

LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 14: Best approximation property of projections

- We recall: [Definition 12.1](#). Let S be a non-empty subset of an inner product space V . Then the [orthogonal complement](#) of S is defined as:

$$S^\perp = \{v \in V : \langle x, v \rangle = 0, \quad \forall x \in S\}.$$

Lecture 14: Best approximation property of projections

- We recall: [Definition 12.1](#). Let S be a non-empty subset of an inner product space V . Then the [orthogonal complement](#) of S is defined as:

$$S^\perp = \{v \in V : \langle x, v \rangle = 0, \quad \forall x \in S\}.$$

- [Example 12.2](#): Consider $S \subset \mathbb{R}^3$ where

$$S = \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\}$$

Lecture 14: Best approximation property of projections

- We recall: **Definition 12.1.** Let S be a non-empty subset of an inner product space V . Then the **orthogonal complement** of S is defined as:

$$S^\perp = \{v \in V : \langle x, v \rangle = 0, \quad \forall x \in S\}.$$

- **Example 12.2:** Consider $S \subset \mathbb{R}^3$ where

$$S = \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\}$$

- Then

$$S^\perp = \left\{ \begin{pmatrix} c \\ c \\ c \end{pmatrix} : c \in \mathbb{R} \right\}.$$

Continuation

- ▶ **Proposition 12.2:** Let S be a non-empty subset of an inner product space V . Then S^\perp is a subspace of V . Further, $(S^\perp)^\perp$ is a subspace containing S .

Continuation

- ▶ **Proposition 12.2:** Let S be a non-empty subset of an inner product space V . Then S^\perp is a subspace of V . Further, $(S^\perp)^\perp$ is a subspace containing S .
- ▶ **Proof:** We recall the definition of S^\perp :

$$S^\perp = \{v \in V : \langle x, v \rangle = 0, \quad \forall x \in S\}.$$

Continuation

- ▶ **Proposition 12.2:** Let S be a non-empty subset of an inner product space V . Then S^\perp is a subspace of V . Further, $(S^\perp)^\perp$ is a subspace containing S .
- ▶ **Proof:** We recall the definition of S^\perp :

$$S^\perp = \{v \in V : \langle x, v \rangle = 0, \quad \forall x \in S\}.$$

- ▶ Now if $v, w \in S^\perp$ and $c, d \in \mathbb{F}$: For $x \in S$,

$$\langle x, cv + dw \rangle = c\langle x, v \rangle + d\langle x, w \rangle = c.0 + d.0 = 0.$$

Continuation

- ▶ **Proposition 12.2:** Let S be a non-empty subset of an inner product space V . Then S^\perp is a subspace of V . Further, $(S^\perp)^\perp$ is a subspace containing S .
- ▶ **Proof:** We recall the definition of S^\perp :

$$S^\perp = \{v \in V : \langle x, v \rangle = 0, \quad \forall x \in S\}.$$

- ▶ Now if $v, w \in S^\perp$ and $c, d \in \mathbb{F}$: For $x \in S$,
$$\langle x, cv + dw \rangle = c\langle x, v \rangle + d\langle x, w \rangle = c.0 + d.0 = 0.$$
- ▶ Hence $cv + dw \in S^\perp$. This proves that S^\perp is a subspace of V .

Continuation

- ▶ **Proposition 12.2:** Let S be a non-empty subset of an inner product space V . Then S^\perp is a subspace of V . Further, $(S^\perp)^\perp$ is a subspace containing S .
- ▶ **Proof:** We recall the definition of S^\perp :

$$S^\perp = \{v \in V : \langle x, v \rangle = 0, \quad \forall x \in S\}.$$

- ▶ Now if $v, w \in S^\perp$ and $c, d \in \mathbb{F}$: For $x \in S$,

$$\langle x, cv + dw \rangle = c\langle x, v \rangle + d\langle x, w \rangle = c.0 + d.0 = 0.$$

- ▶ Hence $cv + dw \in S^\perp$. This proves that S^\perp is a subspace of V .
- ▶ It is easy to see that if $x \in S$ then $x \in (S^\perp)^\perp$. Therefore $S \subseteq (S^\perp)^\perp$.

Continuation

- ▶ **Proposition 12.2:** Let S be a non-empty subset of an inner product space V . Then S^\perp is a subspace of V . Further, $(S^\perp)^\perp$ is a subspace containing S .
- ▶ **Proof:** We recall the definition of S^\perp :

$$S^\perp = \{v \in V : \langle x, v \rangle = 0, \quad \forall x \in S\}.$$

- ▶ Now if $v, w \in S^\perp$ and $c, d \in \mathbb{F}$: For $x \in S$,

$$\langle x, cv + dw \rangle = c\langle x, v \rangle + d\langle x, w \rangle = c.0 + d.0 = 0.$$

- ▶ Hence $cv + dw \in S^\perp$. This proves that S^\perp is a subspace of V .
- ▶ It is easy to see that if $x \in S$ then $x \in (S^\perp)^\perp$. Therefore $S \subseteq (S^\perp)^\perp$.
- ▶ We have already seen that orthogonal complement of any non-empty subset is a subspace. In particular, $(S^\perp)^\perp$ is a subspace.

\mathbb{R}^2 in \mathbb{R}^3

- ▶ Consider $V = \mathbb{R}^3$ with standard inner product.

\mathbb{R}^2 in \mathbb{R}^3

- ▶ Consider $V = \mathbb{R}^3$ with standard inner product.
- ▶ Consider the subspace

$$V_0 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} : x_1, x_2 \in \mathbb{R} \right\}$$

\mathbb{R}^2 in \mathbb{R}^3

- ▶ Consider $V = \mathbb{R}^3$ with standard inner product.
- ▶ Consider the subspace

$$V_0 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} : x_1, x_2 \in \mathbb{R} \right\}$$

- ▶ Take $V_1 = (V_0)^\perp$.

\mathbb{R}^2 in \mathbb{R}^3

- ▶ Consider $V = \mathbb{R}^3$ with standard inner product.
- ▶ Consider the subspace

$$V_0 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} : x_1, x_2 \in \mathbb{R} \right\}$$

- ▶ Take $V_1 = (V_0)^\perp$.
- ▶ Clearly,

$$V_1 = \left\{ \begin{pmatrix} 0 \\ 0 \\ x_3 \end{pmatrix} : x_3 \in \mathbb{R} \right\}.$$

Continuation

- We see that any vector $x \in V$ decomposes uniquely as $x = y + z$ with $y \in V_0$ and $z \in V_1$.

Continuation

- We see that any vector $x \in V$ decomposes uniquely as $x = y + z$ with $y \in V_0$ and $z \in V_1$.
- Indeed for

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

the only choice is:

$$y = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}; z = \begin{pmatrix} 0 \\ 0 \\ x_3 \end{pmatrix}.$$

Continuation

- We see that any vector $x \in V$ decomposes uniquely as $x = y + z$ with $y \in V_0$ and $z \in V_1$.
- Indeed for

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

the only choice is:

$$y = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}; z = \begin{pmatrix} 0 \\ 0 \\ x_3 \end{pmatrix}.$$

- We want to show that this is a general phenomenon.

Extending bases and orthonormal bases

- ▶ **Theorem 12.4:** Let V_0 be a non-trivial subspace of a finite dimensional vector space V . Then any basis of V_0 extends to a basis of V , that is, if $\{v_1, v_2, \dots, v_k\}$ is a basis of V_0 then there exists $\{v_{k+1}, \dots, v_n\}$ such that $\{v_1, \dots, v_n\}$ is a basis of V .

Extending bases and orthonormal bases

- ▶ **Theorem 12.4:** Let V_0 be a non-trivial subspace of a finite dimensional vector space V . Then any basis of V_0 extends to a basis of V , that is, if $\{v_1, v_2, \dots, v_k\}$ is a basis of V_0 then there exists $\{v_{k+1}, \dots, v_n\}$ such that $\{v_1, \dots, v_n\}$ is a basis of V .
- ▶ **Proof:** Take

$$M_k := \text{span} \{v_1, v_2, \dots, v_k\}$$

Extending bases and orthonormal bases

- ▶ **Theorem 12.4:** Let V_0 be a non-trivial subspace of a finite dimensional vector space V . Then any basis of V_0 extends to a basis of V , that is, if $\{v_1, v_2, \dots, v_k\}$ is a basis of V_0 then there exists $\{v_{k+1}, \dots, v_n\}$ such that $\{v_1, \dots, v_n\}$ is a basis of V .
- ▶ **Proof:** Take

$$M_k := \text{span} \{v_1, v_2, \dots, v_k\}$$

- ▶ If $M_k = V$ then $V_0 = V$, $\{v_1, \dots, v_k\}$ is a basis for V and so no extension is required.

Extending bases and orthonormal bases

- ▶ **Theorem 12.4:** Let V_0 be a non-trivial subspace of a finite dimensional vector space V . Then any basis of V_0 extends to a basis of V , that is, if $\{v_1, v_2, \dots, v_k\}$ is a basis of V_0 then there exists $\{v_{k+1}, \dots, v_n\}$ such that $\{v_1, \dots, v_n\}$ is a basis of V .
- ▶ **Proof:** Take

$$M_k := \text{span} \{v_1, v_2, \dots, v_k\}$$

- ▶ If $M_k = V$ then $V_0 = V$, $\{v_1, \dots, v_k\}$ is a basis for V and so no extension is required.
- ▶ If not, choose any $v_{k+1} \in V \setminus M_k$. Then $\{v_1, \dots, v_{k+1}\}$ is a linearly independent set (Why?). Take

$$M_{k+1} := \text{span}\{v_1, \dots, v_{k+1}\}.$$

Extending bases and orthonormal bases

- ▶ **Theorem 12.4:** Let V_0 be a non-trivial subspace of a finite dimensional vector space V . Then any basis of V_0 extends to a basis of V , that is, if $\{v_1, v_2, \dots, v_k\}$ is a basis of V_0 then there exists $\{v_{k+1}, \dots, v_n\}$ such that $\{v_1, \dots, v_n\}$ is a basis of V .
- ▶ **Proof:** Take

$$M_k := \text{span} \{v_1, v_2, \dots, v_k\}$$

- ▶ If $M_k = V$ then $V_0 = V$, $\{v_1, \dots, v_k\}$ is a basis for V and so no extension is required.
- ▶ If not, choose any $v_{k+1} \in V \setminus M_k$. Then $\{v_1, \dots, v_{k+1}\}$ is a linearly independent set (Why?). Take

$$M_{k+1} := \text{span}\{v_1, \dots, v_{k+1}\}.$$

- ▶ If $V = M_{k+1}$ then $\{v_1, \dots, v_{k+1}\}$ is a basis for V and we are done. If not, take $v_{k+2} \in V \setminus M_{k+1}$ and continue the induction process.

Continuation

- ▶ The process terminates after a finite number of steps as V is finite dimensional and so it can have at most $\dim(V)$ linearly independent elements.

Continuation

- ▶ The process terminates after a finite number of steps as V is finite dimensional and so it can have at most $\dim(V)$ linearly independent elements.
- ▶ Therefore $V = M_n$ for some n and $\{v_1, \dots, v_n\}$ is a basis for V .

Extending orthonormal bases

- ▶ **Theorem 12.5:** Let V_0 be a non-trivial subspace of a finite dimensional inner product space V . Then any orthonormal basis of V_0 extends to an orthonormal basis of V , that is, if $\{v_1, v_2, \dots, v_k\}$ is an orthonormal basis of V_0 then there exists $\{v_{k+1}, \dots, v_n\}$ such that $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .

Extending orthonormal bases

- ▶ **Theorem 12.5:** Let V_0 be a non-trivial subspace of a finite dimensional inner product space V . Then any orthonormal basis of V_0 extends to an orthonormal basis of V , that is, if $\{v_1, v_2, \dots, v_k\}$ is an orthonormal basis of V_0 then there exists $\{v_{k+1}, \dots, v_n\}$ such that $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .
- ▶ **Proof:** By the previous theorem we may extend $\{v_1, \dots, v_k\}$ to a basis $\{v_1, \dots, v_k, w_{k+1}, \dots, w_n\}$ of V .

Extending orthonormal bases

- ▶ **Theorem 12.5:** Let V_0 be a non-trivial subspace of a finite dimensional inner product space V . Then any orthonormal basis of V_0 extends to an orthonormal basis of V , that is, if $\{v_1, v_2, \dots, v_k\}$ is an orthonormal basis of V_0 then there exists $\{v_{k+1}, \dots, v_n\}$ such that $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .
- ▶ **Proof:** By the previous theorem we may extend $\{v_1, \dots, v_k\}$ to a basis $\{v_1, \dots, v_k, w_{k+1}, \dots, w_n\}$ of V .
- ▶ Now apply the Gram-Schmidt procedure on $\{v_1, \dots, v_k, w_{k+1}, \dots, w_n\}$ to get an ortho-normal basis $\{e_1, \dots, e_n\}$ of V .

Extending orthonormal bases

- ▶ **Theorem 12.5:** Let V_0 be a non-trivial subspace of a finite dimensional inner product space V . Then any orthonormal basis of V_0 extends to an orthonormal basis of V , that is, if $\{v_1, v_2, \dots, v_k\}$ is an orthonormal basis of V_0 then there exists $\{v_{k+1}, \dots, v_n\}$ such that $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .
- ▶ **Proof:** By the previous theorem we may extend $\{v_1, \dots, v_k\}$ to a basis $\{v_1, \dots, v_k, w_{k+1}, \dots, w_n\}$ of V .
- ▶ Now apply the Gram-Schmidt procedure on $\{v_1, \dots, v_k, w_{k+1}, \dots, w_n\}$ to get an ortho-normal basis $\{e_1, \dots, e_n\}$ of V .
- ▶ It is an elementary exercise to see that $e_j = v_j$ for $1 \leq j \leq k$ as v_1, \dots, v_k are already orthonormal. ■

Orthogonal complement of a subspace

- ▶ Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V . Suppose $\{v_1, \dots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .

Orthogonal complement of a subspace

- ▶ Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V . Suppose $\{v_1, \dots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .
- ▶ Take

$$V_1 = \text{span } \{v_{k+1}, \dots, v_n\}.$$

Orthogonal complement of a subspace

- ▶ Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V . Suppose $\{v_1, \dots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .
- ▶ Take

$$V_1 = \text{span} \{v_{k+1}, \dots, v_n\}.$$

- ▶ We claim that $V_1 = (V_0)^\perp$ and $\{v_{k+1}, \dots, v_n\}$ is an ortho-normal basis of V_1 .

Orthogonal complement of a subspace

- ▶ Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V . Suppose $\{v_1, \dots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .
- ▶ Take

$$V_1 = \text{span} \{v_{k+1}, \dots, v_n\}.$$

- ▶ We claim that $V_1 = (V_0)^\perp$ and $\{v_{k+1}, \dots, v_n\}$ is an ortho-normal basis of V_1 .
- ▶ The second part is obvious. We only need to prove $V_1 = (V_0)^\perp$.

Orthogonal complement of a subspace

- ▶ Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V . Suppose $\{v_1, \dots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .
- ▶ Take

$$V_1 = \text{span } \{v_{k+1}, \dots, v_n\}.$$

- ▶ We claim that $V_1 = (V_0)^\perp$ and $\{v_{k+1}, \dots, v_n\}$ is an ortho-normal basis of V_1 .
- ▶ The second part is obvious. We only need to prove $V_1 = (V_0)^\perp$.
- ▶ Note that $\langle v_i, v_j \rangle = 0$ for all $1 \leq i \leq k$ and $(k+1) \leq j \leq n$

Orthogonal complement of a subspace

- ▶ Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V . Suppose $\{v_1, \dots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .
- ▶ Take

$$V_1 = \text{span } \{v_{k+1}, \dots, v_n\}.$$

- ▶ We claim that $V_1 = (V_0)^\perp$ and $\{v_{k+1}, \dots, v_n\}$ is an ortho-normal basis of V_1 .
- ▶ The second part is obvious. We only need to prove $V_1 = (V_0)^\perp$.
- ▶ Note that $\langle v_i, v_j \rangle = 0$ for all $1 \leq i \leq k$ and $(k+1) \leq j \leq n$
- ▶ Therefore $\langle \sum_{i=1}^k c_i v_i, \sum_{j=(k+1)}^n c_j v_j \rangle$ for any scalars c_1, \dots, c_n .

Orthogonal complement of a subspace

- ▶ Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V . Suppose $\{v_1, \dots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .
- ▶ Take

$$V_1 = \text{span } \{v_{k+1}, \dots, v_n\}.$$

- ▶ We claim that $V_1 = (V_0)^\perp$ and $\{v_{k+1}, \dots, v_n\}$ is an ortho-normal basis of V_1 .
- ▶ The second part is obvious. We only need to prove $V_1 = (V_0)^\perp$.
- ▶ Note that $\langle v_i, v_j \rangle = 0$ for all $1 \leq i \leq k$ and $(k+1) \leq j \leq n$
- ▶ Therefore $\langle \sum_{i=1}^k c_i v_i, \sum_{j=(k+1)}^n c_j v_j \rangle$ for any scalars c_1, \dots, c_n .

Orthogonal complement of a subspace

- ▶ Consider the set up as above, that is, V_0 is a non-trivial subspace of a finite dimensional inner product space V . Suppose $\{v_1, \dots, v_k\}$ is an orthonormal basis of V_0 and $\{v_1, \dots, v_n\}$ is an orthonormal basis of V .
- ▶ Take

$$V_1 = \text{span} \{v_{k+1}, \dots, v_n\}.$$

- ▶ We claim that $V_1 = (V_0)^\perp$ and $\{v_{k+1}, \dots, v_n\}$ is an ortho-normal basis of V_1 .
- ▶ The second part is obvious. We only need to prove $V_1 = (V_0)^\perp$.
- ▶ Note that $\langle v_i, v_j \rangle = 0$ for all $1 \leq i \leq k$ and $(k+1) \leq j \leq n$
- ▶ Therefore $\langle \sum_{i=1}^k c_i v_i, \sum_{j=(k+1)}^n c_j v_j \rangle = 0$ for any scalars c_1, \dots, c_n .
- ▶ This shows $\langle x, y \rangle = 0$ for all $x \in V_0$ and $y \in V_1$. Hence $V_1 \subseteq (V_0)^\perp$.

Continuation

- ▶ Suppose $x \in V_0^\perp$.

Continuation

- ▶ Suppose $x \in V_0^\perp$.
- ▶ As $\{v_1, \dots, v_n\}$ is an orthonormal basis of V , we get
$$x = \sum_{j=1}^n \langle v_j, x \rangle v_j.$$

Continuation

- ▶ Suppose $x \in V_0^\perp$.
- ▶ As $\{v_1, \dots, v_n\}$ is an orthonormal basis of V , we get
$$x = \sum_{j=1}^n \langle v_j, x \rangle v_j.$$
- ▶ As x is orthogonal to V_0 , we get $\langle v_j, x \rangle = 0$ for $1 \leq j \leq k$.

Continuation

- ▶ Suppose $x \in V_0^\perp$.
- ▶ As $\{v_1, \dots, v_n\}$ is an orthonormal basis of V , we get
$$x = \sum_{j=1}^n \langle v_j, x \rangle v_j.$$
- ▶ As x is orthogonal to V_0 , we get $\langle v_j, x \rangle = 0$ for $1 \leq j \leq k$.
- ▶ Hence $x = \sum_{j=k+1}^n \langle v_j, x \rangle v_j$ and therefore $x \in V_1$.

Continuation

- ▶ Suppose $x \in V_0^\perp$.
- ▶ As $\{v_1, \dots, v_n\}$ is an orthonormal basis of V , we get $x = \sum_{j=1}^n \langle v_j, x \rangle v_j$.
- ▶ As x is orthogonal to V_0 , we get $\langle v_j, x \rangle = 0$ for $1 \leq j \leq k$.
- ▶ Hence $x = \sum_{j=k+1}^n \langle v_j, x \rangle v_j$ and therefore $x \in V_1$.
- ▶ This proves $(V_0)^\perp \subseteq V_1$ and completes the proof of our claim.

Projection theorem

- **Theorem 12.6:** Let V_0 be a subspace of a finite dimensional inner product space V . Then every $x \in V$ decomposes uniquely as

$$x = y + z$$

where $y \in V_0$ and $z \in V_0^\perp$.

Projection theorem

- **Theorem 12.6:** Let V_0 be a subspace of a finite dimensional inner product space V . Then every $x \in V$ decomposes uniquely as

$$x = y + z$$

where $y \in V_0$ and $z \in V_0^\perp$.

- **Proof:** Suppose $V_0 = \{0\}$. Then $V_0^\perp = V$ and we can decompose x as $x = 0 + x$, with $0 \in V_0$ and $x \in V_0^\perp$.

Projection theorem

- **Theorem 12.6:** Let V_0 be a subspace of a finite dimensional inner product space V . Then every $x \in V$ decomposes uniquely as

$$x = y + z$$

where $y \in V_0$ and $z \in V_0^\perp$.

- **Proof:** Suppose $V_0 = \{0\}$. Then $V_0^\perp = V$ and we can decompose x as $x = 0 + x$, with $0 \in V_0$ and $x \in V_0^\perp$.
- If $V_0 \neq \{0\}$, choose an orthonormal basis $\{v_1, \dots, v_k\}$ for V_0 . Extend it to an orthonormal basis $\{v_1, \dots, v_n\}$ of V .

Projection theorem

- **Theorem 12.6:** Let V_0 be a subspace of a finite dimensional inner product space V . Then every $x \in V$ decomposes uniquely as

$$x = y + z$$

where $y \in V_0$ and $z \in V_0^\perp$.

- **Proof:** Suppose $V_0 = \{0\}$. Then $V_0^\perp = V$ and we can decompose x as $x = 0 + x$, with $0 \in V_0$ and $x \in V_0^\perp$.
- If $V_0 \neq \{0\}$, choose an orthonormal basis $\{v_1, \dots, v_k\}$ for V_0 . Extend it to an orthonormal basis $\{v_1, \dots, v_n\}$ of V .
- Now we know that any $x \in V$ decomposes as

$$x = \sum_{j=1}^n \langle v_j, x \rangle v_j$$

Uniqueness

- ▶ Take

$$y = \sum_{j=1}^k \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^n \langle v_j, x \rangle v_j.$$

Uniqueness

- ▶ Take

$$y = \sum_{j=1}^k \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^n \langle v_j, x \rangle v_j.$$

- ▶ Clearly $y \in V_0$ and $z \in V_0^\perp$. This proves the existence.

Uniqueness

- ▶ Take

$$y = \sum_{j=1}^k \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^n \langle v_j, x \rangle v_j.$$

- ▶ Clearly $y \in V_0$ and $z \in V_0^\perp$. This proves the existence.
- ▶ Suppose $x = y + z$ and $x = y' + z'$ are two decompositions of x with $y, y' \in V_0$ and $z, z' \in V_0^\perp$.

Uniqueness

- ▶ Take

$$y = \sum_{j=1}^k \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^n \langle v_j, x \rangle v_j.$$

- ▶ Clearly $y \in V_0$ and $z \in V_0^\perp$. This proves the existence.
- ▶ Suppose $x = y + z$ and $x = y' + z'$ are two decompositions of x with $y, y' \in V_0$ and $z, z' \in V_0^\perp$.
- ▶ We have,

$$y + z = y' + z'.$$

Uniqueness

- ▶ Take

$$y = \sum_{j=1}^k \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^n \langle v_j, x \rangle v_j.$$

- ▶ Clearly $y \in V_0$ and $z \in V_0^\perp$. This proves the existence.
- ▶ Suppose $x = y + z$ and $x = y' + z'$ are two decompositions of x with $y, y' \in V_0$ and $z, z' \in V_0^\perp$.
- ▶ We have,

$$y + z = y' + z'.$$

- ▶ Therefore $y - y' = z' - z$. As $y, y' \in V_0$, $y - y' \in V_0$.

Uniqueness

- ▶ Take

$$y = \sum_{j=1}^k \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^n \langle v_j, x \rangle v_j.$$

- ▶ Clearly $y \in V_0$ and $z \in V_0^\perp$. This proves the existence.
- ▶ Suppose $x = y + z$ and $x = y' + z'$ are two decompositions of x with $y, y' \in V_0$ and $z, z' \in V_0^\perp$.
- ▶ We have,

$$y + z = y' + z'.$$

- ▶ Therefore $y - y' = z' - z$. As $y, y' \in V_0$, $y - y' \in V_0$.
- ▶ Also as $z, z' \in V_0^\perp$, $y - y' = z' - z \in V_0^\perp$.

Uniqueness

- ▶ Take

$$y = \sum_{j=1}^k \langle v_j, x \rangle v_j$$

and

$$z = \sum_{j=(k+1)}^n \langle v_j, x \rangle v_j.$$

- ▶ Clearly $y \in V_0$ and $z \in V_0^\perp$. This proves the existence.
- ▶ Suppose $x = y + z$ and $x = y' + z'$ are two decompositions of x with $y, y' \in V_0$ and $z, z' \in V_0^\perp$.
- ▶ We have,

$$y + z = y' + z'.$$

- ▶ Therefore $y - y' = z' - z$. As $y, y' \in V_0$, $y - y' \in V_0$.
- ▶ Also as $z, z' \in V_0^\perp$, $y - y' = z' - z \in V_0^\perp$.
- ▶ Hence $\langle y - y', y - y' \rangle = 0$. Consequently $y = y'$ and $z' = z$.
This proves the uniqueness.

A special case

- ▶ Suppose V is a finite dimensional inner product space and let y be a non-zero vector in V .

A special case

- ▶ Suppose V is a finite dimensional inner product space and let y be a non-zero vector in V .
- ▶ Consider the one dimensional space $V_0 = \{cy : c \in \mathbb{F}\}$.

A special case

- ▶ Suppose V is a finite dimensional inner product space and let y be a non-zero vector in V .
- ▶ Consider the one dimensional space $V_0 = \{cy : c \in \mathbb{F}\}$.
- ▶ Now $\{v\}$ is an ortho-normal basis for V_0 where

$$v = \frac{y}{\|y\|}.$$

A special case

- ▶ Suppose V is a finite dimensional inner product space and let y be a non-zero vector in V .
- ▶ Consider the one dimensional space $V_0 = \{cy : c \in \mathbb{F}\}$.
- ▶ Now $\{v\}$ is an ortho-normal basis for V_0 where

$$v = \frac{y}{\|y\|}.$$

- ▶ Therefore any $x \in V$ decomposes as $x = \langle v, x \rangle v + z$ where z is orthogonal to v .

A special case

- ▶ Suppose V is a finite dimensional inner product space and let y be a non-zero vector in V .
- ▶ Consider the one dimensional space $V_0 = \{cy : c \in \mathbb{F}\}$.
- ▶ Now $\{v\}$ is an ortho-normal basis for V_0 where

$$v = \frac{y}{\|y\|}.$$

- ▶ Therefore any $x \in V$ decomposes as $x = \langle v, x \rangle v + z$ where z is orthogonal to v .
- ▶ As shown in the previous lecture this is related to Cauchy-Schwarz inequality.

Example

- ▶ **Example 13.1:** Let $V = \mathbb{R}^n$ with the standard inner product. Let $V_0 = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i = 0\}$.

Example

- ▶ **Example 13.1:** Let $V = \mathbb{R}^n$ with the standard inner product. Let $V_0 = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i = 0\}$.
- ▶ We first analyze the case when $n = 3$. Now $V = \mathbb{R}^3$ and

$$V_0 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} : x_1 + x_2 + x_3 = 0 \right\}.$$

Example

- ▶ **Example 13.1:** Let $V = \mathbb{R}^n$ with the standard inner product. Let $V_0 = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i = 0\}$.
- ▶ We first analyze the case when $n = 3$. Now $V = \mathbb{R}^3$ and

$$V_0 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} : x_1 + x_2 + x_3 = 0 \right\}.$$

- ▶ One can see that

$$\left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\}$$

is a basis for V_0 .

Example

- ▶ **Example 13.1:** Let $V = \mathbb{R}^n$ with the standard inner product. Let $V_0 = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i = 0\}$.
- ▶ We first analyze the case when $n = 3$. Now $V = \mathbb{R}^3$ and

$$V_0 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} : x_1 + x_2 + x_3 = 0 \right\}.$$

- ▶ One can see that

$$\left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\}$$

is a basis for V_0 .

- ▶ Let us apply Gram-Schmidt on this to get an orthonormal basis for V_0 .

Continuation

- ▶ We get the first vector as

$$v_1 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix}.$$

Continuation

- We get the first vector as

$$v_1 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix}.$$

- Now take

$$\begin{aligned} w_2 &= \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} - \left\langle \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\rangle \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} \\ &= \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} - \begin{pmatrix} 1/2 \\ -1/2 \\ 0 \end{pmatrix} \\ &= \begin{pmatrix} 1/2 \\ 1/2 \\ -1 \end{pmatrix}. \end{aligned}$$

Continuation

► Now

$$v_2 = \frac{w_2}{\|w_2\|} = \begin{pmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \\ -2/\sqrt{6} \end{pmatrix}$$

Continuation

- ▶ Now

$$v_2 = \frac{w_2}{\|w_2\|} = \begin{pmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \\ -2/\sqrt{6} \end{pmatrix}$$

- ▶ $\{v_1, v_2\}$ is an ortho-normal basis for V_0 .

Continuation

► Now

$$v_2 = \frac{w_2}{\|w_2\|} = \begin{pmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \\ -2/\sqrt{6} \end{pmatrix}$$

- $\{v_1, v_2\}$ is an ortho-normal basis for V_0 .
- Given $x \in \mathbb{R}^3$, it decomposes as $y + z$, where $y \in V_0$, $z \in V_0^\perp$.

$$\begin{aligned} y &= \langle v_1, x \rangle v_1 + \langle v_2, x \rangle v_2 \\ &= \frac{x_1 - x_2}{\sqrt{2}} \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} + \frac{(x_1 + x_2 - 2x_3)}{\sqrt{6}} \begin{pmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \\ -2/\sqrt{6} \end{pmatrix} \\ &= \frac{1}{3} \begin{pmatrix} 2x_1 - x_2 - x_3 \\ -x_1 + 2x_2 - x_3 \\ -x_1 - x_2 + 2x_3 \end{pmatrix} \end{aligned}$$

Continuation

►
$$z = \frac{1}{3} \begin{pmatrix} x_1 + x_2 + x_3 \\ x_1 + x_2 + x_3 \\ x_1 + x_2 + x_3 \end{pmatrix}.$$

Continuation

- ▶ $z = \frac{1}{3} \begin{pmatrix} x_1 + x_2 + x_3 \\ x_1 + x_2 + x_3 \\ x_1 + x_2 + x_3 \end{pmatrix}.$
- ▶ For general n , with $\bar{x} = \frac{1}{n}(x_1 + x_2 + \cdots + x_n)$,

$$y = \begin{pmatrix} x_1 - \bar{x} \\ x_2 - \bar{x} \\ \vdots \\ x_n - \bar{x} \end{pmatrix}, \quad z = \begin{pmatrix} \bar{x} \\ \bar{x} \\ \vdots \\ \bar{x} \end{pmatrix}$$

Continuation

- ▶ $z = \frac{1}{3} \begin{pmatrix} x_1 + x_2 + x_3 \\ x_1 + x_2 + x_3 \\ x_1 + x_2 + x_3 \end{pmatrix}.$
- ▶ For general n , with $\bar{x} = \frac{1}{n}(x_1 + x_2 + \cdots + x_n)$,

$$y = \begin{pmatrix} x_1 - \bar{x} \\ x_2 - \bar{x} \\ \vdots \\ x_n - \bar{x} \end{pmatrix}, \quad z = \begin{pmatrix} \bar{x} \\ \bar{x} \\ \vdots \\ \bar{x} \end{pmatrix}$$

- ▶ It is easy to see that $y \in V_0$, $z \in (V_0)^\perp$ and $x = y + z$.

Projection as a linear map

- ▶ **Definition 13.2:** Let V_0 be a subspace of a finite dimensional inner product space V . Then **the projection on to V_0** , is the map

$$P : V \rightarrow V$$

defined by

$$P(x) = y$$

where $x = y + z$, with $y \in V_0, z \in (V_0)^\perp$.

Projection as a linear map

- ▶ **Definition 13.2:** Let V_0 be a subspace of a finite dimensional inner product space V . Then **the projection on to V_0** , is the map

$$P : V \rightarrow V$$

defined by

$$P(x) = y$$

where $x = y + z$, with $y \in V_0, z \in (V_0)^\perp$.

- ▶ Note that since every $x \in V$ decomposes uniquely as above, P is well-defined. If we want to emphasize the dependence of P on V_0 , we may denote it by P_{V_0} .

Projection as a linear map

- ▶ **Definition 13.2:** Let V_0 be a subspace of a finite dimensional inner product space V . Then **the projection on to V_0** , is the map

$$P : V \rightarrow V$$

defined by

$$P(x) = y$$

where $x = y + z$, with $y \in V_0, z \in (V_0)^\perp$.

- ▶ Note that since every $x \in V$ decomposes uniquely as above, P is well-defined. If we want to emphasize the dependence of P on V_0 , we may denote it by P_{V_0} .
- ▶ **Theorem 13.3:** Under the set up as above,

Projection as a linear map

- ▶ **Definition 13.2:** Let V_0 be a subspace of a finite dimensional inner product space V . Then **the projection on to V_0** , is the map

$$P : V \rightarrow V$$

defined by

$$P(x) = y$$

where $x = y + z$, with $y \in V_0, z \in (V_0)^\perp$.

- ▶ Note that since every $x \in V$ decomposes uniquely as above, P is well-defined. If we want to emphasize the dependence of P on V_0 , we may denote it by P_{V_0} .
- ▶ **Theorem 13.3:** Under the set up as above,
- ▶ (i) P is a linear map. (ii) $Px = x$ if and only if $x \in V_0$ and $Px = 0$ if and only if $x \in (V_0)^\perp$.

Projection as a linear map

- ▶ **Definition 13.2:** Let V_0 be a subspace of a finite dimensional inner product space V . Then **the projection on to V_0** , is the map

$$P : V \rightarrow V$$

defined by

$$P(x) = y$$

where $x = y + z$, with $y \in V_0, z \in (V_0)^\perp$.

- ▶ Note that since every $x \in V$ decomposes uniquely as above, P is well-defined. If we want to emphasize the dependence of P on V_0 , we may denote it by P_{V_0} .
- ▶ **Theorem 13.3:** Under the set up as above,
- ▶ (i) P is a linear map. (ii) $Px = x$ if and only if $x \in V_0$ and $Px = 0$ if and only if $x \in (V_0)^\perp$.
- ▶ (iii) $P(V) = V_0$.

Projection as a linear map

- ▶ **Definition 13.2:** Let V_0 be a subspace of a finite dimensional inner product space V . Then **the projection on to V_0** , is the map

$$P : V \rightarrow V$$

defined by

$$P(x) = y$$

where $x = y + z$, with $y \in V_0, z \in (V_0)^\perp$.

- ▶ Note that since every $x \in V$ decomposes uniquely as above, P is well-defined. If we want to emphasize the dependence of P on V_0 , we may denote it by P_{V_0} .
- ▶ **Theorem 13.3:** Under the set up as above,
 - ▶ (i) P is a linear map. (ii) $Px = x$ if and only if $x \in V_0$ and $Px = 0$ if and only if $x \in (V_0)^\perp$.
 - ▶ (iii) $P(V) = V_0$.
 - ▶ (iv) $P = P^2 = P^*$.

Projection as a linear map

- ▶ **Definition 13.2:** Let V_0 be a subspace of a finite dimensional inner product space V . Then **the projection on to V_0** , is the map

$$P : V \rightarrow V$$

defined by

$$P(x) = y$$

where $x = y + z$, with $y \in V_0, z \in (V_0)^\perp$.

- ▶ Note that since every $x \in V$ decomposes uniquely as above, P is well-defined. If we want to emphasize the dependence of P on V_0 , we may denote it by P_{V_0} .
- ▶ **Theorem 13.3:** Under the set up as above,
 - ▶ (i) P is a linear map. (ii) $Px = x$ if and only if $x \in V_0$ and $Px = 0$ if and only if $x \in (V_0)^\perp$.
 - ▶ (iii) $P(V) = V_0$.
 - ▶ (iv) $P = P^2 = P^*$.
 - ▶ (v) $P_{V_1} = I - P$ where $V_1 = (V_0)^\perp$.

Continuation

- ▶ **Proof.** If $V_0 = \{0\}$ then $P = 0$ and all the properties mentioned above are easy to see.

Continuation

- ▶ **Proof.** If $V_0 = \{0\}$ then $P = 0$ and all the properties mentioned above are easy to see.
- ▶ So assume $V_0 \neq \{0\}$.

Continuation

- ▶ **Proof.** If $V_0 = \{0\}$ then $P = 0$ and all the properties mentioned above are easy to see.
- ▶ So assume $V_0 \neq \{0\}$.
- ▶ (i). Let $\{v_1, \dots, v_k\}$ be an orthonormal basis of V_0 . Extend it to an orthonormal basis $\{v_1, v_2, \dots, v_n\}$ of V .
- ▶ Then we know that

$$P(x) = \sum_{j=1}^k \langle v_j, x \rangle v_j.$$

(Note that P does not depend upon the choice of this basis!)

Continuation

- ▶ **Proof.** If $V_0 = \{0\}$ then $P = 0$ and all the properties mentioned above are easy to see.
- ▶ So assume $V_0 \neq \{0\}$.
- ▶ (i). Let $\{v_1, \dots, v_k\}$ be an orthonormal basis of V_0 . Extend it to an orthonormal basis $\{v_1, v_2, \dots, v_n\}$ of V .
- ▶ Then we know that

$$P(x) = \sum_{j=1}^k \langle v_j, x \rangle v_j.$$

(Note that P does not depend upon the choice of this basis!)

- ▶ Since the inner product is linear in the second variable, P is a linear map. This proves (i).

Continuation

- ▶ (ii). We know that $x = \sum_{j=1}^n \langle v_j, x \rangle v_j$. Therefore $Px = x$ implies

$$\sum_{j=k+1}^n \langle v_j, x \rangle v_j = 0.$$

Therefore $x = \sum_{j=1}^k \langle v_j, x \rangle v_j$ and hence $x \in V_0$.

Continuation

- ▶ (ii). We know that $x = \sum_{j=1}^n \langle v_j, x \rangle v_j$. Therefore $Px = x$ implies

$$\sum_{j=k+1}^n \langle v_j, x \rangle v_j = 0.$$

Therefore $x = \sum_{j=1}^k \langle v_j, x \rangle v_j$ and hence $x \in V_0$.

- ▶ The converse is easy to see from the definition of P .

Continuation

- ▶ (ii). We know that $x = \sum_{j=1}^n \langle v_j, x \rangle v_j$. Therefore $Px = x$ implies

$$\sum_{j=k+1}^n \langle v_j, x \rangle v_j = 0.$$

Therefore $x = \sum_{j=1}^k \langle v_j, x \rangle v_j$ and hence $x \in V_0$.

- ▶ The converse is easy to see from the definition of P .
- ▶ Now if $Px = 0$, then $\sum_{j=1}^k \langle v_j, x \rangle v_j = 0$ and hence $x = \sum_{j=k+1}^n \langle v_j, x \rangle v_j$, that is, $x \in (V_0)^\perp$.

Continuation

- ▶ (ii). We know that $x = \sum_{j=1}^n \langle v_j, x \rangle v_j$. Therefore $Px = x$ implies

$$\sum_{j=k+1}^n \langle v_j, x \rangle v_j = 0.$$

Therefore $x = \sum_{j=1}^k \langle v_j, x \rangle v_j$ and hence $x \in V_0$.

- ▶ The converse is easy to see from the definition of P .
- ▶ Now if $Px = 0$, then $\sum_{j=1}^k \langle v_j, x \rangle v_j = 0$ and hence $x = \sum_{j=k+1}^n \langle v_j, x \rangle v_j$, that is, $x \in (V_0)^\perp$.
- ▶ Conversely if $x \in (V_0)^\perp$, then $x = \sum_{j=k+1}^n \langle v_j, x \rangle v_j$, and consequently $Px = 0$.

Continuation

- ▶ (ii). We know that $x = \sum_{j=1}^n \langle v_j, x \rangle v_j$. Therefore $Px = x$ implies

$$\sum_{j=k+1}^n \langle v_j, x \rangle v_j = 0.$$

Therefore $x = \sum_{j=1}^k \langle v_j, x \rangle v_j$ and hence $x \in V_0$.

- ▶ The converse is easy to see from the definition of P .
- ▶ Now if $Px = 0$, then $\sum_{j=1}^k \langle v_j, x \rangle v_j = 0$ and hence $x = \sum_{j=k+1}^n \langle v_j, x \rangle v_j$, that is, $x \in (V_0)^\perp$.
- ▶ Conversely if $x \in (V_0)^\perp$, then $x = \sum_{j=k+1}^n \langle v_j, x \rangle v_j$, and consequently $Px = 0$.
- ▶ This proves (ii).

Continuation

- ▶ (iii). We want to show $P(V) = V_0$.

Continuation

- ▶ (iii). We want to show $P(V) = V_0$.
- ▶ From the formula given for P , $Px \in V_0$ for every $x \in V$ and hence $P(V) \subseteq V_0$. Since $Px = x$ for every $x \in V_0$, the range of P includes whole of V_0 . This proves (iii).

Continuation

- ▶ (iii). We want to show $P(V) = V_0$.
- ▶ From the formula given for P , $Px \in V_0$ for every $x \in V$ and hence $P(V) \subseteq V_0$. Since $Px = x$ for every $x \in V_0$, the range of P includes whole of V_0 . This proves (iii).

Continuation

- ▶ (iii). We want to show $P(V) = V_0$.
- ▶ From the formula given for P , $Px \in V_0$ for every $x \in V$ and hence $P(V) \subseteq V_0$. Since $Px = x$ for every $x \in V_0$, the range of P includes whole of V_0 . This proves (iii).
- ▶ (iv). If $x = \sum_{j=1}^n c_j v_j$, then $Px = \sum_{j=1}^k c_j v_j$.

Continuation

- ▶ (iii). We want to show $P(V) = V_0$.
- ▶ From the formula given for P , $Px \in V_0$ for every $x \in V$ and hence $P(V) \subseteq V_0$. Since $Px = x$ for every $x \in V_0$, the range of P includes whole of V_0 . This proves (iii).
- ▶ (iv). If $x = \sum_{j=1}^n c_j v_j$, then $Px = \sum_{j=1}^k c_j v_j$.
- ▶ Now $P(P(x)) = P(\sum_{j=1}^k c_j v_j) = \sum_{j=1}^k c_j v_j = Px$.

Continuation

- ▶ (iii). We want to show $P(V) = V_0$.
- ▶ From the formula given for P , $Px \in V_0$ for every $x \in V$ and hence $P(V) \subseteq V_0$. Since $Px = x$ for every $x \in V_0$, the range of P includes whole of V_0 . This proves (iii).
- ▶ (iv). If $x = \sum_{j=1}^n c_j v_j$, then $Px = \sum_{j=1}^k c_j v_j$.
- ▶ Now $P(P(x)) = P(\sum_{j=1}^k c_j v_j) = \sum_{j=1}^k c_j v_j = Px$.
- ▶ Hence $P^2(x) = P(x)$ for every x , or $P^2 = P$.

Continuation

- ▶ Suppose x_1, x_2 are in V . Let $x_1 = y_1 + z_1$ and $x_2 = y_2 + z_2$ be the unique decompositions of x_1, x_2 so that

$$y_1, y_2 \in V_0; \quad z_1, z_2 \in V_0^\perp.$$

Continuation

- ▶ Suppose x_1, x_2 are in V . Let $x_1 = y_1 + z_1$ and $x_2 = y_2 + z_2$ be the unique decompositions of x_1, x_2 so that

$$y_1, y_2 \in V_0; \quad z_1, z_2 \in V_0^\perp.$$

- ▶ Note that $\langle y_i, z_j \rangle = 0$ for all i, j .

Continuation

- ▶ Suppose x_1, x_2 are in V . Let $x_1 = y_1 + z_1$ and $x_2 = y_2 + z_2$ be the unique decompositions of x_1, x_2 so that

$$y_1, y_2 \in V_0; \quad z_1, z_2 \in V_0^\perp.$$

- ▶ Note that $\langle y_i, z_j \rangle = 0$ for all i, j .
- ▶ Now

$$\langle Px_1, x_2 \rangle = \langle y_1, y_2 + z_2 \rangle = \langle y_1, y_2 \rangle.$$

Continuation

- ▶ Suppose x_1, x_2 are in V . Let $x_1 = y_1 + z_1$ and $x_2 = y_2 + z_2$ be the unique decompositions of x_1, x_2 so that

$$y_1, y_2 \in V_0; \quad z_1, z_2 \in V_0^\perp.$$

- ▶ Note that $\langle y_i, z_j \rangle = 0$ for all i, j .
- ▶ Now

$$\langle Px_1, x_2 \rangle = \langle y_1, y_2 + z_2 \rangle = \langle y_1, y_2 \rangle.$$

- ▶ Similarly,

$$\langle x_1, Px_2 \rangle = \langle y_1 + z_1, y_2 \rangle = \langle y_1, y_2 \rangle.$$

Continuation

- ▶ Suppose x_1, x_2 are in V . Let $x_1 = y_1 + z_1$ and $x_2 = y_2 + z_2$ be the unique decompositions of x_1, x_2 so that

$$y_1, y_2 \in V_0; \quad z_1, z_2 \in V_0^\perp.$$

- ▶ Note that $\langle y_i, z_j \rangle = 0$ for all i, j .
- ▶ Now

$$\langle Px_1, x_2 \rangle = \langle y_1, y_2 + z_2 \rangle = \langle y_1, y_2 \rangle.$$

- ▶ Similarly,

$$\langle x_1, Px_2 \rangle = \langle y_1 + z_1, y_2 \rangle = \langle y_1, y_2 \rangle.$$

- ▶ Consequently,

$$\langle Px_1, x_2 \rangle = \langle x_1, Px_2 \rangle$$

for all x_1, x_2 in V .

Continuation

- ▶ Suppose x_1, x_2 are in V . Let $x_1 = y_1 + z_1$ and $x_2 = y_2 + z_2$ be the unique decompositions of x_1, x_2 so that

$$y_1, y_2 \in V_0; \quad z_1, z_2 \in V_0^\perp.$$

- ▶ Note that $\langle y_i, z_j \rangle = 0$ for all i, j .
- ▶ Now

$$\langle Px_1, x_2 \rangle = \langle y_1, y_2 + z_2 \rangle = \langle y_1, y_2 \rangle.$$

- ▶ Similarly,

$$\langle x_1, Px_2 \rangle = \langle y_1 + z_1, y_2 \rangle = \langle y_1, y_2 \rangle.$$

- ▶ Consequently,

$$\langle Px_1, x_2 \rangle = \langle x_1, Px_2 \rangle$$

for all x_1, x_2 in V .

- ▶ This shows that $P^* = P$ from the defining property of the adjoint of P .

Continuation

- ▶ (v). If $x = \sum_{j=1}^n c_j v_j$,

$$P_{V_0}(x) = \sum_{j=1}^k c_j v_j, \quad P_{V_1}(x) = \sum_{j=k+1}^n c_j v_j.$$

Continuation

- ▶ (v). If $x = \sum_{j=1}^n c_j v_j$,

$$P_{V_0}(x) = \sum_{j=1}^k c_j v_j, \quad P_{V_1}(x) = \sum_{j=k+1}^n c_j v_j.$$

- ▶ From these formulae, it is easy to see that $P_{V_1} = 1 - P_{V_0}$.

Continuation

- ▶ (v). If $x = \sum_{j=1}^n c_j v_j$,

$$P_{V_0}(x) = \sum_{j=1}^k c_j v_j, \quad P_{V_1}(x) = \sum_{j=k+1}^n c_j v_j.$$

- ▶ From these formulae, it is easy to see that $P_{V_1} = 1 - P_{V_0}$.
- ▶ This completes the proof Theorem 13.2.

Continuation

- ▶ (v). If $x = \sum_{j=1}^n c_j v_j$,

$$P_{V_0}(x) = \sum_{j=1}^k c_j v_j, \quad P_{V_1}(x) = \sum_{j=k+1}^n c_j v_j.$$

- ▶ From these formulae, it is easy to see that $P_{V_1} = 1 - P_{V_0}$.
- ▶ This completes the proof Theorem 13.2.
- ▶ **Remark 13.4:** Observe that $P_{\{0\}} = 0$ and $P_V = I$. In particular,

$$P_V(x) = x = \sum_{j=1}^n \langle v_j, x \rangle v_j$$

independent of the choice of the basis.

Continuation

- ▶ (v). If $x = \sum_{j=1}^n c_j v_j$,

$$P_{V_0}(x) = \sum_{j=1}^k c_j v_j, \quad P_{V_1}(x) = \sum_{j=k+1}^n c_j v_j.$$

- ▶ From these formulae, it is easy to see that $P_{V_1} = 1 - P_{V_0}$.
- ▶ This completes the proof Theorem 13.2.
- ▶ **Remark 13.4:** Observe that $P_{\{0\}} = 0$ and $P_V = I$. In particular,

$$P_V(x) = x = \sum_{j=1}^n \langle v_j, x \rangle v_j$$

independent of the choice of the basis.

- ▶ We have just revisited our formula for the expansion of x in terms of an orthonormal basis.

Distance between sets

- ▶ **Notation:** Let A, B be non-empty subsets of an inner product space V and let $a \in V$. Then

$$d(A, B) := \inf\{d(a, b) : a \in A, b \in B\}$$

and

$$d(a, B) := \inf\{d(a, b) : b \in B\}.$$

Distance between sets

- ▶ **Notation:** Let A, B be non-empty subsets of an inner product space V and let $a \in V$. Then

$$d(A, B) := \inf\{d(a, b) : a \in A, b \in B\}$$

and

$$d(a, B) := \inf\{d(a, b) : b \in B\}.$$

- ▶ We may informally call $d(A, B)$ as the distance between A, B and $d(a, B)$ as the distance between a and B . But note that now we may have $d(A, B) = 0$ without having $A = B$.

Distance between sets

- ▶ **Notation:** Let A, B be non-empty subsets of an inner product space V and let $a \in V$. Then

$$d(A, B) := \inf\{d(a, b) : a \in A, b \in B\}$$

and

$$d(a, B) := \inf\{d(a, b) : b \in B\}.$$

- ▶ We may informally call $d(A, B)$ as the distance between A, B and $d(a, B)$ as the distance between a and B . But note that now we may have $d(A, B) = 0$ without having $A = B$.
- ▶ In general, $d(a, B)$ may not be attained at any point in B . Also when it is attained it may not be at some unique point in B .

Distance between sets

- ▶ **Notation:** Let A, B be non-empty subsets of an inner product space V and let $a \in V$. Then

$$d(A, B) := \inf\{d(a, b) : a \in A, b \in B\}$$

and

$$d(a, B) := \inf\{d(a, b) : b \in B\}.$$

- ▶ We may informally call $d(A, B)$ as the distance between A, B and $d(a, B)$ as the distance between a and B . But note that now we may have $d(A, B) = 0$ without having $A = B$.
- ▶ In general, $d(a, B)$ may not be attained at any point in B . Also when it is attained it may not be at some unique point in B .
- ▶ **Example 14.1:** Take $V = \mathbb{R}^2$. Take $a = (1, 0)$. Consider $B_1 = \{(x_1, x_2) : x_1 < 0\}$ and $B_2 = \{(x_1, x_2) : |x_1 - 1| \geq 1\}$

Distance between sets

- ▶ **Notation:** Let A, B be non-empty subsets of an inner product space V and let $a \in V$. Then

$$d(A, B) := \inf\{d(a, b) : a \in A, b \in B\}$$

and

$$d(a, B) := \inf\{d(a, b) : b \in B\}.$$

- ▶ We may informally call $d(A, B)$ as the distance between A, B and $d(a, B)$ as the distance between a and B . But note that now we may have $d(A, B) = 0$ without having $A = B$.
- ▶ In general, $d(a, B)$ may not be attained at any point in B . Also when it is attained it may not be at some unique point in B .
- ▶ **Example 14.1:** Take $V = \mathbb{R}^2$. Take $a = (1, 0)$. Consider $B_1 = \{(x_1, x_2) : x_1 < 0\}$ and $B_2 = \{(x_1, x_2) : |x_1 - 1| \geq 1\}$
- ▶ Then $d(a, B_1) = 1$ is not attained at any point. $d(a, B_2) = 1$ gets attained at two points.

Best approximation property

- **Theorem 14.2:** Let V_0 be a subspace of an inner product space V . Let P be the projection onto V_0 . Then for $x \in V$,

$$d(x, V_0) = d(x, Px).$$

Moreover, Px is the unique point v such that
 $d(x, v) = d(x, V_0)$.

Best approximation property

- **Theorem 14.2:** Let V_0 be a subspace of an inner product space V . Let P be the projection onto V_0 . Then for $x \in V$,

$$d(x, V_0) = d(x, Px).$$

Moreover, Px is the unique point v such that $d(x, v) = d(x, V_0)$.

- This theorem tells us that Px is the unique '**best approximation**' for x in V_0 .

Best approximation property

- **Theorem 14.2:** Let V_0 be a subspace of an inner product space V . Let P be the projection onto V_0 . Then for $x \in V$,

$$d(x, V_0) = d(x, Px).$$

Moreover, Px is the unique point v such that $d(x, v) = d(x, V_0)$.

- This theorem tells us that Px is the unique 'best approximation' for x in V_0 .
- **Proof:** Suppose $x = y + z$, is the unique decomposition of x , with $y \in V_0, z \in V_0^\perp$.

Continuation

- We have $Px = y$. Now consider any $v \in V_0$. Due to orthogonality of $y - v$ and z , we get

Continuation

- ▶ We have $Px = y$. Now consider any $v \in V_0$. Due to orthogonality of $y - v$ and z , we get
- ▶

$$\begin{aligned}\|x - v\|^2 &= \|(y + z) - v\|^2 \\ &= \langle (y - v) + z, (y - v) + z \rangle \\ &= \|(y - v)\|^2 + \|z\|^2.\end{aligned}$$

Continuation

- ▶ We have $Px = y$. Now consider any $v \in V_0$. Due to orthogonality of $y - v$ and z , we get
- ▶

$$\begin{aligned}\|x - v\|^2 &= \|(y + z) - v\|^2 \\ &= \langle (y - v) + z, (y - v) + z \rangle \\ &= \|(y - v)\|^2 + \|z\|^2.\end{aligned}$$

- ▶ Hence

$$\inf_{v \in V_0} \|x - v\|^2 = \|z\|^2$$

and the infimum is attained only at $v = y$.

Continuation

- ▶ We have $Px = y$. Now consider any $v \in V_0$. Due to orthogonality of $y - v$ and z , we get
- ▶

$$\begin{aligned}\|x - v\|^2 &= \|(y + z) - v\|^2 \\ &= \langle (y - v) + z, (y - v) + z \rangle \\ &= \|(y - v)\|^2 + \|z\|^2.\end{aligned}$$

- ▶ Hence

$$\inf_{v \in V_0} \|x - v\|^2 = \|z\|^2$$

and the infimum is attained only at $v = y$.

- ▶ This proves the theorem.

Continuation

- ▶ We have $Px = y$. Now consider any $v \in V_0$. Due to orthogonality of $y - v$ and z , we get
- ▶

$$\begin{aligned}\|x - v\|^2 &= \|(y + z) - v\|^2 \\ &= \langle (y - v) + z, (y - v) + z \rangle \\ &= \|(y - v)\|^2 + \|z\|^2.\end{aligned}$$

- ▶ Hence

$$\inf_{v \in V_0} \|x - v\|^2 = \|z\|^2$$

and the infimum is attained only at $v = y$.

- ▶ This proves the theorem.
- ▶ Note that we are using the 'Pythagoras theorem' of inner product spaces.

Example

- ▶ Consider the Example 13.1, where $V = \mathbb{R}^n$ and

Example

- ▶ Consider the Example 13.1, where $V = \mathbb{R}^n$ and
- ▶ $V_0 = \{x \in V : \sum_{j=1}^n x_j = 0\}$.

Example

- ▶ Consider the Example 13.1, where $V = \mathbb{R}^n$ and
- ▶ $V_0 = \{x \in V : \sum_{j=1}^n x_j = 0\}$.
- ▶

$$V_1 = (V_0)^\perp = \left\{ \begin{pmatrix} c \\ c \\ \vdots \\ c \end{pmatrix} : c \in \mathbb{R} \right\}.$$

Example

- ▶ Consider the Example 13.1, where $V = \mathbb{R}^n$ and
- ▶ $V_0 = \{x \in V : \sum_{j=1}^n x_j = 0\}$.
- ▶

$$V_1 = (V_0)^\perp = \left\{ \begin{pmatrix} c \\ c \\ \vdots \\ c \end{pmatrix} : c \in \mathbb{R} \right\}.$$

- ▶ Let P_1 be the projection onto V_1 .

Example

- ▶ Consider the Example 13.1, where $V = \mathbb{R}^n$ and
- ▶ $V_0 = \{x \in V : \sum_{j=1}^n x_j = 0\}$.
- ▶

$$V_1 = (V_0)^\perp = \left\{ \begin{pmatrix} c \\ c \\ \vdots \\ c \end{pmatrix} : c \in \mathbb{R} \right\}.$$

- ▶ Let P_1 be the projection onto V_1 .
- ▶ Then $P_1 x = \frac{1}{n}(x_1 + \cdots + x_n) =: \bar{x}$.

Continuation

- ▶ So the best approximation for $x = (x_1, \dots, x_n)$ among constant sequences is $(\bar{x}, \dots, \bar{x})$.

Continuation

- ▶ So the best approximation for $x = (x_1, \dots, x_n)$ among constant sequences is $(\bar{x}, \dots, \bar{x})$.
- ▶ In other words, we have proved the theorem

$$\inf_{c \in \mathbb{R}} \sum_{j=1}^n (x_j - c)^2 = \sum_{j=1}^n (x_j - \bar{x})^2.$$

Continuation

- ▶ So the best approximation for $x = (x_1, \dots, x_n)$ among constant sequences is $(\bar{x}, \dots, \bar{x})$.
- ▶ In other words, we have proved the theorem

$$\inf_{c \in \mathbb{R}} \sum_{j=1}^n (x_j - c)^2 = \sum_{j=1}^n (x_j - \bar{x})^2.$$

- ▶ This value is n times the variance of the tuple $\{x_1, \dots, x_n\}$. In other words,

$$\inf_{c \in \mathbb{R}} \frac{1}{n} \sum_{j=1}^n (x_j - c)^2 = \text{Var } \{x_1, \dots, x_n\},$$

and the infimum gets attained only at \bar{x} .

Continuation

- ▶ So the best approximation for $x = (x_1, \dots, x_n)$ among constant sequences is $(\bar{x}, \dots, \bar{x})$.
- ▶ In other words, we have proved the theorem

$$\inf_{c \in \mathbb{R}} \sum_{j=1}^n (x_j - c)^2 = \sum_{j=1}^n (x_j - \bar{x})^2.$$

- ▶ This value is n times the variance of the tuple $\{x_1, \dots, x_n\}$. In other words,

$$\inf_{c \in \mathbb{R}} \frac{1}{n} \sum_{j=1}^n (x_j - c)^2 = \text{Var } \{x_1, \dots, x_n\},$$

and the infimum gets attained only at \bar{x} .

- ▶ Exercise: Work out more examples.

Example

► Example 14.3: Consider $V = \mathbb{R}^2$. Let

$$V_0 = \left\{ c \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} : c \in \mathbb{R} \right\} \text{ where } \theta \text{ is a fixed real number.}$$

Write down the matrix of the projection onto V_0 .

Example

► Example 14.3: Consider $V = \mathbb{R}^2$. Let

$$V_0 = \left\{ c \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} : c \in \mathbb{R} \right\} \text{ where } \theta \text{ is a fixed real number.}$$

Write down the matrix of the projection onto V_0 .

► Solution. We take

$$P = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \cdot \begin{pmatrix} \cos \theta & \sin \theta \end{pmatrix}.$$

Example

- ▶ Example 14.3: Consider $V = \mathbb{R}^2$. Let

$$V_0 = \left\{ c \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} : c \in \mathbb{R} \right\} \text{ where } \theta \text{ is a fixed real number.}$$

Write down the matrix of the projection onto V_0 .

- ▶ Solution. We take

$$P = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \cdot \begin{pmatrix} \cos \theta & \sin \theta \end{pmatrix}.$$

- ▶ Then for any vector $x \in \mathbb{R}^2$,

$$Px = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \cdot \begin{pmatrix} \cos \theta & \sin \theta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = v \langle v, x \rangle = \langle v, x \rangle \cdot v,$$

Example

- ▶ Example 14.3: Consider $V = \mathbb{R}^2$. Let

$$V_0 = \left\{ c \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} : c \in \mathbb{R} \right\} \text{ where } \theta \text{ is a fixed real number.}$$

Write down the matrix of the projection onto V_0 .

- ▶ Solution. We take

$$P = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \cdot \begin{pmatrix} \cos \theta & \sin \theta \end{pmatrix}.$$

- ▶ Then for any vector $x \in \mathbb{R}^2$,

$$Px = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \cdot \begin{pmatrix} \cos \theta & \sin \theta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = v \langle v, x \rangle = \langle v, x \rangle \cdot v,$$

- ▶ where

$$v = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}.$$

Continuation

- ▶ Observe that $\{v\}$ is an orthonormal basis for V_0 .

Continuation

- ▶ Observe that $\{v\}$ is an orthonormal basis for V_0 .
- ▶ Therefore P given as above, that is,

$$P = \begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix},$$

is the projection on to V_0 .

Continuation

- ▶ Observe that $\{v\}$ is an orthonormal basis for V_0 .
- ▶ Therefore P given as above, that is,

$$P = \begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix},$$

is the projection on to V_0 .

- ▶ You may verify $P = P^2 = P^*$ and $P(\mathbb{R}^2) = V_0$.

Continuation

- ▶ Observe that $\{v\}$ is an orthonormal basis for V_0 .
- ▶ Therefore P given as above, that is,

$$P = \begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix},$$

is the projection on to V_0 .

- ▶ You may verify $P = P^2 = P^*$ and $P(\mathbb{R}^2) = V_0$.

Continuation

- ▶ Observe that $\{v\}$ is an orthonormal basis for V_0 .
- ▶ Therefore P given as above, that is,

$$P = \begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix},$$

is the projection on to V_0 .

- ▶ You may verify $P = P^2 = P^*$ and $P(\mathbb{R}^2) = V_0$.
- ▶ **END OF LECTURE 14.**