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» Proposition 12.2: Let S be a non-empty subset of an inner
product space V. Then S+ is a subspace of V. Further,
(S1)* is a subspace containing S.

» Proof: We recall the definition of S+
St={veV:(x,v)=0, V¥xeS}.
» Now if v,w € St and ¢,d € F: For x € S,
(x,cv+dw) = c(x,v) +d(x,w) =c.0+d.0=0.

» Hence cv+ dw € S*. This proves that ST is a subspace of V.

> It is easy to see that if x € S then x € (S1)*. Therefore
SC(sHt

» We have already seen that orthogonal complement of any
non-empty subset is a subspace. In particular, (S+)* is a
subspace.
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R? in R3

» Consider V = R3 with standard inner product.

» Consider the subspace

X1
V():{ X2 ZX1,X2€]R}
0
> Take Vi = (Vo).
» Clearly,
0

Vi={[ 0 | :x3eR}.
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> \We see that any vector x € V decomposes uniquely as
x=y+zwithy e Vyand z € V.
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> \We see that any vector x € V decomposes uniquely as
x=y+zwithy e Vyand z € V.

» Indeed for

X1

x=1 x

X3

the only choice is:

X1 0
y = X 1z = 0
0 X3

> We want to show that this is a general phenomenon.
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dimensional vector space V. Then any basis of Vj extends to
a basis of V/, that is, if {v1,va,..., vk} is a basis of V{ then
there exists {vky1,...,V,} such that {vq,...,v,} is a basis of
V.
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Extending bases and orthonormal bases

» Theorem 12.4: Let V{ be a non-trivial subspace of a finite
dimensional vector space V. Then any basis of Vj extends to

a basis of V/, that is, if {v1,va,..., vk} is a basis of V{ then
there exists {vky1,...,V,} such that {vq,...,v,} is a basis of
V.

» Proof: Take
My = span {v1,va,..., vk}
» If M =V then Vo =V, {v1,..., v} is a basis for V and so
no extension is required.
» If not, choose any vxyr1 € V\Mg. Then {v1,...,vk11} is a
linearly independent set (Why?). Take

M1 := span{vi, ..., viy1}.

» If V = My then {v1,...,vks1} is a basis for V and we are
done. If not, take vxy2 € V\Mj11 and continue the induction
process.
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» The process terminates after a finite number of steps as V is
finite dimensional and so it can have at most dim (V) linearly
independent elements.
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» The process terminates after a finite number of steps as V is
finite dimensional and so it can have at most dim (V) linearly
independent elements.

» Therefore V = M, for some n and {v1,...,v,} is a basis for
V.
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of V.
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Extending orthonormal bases

» Theorem 12.5: Let V{ be a non-trivial subspace of a finite
dimensional inner product space V. Then any orthonormal
basis of V{ extends to an orthonormal basis of V, that is, if
{vi,va,..., vk} is an orthonormal basis of V then there exists

{Vk+1,---,Vn} such that {vq,...,v,} is an orthonormal basis
of V.

» Proof: By the previous theorem we may extend {v1,..., vk}
to a basis {v1,..., vk, Wk41,...,wp} of V.

» Now apply the Gram-Schmidt procedure on
{vi,. ., Vk, Wkt1,..., Wy} to get an ortho-normal basis
{e1,...,en} of V.

» It is an elementary exercise to see that ¢f = v; for 1 < j < k
as vi,..., v are already orthonormal. W
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Orthogonal complement of a subspace

» Consider the set up as above, that is, Vg is a non-trivial
subspace of a finite dimensional inner product space V.

Suppose {vi,..., vk} is an orthonormal basis of V4 and
{v1,..., vy} is an orthonormal basis of V.
> Take
Vi = span {vki1,.-., Vn}.
» We claim that V; = (V)* and {vii1,...,V,} is an

ortho-normal basis of V;.
» The second part is obvious. We only need to prove
Vi = (Vo)*.
» Note that (vj,v;) =0forall 1 <i<kand (k+1)<j<n

v

Therefore (32, civi, 2= (k+1) GVj) for any scalars ¢y, ..., cp.

» This shows (x,y) =0 for all x € Vg and y € V4. Hence
Vi C (Vo)™
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» Suppose x € Vj.
» As {vi,...,Vn} is an orthonormal basis of V, we get
x =2 1 (v X) Y.
> As x is orthogonal to Vp, we get (vj,x) =0 for 1 <j < k.
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» Suppose x € Vj.
» As {vi,...,Vn} is an orthonormal basis of V, we get
X = ZF:1<VJ'7X>VJ"
> As x is orthogonal to Vj, we get <vj,x> =0forl < <k
> Hence x = > 7, .1 (vj, x)v; and therefore x € V4.
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» Suppose x € Vj.
» As {vi,...,Vn} is an orthonormal basis of V, we get
x =31 (vj, X))V

> As x is orthogonal to Vp, we get (vj,x) =0 for 1 <j < k.

v

Hence x =37, 1 (vj,x)v; and therefore x € V4.

» This proves (Vp)* C Vi and completes the proof of our claim.
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Projection theorem

> Theorem 12.6: Let Vf be a subspace of a finite dimensional
inner product space V. Then every x € V decomposes
uniquely as

X=y+z

where y € Vp and z € VOL.

» Proof: Suppose Vo = {0}. Then V5" = V and we can
decompose x as x = 0 + x, with 0 € Vp and x € V.

» If Vo # {0}, choose an orthonormal basis {vi1,..., v} for V.
Extend it to an orthonormal basis {vi,...,v,} of V.

> Now we know that any x € V decomposes as

n

X = Z<VJ’X>VJ

Jj=1
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and .
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» Clearly y € Vg and z € VOL. This proves the existence.
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> Take .
y=> (v,
j=1
and .
z= ) (v
j=(k+1)

» Clearly y € Vg and z € VOL. This proves the existence.
» Suppose x = y + z and x = y' + 2’ are two decompositions of
x with y,y’ € Vg and z,2’ € V3.
» We have,
y+z= y’ + 7.
» Thereforey —y' =2 —z. Asy,y e Vo, y —y € V.
> Alsoas z,2 € V-, y —y' =2 —z € V4.



Uniqueness

> Take .
y=> (v,
j=1
and .
z= ) (v
j=(k+1)

» Clearly y € Vg and z € VOL. This proves the existence.

» Suppose x = y + z and x = y' + 2’ are two decompositions of
x with y,y’ € Vg and z,2’ € V3.

» We have,

y+z= y’ + 7.

» Thereforey —y' =2 —z. Asy,y e Vo, y —y € V.

> Alsoas z,2 € V-, y —y' =2 —z € V4.

» Hence (y —y’,y —y') = 0. Consequently y =y’ and 2/ = z.
This proves the uniqueness.
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A special case

» Suppose V is a finite dimensional inner product space and let
y be a non-zero vector in V.

» Consider the one dimensional space Vg = {cy : c € F}.

» Now {v} is an ortho-normal basis for V where

y

V="
Iy

» Therefore any x € V decomposes as x = (v, x)v + z where z
is orthogonal to v.

P As shown in the previous lecture this is related to
Cauchy-Schwarz inequality.
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> Example 13.1: Let V = R" with the standard inner product.
Let \Vp = {X eR": 27:1 Xj = 0}

» We first analyze the case when n = 3. Now V = R3 and

X1
V():{ X2 ZX1+X2—|—X3:0}.
X3
» One can see that
1 1
{ -1 ) 0 }
0 -1

is a basis for V.



Example

>

>

Example 13.1: Let V = R"” with the standard inner product.
Let \Vp = {X eR": 27:1 Xj = 0}

We first analyze the case when n = 3. Now V = R3 and

X1
V():{ X2 ZX1+X2—|—X3:0}.
X3
One can see that
1 1
{ -1 ) 0 }
0 -1

is a basis for V.

Let us apply Gram-Schmidt on this to get an orthonormal
basis for V.
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> We get the first vector as

1/v/2
vy = ( —1/\/§ ) .
0
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> We get the first vector as

» Now take

1/v/2
vy = ( —1/\/§ ) .
0

1 1//2 1 1/V2
() (2 ) (3
-1 0 -1 0

1 1/2

0o |- -1/2

-1 0

1/2
1/2 |.
)
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> Now
1/V6
V= 2= 1/V6
el \ 250

» {vi1, v2} is an ortho-normal basis for V.



Continuation

> Now
1/V6
V= 2= 1/V6
el ~\ 3/ 6

» {vi1, v2} is an ortho-normal basis for V.

> Given x € R3, it decomposes as y + z, where y € Vy, z € VOL.

y = (vi,x)v1 + (v2, x)v2
1
L X1— X 1/v2 (x1 +x2 — 2x3) /v
0 —2//6
2X1 — X2 — X3
= 5 —x1 +2x0 — X3

—Xx1 — Xo + 2x3
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X1+ X2 + X3
>z=1| xxtx+x3
X1+ X2 + X3
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X1+ X2 + X3
’ZZ% X1+ X2 + x3
X1+ X2 + X3

» For general n, with X = %(Xl +x24+ -+ Xxpn),

X1 — X X
X — X X
y = . , Z= .
Xp — X X
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X1+ X2 + X3
> z=3| xxt+x+x3
X1+ X2 + X3

» For general n, with X = %(Xl +x24+ -+ Xxpn),

X1 — X X

X — X X
y= , Z=

Xnp — X X

> It is easy to see that y € Vp, z € (Vo)T and x = y + z.
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Projection as a linear map

» Definition 13.2: Let V{ be a subspace of a finite dimensional
inner product space V. Then the projection on to Vjp, is the
map

P:V—>YV

defined by
P(x) =y
where x = y + z, with y € Vg, z € (Vo).

» Note that since every x € V decomposes uniquely as above, P
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Definition 13.2: Let V{ be a subspace of a finite dimensional
inner product space V. Then the projection on to Vjp, is the
map

P:V—>YV

defined by
P(x) =y
where x = y + z, with y € Vg, z € (Vo).
Note that since every x € V decomposes uniquely as above, P
is well-defined. If we want to emphasize the dependence of P
on Vp, we may denote it by Py,.
Theorem 13.3: Under the set up as above,
(i) P is a linear map. (ii) Px = x if and only if x € V4 and
Px = 0 if and only if x € (Vp)*.
(iii) P(V) = W.
(iv) P = P? = P*.
(v) Py, = — P where V; = (Vp)*.
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» Proof. If Vo = {0} then P =0 and all the properties
mentioned above are easy to see.

» So assume Vj # {0}.

» (i). Let {v1,..., vk} be an orthonormal basis of V4. Extend it
to an orthonormal basis {vi, va,...,v,} of V.

» Then we know that

K
P(x) = Z(\/j,x>\/j.
j=1
(Note that P does not depend upon the choice of this basis!)

» Since the inner product is linear in the second variable, P is a
linear map. This proves (i).
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Therefore x = ij:1<\/j,x>vj and hence x € V.
> The converse is easy to see from the definition of P.
» Now if Px =0, then ZJI'(:1<VJ>X>VJ = 0 and hence
x =3, i1{v,x)v;, that is, x € (Vo)*.
» Conversely if x € (Vg)*, then x = ZJ’-’:kH(vj,x)vj, and
consequently Px = 0.

» This proves (ii).
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» (iii). We want to show P(V) = V.

» From the formula given for P, Px € V for every x € V and
hence P(V) C V4. Since Px = x for every x € V, the range
of P includes whole of Vj. This proves (iii).

> (iv). If x =37 ¢v;, then Px = Zj’le

> Now P(P(x)) = P(3,50 Gv) = Xjo %) = Px.

Gvj-
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v

(iii). We want to show P(V) = V.

From the formula given for P, Px € V, for every x € V and
hence P(V) C V4. Since Px = x for every x € V, the range
of P includes whole of Vj. This proves (iii).

(iv). If x =37, gvj, then Px = Z}‘Zl Gjv;.
Now P(P(x)) = P(31L1 gvi) = Y11 v = Px.
Hence P?(x) = P(x) for every x, or P? = P.

v

v

vy
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» Suppose x1,x2 arein V. Let x;1 = y1 +z1 and xo = y» + z» be
the unique decompositions of x1, x» so that
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» Note that (y;,z;) =0 for all i, /.
> Now
(Px1,x2) = (y1,¥2 + 22) = (y1,2)-

» Similarly,
(x1, Px2) = (y1 + z1, y2) = (y1,¥2)-
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» Suppose x1,x2 arein V. Let x;1 = y1 +z1 and xo = y» + z» be
the unique decompositions of x1, x» so that

vi,y2 € Vo, z1,20 € V-

» Note that (y;,z;) =0 for all i, /.
> Now

(Px1,x2) = (y1,y2 + 22) = (y1,¥2)-
» Similarly,

(x1, Pxo) = (y1 + z1, y2) = (y1,)2).
» Consequently,
<PX1,X2> = <X1, PX2>

for all x1, x> in V.

» This shows that P* = P from the defining property of the
adjoint of P.
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» From these formulae, it is easy to see that Py, =1 — Py,.
» This completes the proof Theorem 13.2.

> Remark 13.4: Observe that Pgy =0 and Py = /. In

particular,
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Py(x) = x = Z<Vj7X>Vj
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independent of the choice of the basis.
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> (v). fx =314 gy,

PVo E :CJVJ7 ’DV1 E : Gjvj-

j=k+1

» From these formulae, it is easy to see that Py, =1 — Py,.

v

This completes the proof Theorem 13.2.

> Remark 13.4: Observe that Pgy =0 and Py = /. In

particular,
n

Py(x) = x = Z<Vj7X>Vj

j=1
independent of the choice of the basis.

> We have just revisited our formula for the expansion of x in
terms of an orthonormal basis.
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Distance between sets

> Notation: Let A, B be non-empty subsets of an inner product
space V and let a € V. Then

d(A,B) :=inf{d(a,b) :a€ A, bec B}

and
d(a, B) :=inf{d(a,b) : b € B}.

» We may informally call d(A, B) as the distance between A, B
and d(a, B) as the distance between a and B. But note that
now we may have d(A, B) = 0 without having A = B.

» In general, d(a, B) may not be attained at any point in B.
Also when it is attained it may not be at some unique point in
B.

» Example 14.1: Take V = R2. Take a = (1,0). Consider
B = {(Xl,XQ) X1 < 0} and B, = {(Xl,XQ) : ‘Xl — 1| > 1}

» Then d(a, B;) = 1 is not attained at any point. d(a, By) =1
gets attained at two points.
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Best approximation property

» Theorem 14.2: Let V{ be a subspace of an inner product
space V. Let P be the projection onto V. Then for x € V,

d(x, Vo) = d(x, Px).

Moreover, Px is the unique point v such that
d(x,v) = d(x, Vo).

» This theorem tells us that Px is the unique ‘best
approximation' for x in V.

» Proof: Suppose x = y + z, is the unique decomposition of x,
with y € Vp,z € V.
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> We have Px = y. Now consider any v € V. Due to
orthogonality of y — v and z, we get

| 2
Ix=v[* = l(y+2z)— v
= (y—v)+z,(y—-v)+2)
= Iy = v)I*+ llz[*.
» Hence

inf [|lx = v[[* = |||
veYy

and the infimum is attained only at v = y.
» This proves the theorem.

> Note that we are using the ‘Pythagoras theorem’ of inner
product spaces.
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» Consider the Example 13.1, where V = R" and
> Vo={xeV: 3 x =0}
| 2

Vlz(\/g)L:{ . ZCER}.
c
> Let P; be the projection onto V;.

» Then Pix = l(X1 +- 4 xp) = X

n
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» In other words, we have proved the theorem
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» So the best approximation for x = (xi,. .., x,) among
constant sequences is (X, ..., X).

» In other words, we have proved the theorem

n n
: 2 <)2
inf Xj—c) = Xj —X)“.
inf 30— = >0 - %)
Jj=1 Jj=1
» This value is n times the variance of the tuple {x;...,x,}. In

other words,

n

inf E Z(XJ —¢)? = Var {x1,..., X},

j=1

and the infimum gets attained only at x.

» Exercise: Work out more examples.
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» Example 14.3: Consider V = R?. Let
Vo ={c ( :)nsg ) : ¢ € R} where 0 is a fixed real number.

Write down the matrix of the projection onto V.
» Solution. We take
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» Then for any vector x € R?,
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» Example 14.3: Consider V = R?. Let

Vo ={c ( :)nsg ) : ¢ € R} where 0 is a fixed real number.

Write down the matrix of the projection onto V.

» Solution. We take
cos 6 )
P = ( <ind >( cosf sind ).
» Then for any vector x € R?,

Px = ( cosf >.( cos§ sinf) < X > = (v, x) = (v, x).v,

sinf X2

L cos 0
~ \sinf )~

» where



Continuation

» Observe that {v} is an orthonormal basis for V.



Continuation

» Observe that {v} is an orthonormal basis for V.

» Therefore P given as above, that is,

cos? 0 sinf cos 6
sin § cos 0 sin’ 9 ’

is the projection on to V4.



Continuation

» Observe that {v} is an orthonormal basis for V.

» Therefore P given as above, that is,

cos? 0 sinf cos 6
sin § cos 0 sin’ 9 ’

is the projection on to V4.
» You may verify P = P?> = P* and P(R?) = V.



Continuation

» Observe that {v} is an orthonormal basis for V.

» Therefore P given as above, that is,

cos? 0 sinf cos 6
sin § cos 0 sin’ 9 ’

is the projection on to V4.
» You may verify P = P?> = P* and P(R?) = V.



Continuation

» Observe that {v} is an orthonormal basis for V.

» Therefore P given as above, that is,

cos? 0 sinf cos 6
sin § cos 0 sin’ 9 ’

is the projection on to V4.
» You may verify P = P?> = P* and P(R?) = V.
» END OF LECTURE 14.



