rangle v\|^2 \geq 0.$$

Continuation

- ▶ We have $\|z\|^2 \geq 0$.
- ▶ This means that:

$$\|x - \langle v, x \rangle v\|^2 \geq 0.$$

- ▶ Here

$$\begin{aligned}\|x - \langle v, x \rangle v\|^2 &= \langle x, x \rangle - 2|\langle x, v \rangle|^2 + |\langle x, v \rangle|^2 \\ &= \|x\|^2 - |\langle x, v \rangle|^2 \\ &= \|x\|^2 - |\langle x, \frac{y}{\|y\|} \rangle|^2\end{aligned}$$

Continuation

- ▶ We have $|z|^2 \geq 0$.
- ▶ This means that:

$$\|x - \langle v, x \rangle v\|^2 \geq 0.$$

- ▶ Here

$$\begin{aligned}\|x - \langle v, x \rangle v\|^2 &= \langle x, x \rangle - 2|\langle x, v \rangle|^2 + |\langle x, v \rangle|^2 \\ &= \|x\|^2 - |\langle x, v \rangle|^2 \\ &= \|x\|^2 - |\langle x, \frac{y}{\|y\|} \rangle|^2\end{aligned}$$

- ▶ and the positivity of this is same as the Cauchy-Schwarz inequality:

$$\|x\|^2 \|y\|^2 \geq |\langle x, y \rangle|^2.$$

Continuation

- ▶ The equality holds, only when $z = 0$, that is when $x \in \text{span}\{y\}$. (We have assumed $y \neq 0$.) This explains our proof of Cauchy-Schwarz inequality.

Continuation

- ▶ The equality holds, only when $z = 0$, that is when $x \in \text{span}\{y\}$. (We have assumed $y \neq 0$.) This explains our proof of Cauchy-Schwarz inequality.
- ▶ **Exercise 12.7 :** Consider examples of vectors in \mathbb{R}^2 and \mathbb{R}^3 and try to understand the projection theorem in concrete cases.

Continuation

- ▶ The equality holds, only when $z = 0$, that is when $x \in \text{span}\{y\}$. (We have assumed $y \neq 0$.) This explains our proof of Cauchy-Schwarz inequality.
- ▶ **Exercise 12.7 :** Consider examples of vectors in \mathbb{R}^2 and \mathbb{R}^3 and try to understand the projection theorem in concrete cases.
- ▶ **END OF LECTURE 12.**