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> We recall a few things from previous lectures.

» Definition 9.5: Let (V,(-,-)) be an inner product space. Then
a basis {v1,va,..., vy} is said to be an orthonormal basis if

(1 ifi=;

» In other words, an orthonormal basis is a basis consisting of
mutually orthogonal unit vectors.

» Example 9.6: For R” (or C") the standard basis
{e1,e, ..., en}, where ¢; is the vector whose j-th coordinate
is one and all other coordinates are equal to zero, is an
orthonormal basis with respect to the standard inner product.
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A formula for coefficients

» What is the advantage of having an orthonormal basis instead
of ordinary basis? This is answered by the following theorem.

> It gives a formula for the coefficients in the expansion of any
vector in terms of the basis.

» Theorem 9.7: Let {vi,v2,...,Vv,} be an orthonormal basis of
an inner product space (V, (-,-)). Then for any vector w € V,

n

w = Z<Vjv W>VJ"

j=1
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» Definition 12.1 Let S be a non-empty subset of an inner
product space V. Then the orthogonal complement of S is
defined as:

St={veV:(x,v)=0, V¥xeS}.

» Example 12.2: Consider S C R3 where
s={| -1 |, 1 |}

» Then
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» Proposition 12.2: Let S be a non-empty subset of an inner
product space V. Then S+ is a subspace of V. Further,
(S1)* is a subspace containing S.

» Proof: We recall the definition of S+
St={veV:(x,v)=0, V¥xeS}.
» Now if v,w € St and ¢,d € F: For x € S,
(x,cv+dw) = c(x,v) +d(x,w) =c.0+d.0=0.

» Hence cv+ dw € S*. This proves that ST is a subspace of V.

> It is easy to see that if x € S then x € (S1)*. Therefore
SC(sHt

» We have already seen that orthogonal complement of any
non-empty subset is a subspace. In particular, (S+)* is a
subspace.
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» Consider V = R3 with standard inner product.

» Consider the subspace

X1
V():{ X2 ZX1,X2€]R}
0
> Take Vi = (Vo).
» Clearly,
0

Vo={| 0 | :x3eR}.
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> \We see that any vector x € V decomposes uniquely as
x=y+zwithy e Vyand z € V.

» Indeed for

X1

x=1 x

X3

the only choice is:

X1 0
y = X 1z = 0
0 X3

> We want to show that this is a general phenomenon.
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Extending bases and orthonormal bases

» Theorem 12.4: Let V{ be a non-trivial subspace of a finite
dimensional vector space V. Then any basis of Vj extends to

a basis of V/, that is, if {v1,va,..., vk} is a basis of V{ then
there exists {vky1,...,V,} such that {vq,...,v,} is a basis of
V.

» Proof: Take
My = span {v1,va,..., vk}
» If M =V then Vo =V, {v1,..., v} is a basis for V and so
no extension is required.
» If not, choose any vxyr1 € V\Mg. Then {v1,...,vk11} is a
linearly independent set (Why?). Take

M1 := span{vi, ..., viy1}.

» If V = My then {v1,...,vks1} is a basis for V and we are
done. If not, take vxy2 € V\Mj11 and continue the induction
process.
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» The process terminates after a finite number of steps as V is
finite dimensional and so it can have at most dim (V) linearly
independent elements.

» Therefore V = M, for some n and {v1,...,v,} is a basis for
V.
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Extending orthonormal bases

» Theorem 12.5: Let V{ be a non-trivial subspace of a finite
dimensional inner product space V. Then any orthonormal
basis of V{ extends to an orthonormal basis of V, that is, if
{vi,va,..., vk} is an orthonormal basis of V then there exists

{Vk+1,---,Vn} such that {vq,...,v,} is an orthonormal basis
of V.

» Proof: By the previous theorem we may extend {v1,..., vk}
to a basis {v1,..., vk, Wk41,...,wp} of V.

» Now apply the Gram-Schmidt procedure on
{vi,. ., Vk, Wkt1,..., Wy} to get an ortho-normal basis
{e1,...,en} of V.

» It is an elementary exercise to see that ¢f = v; for 1 < j < k
as vi,..., v are already orthonormal. W
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Orthogonal complement of a subspace

» Consider the set up as above, that is, Vg is a non-trivial
subspace of a finite dimensional inner product space V.

Suppose {vi,..., vk} is an orthonormal basis of V4 and
{v1,..., vy} is an orthonormal basis of V.
> Take
Vi = span {vki1,.-., Vn}.
» We claim that V; = (V)* and {vii1,...,V,} is an

ortho-normal basis of V;.
» The second part is obvious. We only need to prove
Vi = (Vo)*.
» Note that (vj,v;) =0forall 1 <i<kand (k+1)<j<n

v

Therefore (32, civi, 2= (k+1) GVj) for any scalars ¢y, ..., cp.

» This shows (x,y) =0 for all x € Vg and y € V4. Hence
Vi C (Vo)™



Continuation

» Suppose x € Vj.



Continuation

» Suppose x € Vj.
» As {vi,...,Vn} is an orthonormal basis of V, we get
x =31 (vj, X))V



Continuation

» Suppose x € Vj.
» As {vi,...,Vn} is an orthonormal basis of V, we get
x =2 1 (v X) Y.
> As x is orthogonal to Vp, we get (vj,x) =0 for 1 <j < k.



Continuation

» Suppose x € Vj.
» As {vi,...,Vn} is an orthonormal basis of V, we get
X = ZF:1<VJ'7X>VJ"
> As x is orthogonal to Vj, we get <vj,x> =0forl < <k
> Hence x = > 7, .1 (vj, x)v; and therefore x € V4.
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» Suppose x € Vj.
» As {vi,...,Vn} is an orthonormal basis of V, we get
x =31 (vj, X))V

> As x is orthogonal to Vp, we get (vj,x) =0 for 1 <j < k.

v

Hence x =37, 1 (vj,x)v; and therefore x € V4.

» This proves (Vp)* C Vi and completes the proof of our claim.
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Projection theorem

> Theorem 12.6: Let Vf be a subspace of a finite dimensional
inner product space V. Then every x € V decomposes
uniquely as

X=y+z

where y € Vp and z € VOL.

» Proof: Suppose Vo = {0}. Then V5" = V and we can
decompose x as x = 0 + x, with 0 € Vp and x € V.

» If Vo # {0}, choose an orthonormal basis {vi1,..., v} for V.
Extend it to an orthonormal basis {vi,...,v,} of V.

> Now we know that any x € V decomposes as

n

X = Z<VJ’X>VJ

Jj=1
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Uniqueness

> Take .
y=> (v,
j=1
and .
z= ) (v
j=(k+1)

» Clearly y € Vg and z € VOL. This proves the existence.

» Suppose x = y + z and x = y' + 2’ are two decompositions of
x with y,y’ € Vg and z,2’ € V3.

» We have,

y+z= y’ + 7.

» Thereforey —y' =2 —z. Asy,y e Vo, y —y € V.

> Alsoas z,2 € V-, y —y' =2 —z € V4.

» Hence (y —y’,y —y') = 0. Consequently y =y’ and 2/ = z.
This proves the uniqueness.
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A special case

» Suppose V is a finite dimensional inner product space and let
y be a non-zero vector in V.

» Consider the one dimensional space Vg = {cy : c € F}.

» Now {v} is an ortho-normal basis for V{ where

Y

V=
Iyl

» Therefore any x € V decomposes as x = (v, x)v + z where z
is orthogonal to v.
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» This means that:
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» Here

Ix = {v.x)vI? = (x,x) =2/, v)? + |(x, v)[?

= [IxI* =[x, v)P?

Y \2
= |IxII? = [(x, =)
Iy



Continuation

> We have |z||?> > 0.
» This means that:

Ix — (v, x)v|* > 0.
» Here

Ix = v xvl? = (x,x) = 2|06, V)7 + [(x, v)[?
= [IxI* =[x, v)P?

Y \2
Ix[1? = [{x, 7=
Iy

» and the positivity of this is same as the Cauchy-Schwarz
inequality:
X[y 17 = 11 x, p) 2.
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{y}. (We have assumed y # 0.). This explains our proof of
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» The equality holds, only when z = 0, that is when x € span
{y}. (We have assumed y # 0.). This explains our proof of
Cauchy-Schwarz inequality.

> Exercise 12.7 : Consider examples of vectors in R? and R3 and
try to understand the projection theorem in concrete cases.

» END OF LECTURE 12.



