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Lecture 14: Best approximation property of projections

I We recall: Definition 12.1. Let S be a non-empty subset of an
inner product space V . Then the orthogonal complement of S
is defined as:

S⊥ = {v ∈ V : 〈x , v〉 = 0, ∀x ∈ S}.

I Example 12.2: Consider S ⊂ R3 where

S = {

 1
−1
0

 ,

 0
1
−1

}
I Then

S⊥ = {

 c
c
c

 : c ∈ R}.
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Continuation

I Proposition 12.2: Let S be a non-empty subset of an inner
product space V . Then S⊥ is a subspace of V . Further,
(S⊥)⊥ is a subspace containing S .

I Proof: We recall the definition of S⊥:

S⊥ = {v ∈ V : 〈x , v〉 = 0, ∀x ∈ S}.

I Now if v ,w ∈ S⊥ and c , d ∈ F: For x ∈ S ,

〈x , cv + dw〉 = c〈x , v〉+ d〈x ,w〉 = c .0 + d .0 = 0.

I Hence cv + dw ∈ S⊥. This proves that S⊥ is a subspace of V .

I It is easy to see that if x ∈ S then x ∈ (S⊥)⊥. Therefore
S ⊆ (S⊥)⊥.

I We have already seen that orthogonal complement of any
non-empty subset is a subspace. In particular, (S⊥)⊥ is a
subspace.
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R2 in R3

I Consider V = R3 with standard inner product.

I Consider the subspace

V0 = {

 x1
x2
0

 : x1, x2 ∈ R}

I Take V1 = (V0)⊥.

I Clearly,

V1 = {

 0
0
x3

 : x3 ∈ R}.
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Continuation

I We see that any vector x ∈ V decomposes uniquely as
x = y + z with y ∈ V0 and z ∈ V1.

I Indeed for

x =

 x1
x2
x3


the only choice is:

y =

 x1
x2
0

 ; z =

 0
0
x3

 .

I We want to show that this is a general phenomenon.
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Extending bases and orthonormal bases

I Theorem 12.4: Let V0 be a non-trivial subspace of a finite
dimensional vector space V . Then any basis of V0 extends to
a basis of V , that is, if {v1, v2, . . . , vk} is a basis of V0 then
there exists {vk+1, . . . , vn} such that {v1, . . . , vn} is a basis of
V .

I Proof: Take
Mk := span {v1, v2, . . . , vk}

I If Mk = V then V0 = V , {v1, . . . , vk} is a basis for V and so
no extension is required.

I If not, choose any vk+1 ∈ V \Mk . Then {v1, . . . , vk+1} is a
linearly independent set (Why?). Take

Mk+1 := span{v1, . . . , vk+1}.

I If V = Mk+1 then {v1, . . . , vk+1} is a basis for V and we are
done. If not, take vk+2 ∈ V \Mk+1 and continue the induction
process.
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Continuation

I The process terminates after a finite number of steps as V is
finite dimensional and so it can have at most dim (V ) linearly
independent elements.

I Therefore V = Mn for some n and {v1, . . . , vn} is a basis for
V .
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Extending orthonormal bases

I Theorem 12.5: Let V0 be a non-trivial subspace of a finite
dimensional inner product space V . Then any orthonormal
basis of V0 extends to an orthonormal basis of V , that is, if
{v1, v2, . . . , vk} is an orthonormal basis of V0 then there exists
{vk+1, . . . , vn} such that {v1, . . . , vn} is an orthonormal basis
of V .

I Proof: By the previous theorem we may extend {v1, . . . , vk}
to a basis {v1, . . . , vk ,wk+1, . . . ,wn} of V .

I Now apply the Gram-Schmidt procedure on
{v1, . . . , vk ,wk+1, . . . ,wn} to get an ortho-normal basis
{e1, . . . , en} of V .

I It is an elementary exercise to see that ej = vj for 1 ≤ j ≤ k
as v1, . . . , vk are already orthonormal. �



Extending orthonormal bases

I Theorem 12.5: Let V0 be a non-trivial subspace of a finite
dimensional inner product space V . Then any orthonormal
basis of V0 extends to an orthonormal basis of V , that is, if
{v1, v2, . . . , vk} is an orthonormal basis of V0 then there exists
{vk+1, . . . , vn} such that {v1, . . . , vn} is an orthonormal basis
of V .

I Proof: By the previous theorem we may extend {v1, . . . , vk}
to a basis {v1, . . . , vk ,wk+1, . . . ,wn} of V .

I Now apply the Gram-Schmidt procedure on
{v1, . . . , vk ,wk+1, . . . ,wn} to get an ortho-normal basis
{e1, . . . , en} of V .

I It is an elementary exercise to see that ej = vj for 1 ≤ j ≤ k
as v1, . . . , vk are already orthonormal. �



Extending orthonormal bases

I Theorem 12.5: Let V0 be a non-trivial subspace of a finite
dimensional inner product space V . Then any orthonormal
basis of V0 extends to an orthonormal basis of V , that is, if
{v1, v2, . . . , vk} is an orthonormal basis of V0 then there exists
{vk+1, . . . , vn} such that {v1, . . . , vn} is an orthonormal basis
of V .

I Proof: By the previous theorem we may extend {v1, . . . , vk}
to a basis {v1, . . . , vk ,wk+1, . . . ,wn} of V .

I Now apply the Gram-Schmidt procedure on
{v1, . . . , vk ,wk+1, . . . ,wn} to get an ortho-normal basis
{e1, . . . , en} of V .

I It is an elementary exercise to see that ej = vj for 1 ≤ j ≤ k
as v1, . . . , vk are already orthonormal. �



Extending orthonormal bases

I Theorem 12.5: Let V0 be a non-trivial subspace of a finite
dimensional inner product space V . Then any orthonormal
basis of V0 extends to an orthonormal basis of V , that is, if
{v1, v2, . . . , vk} is an orthonormal basis of V0 then there exists
{vk+1, . . . , vn} such that {v1, . . . , vn} is an orthonormal basis
of V .

I Proof: By the previous theorem we may extend {v1, . . . , vk}
to a basis {v1, . . . , vk ,wk+1, . . . ,wn} of V .

I Now apply the Gram-Schmidt procedure on
{v1, . . . , vk ,wk+1, . . . ,wn} to get an ortho-normal basis
{e1, . . . , en} of V .

I It is an elementary exercise to see that ej = vj for 1 ≤ j ≤ k
as v1, . . . , vk are already orthonormal. �



Orthogonal complement of a subspace

I Consider the set up as above, that is, V0 is a non-trivial
subspace of a finite dimensional inner product space V .
Suppose {v1, . . . , vk} is an orthonormal basis of V0 and
{v1, . . . , vn} is an orthonormal basis of V .

I Take
V1 = span {vk+1, . . . , vn}.

I We claim that V1 = (V0)⊥ and {vk+1, . . . , vn} is an
ortho-normal basis of V1.

I The second part is obvious. We only need to prove
V1 = (V0)⊥.

I Note that 〈vi , vj〉 = 0 for all 1 ≤ i ≤ k and (k + 1) ≤ j ≤ n

I Therefore 〈
∑k

i=1 civi ,
∑n

j=(k+1) cjvj〉 for any scalars c1, . . . , cn.

I This shows 〈x , y〉 = 0 for all x ∈ V0 and y ∈ V1. Hence
V1 ⊆ (V0)⊥.
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Projection theorem

I Theorem 12.6: Let V0 be a subspace of a finite dimensional
inner product space V . Then every x ∈ V decomposes
uniquely as

x = y + z

where y ∈ V0 and z ∈ V⊥0 .

I Proof: Suppose V0 = {0}. Then V⊥0 = V and we can
decompose x as x = 0 + x , with 0 ∈ V0 and x ∈ V⊥0 .

I If V0 6= {0}, choose an orthonormal basis {v1, . . . , vk} for V0.
Extend it to an orthonormal basis {v1, . . . , vn} of V .

I Now we know that any x ∈ V decomposes as

x =
n∑

j=1

〈vj , x〉vj
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Uniqueness

I Take

y =
k∑

j=1

〈vj , x〉vj

and

z =
n∑

j=(k+1)

〈vj , x〉vj .

I Clearly y ∈ V0 and z ∈ V⊥0 . This proves the existence.
I Suppose x = y + z and x = y ′ + z ′ are two decompositions of

x with y , y ′ ∈ V0 and z , z ′ ∈ V⊥0 .
I We have,

y + z = y ′ + z ′.

I Therefore y − y ′ = z ′ − z . As y , y ′ ∈ V0, y − y ′ ∈ V0.
I Also as z , z ′ ∈ V⊥0 , y − y ′ = z ′ − z ∈ V⊥0 .
I Hence 〈y − y ′, y − y ′〉 = 0. Consequently y = y ′ and z ′ = z .

This proves the uniqueness.
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A special case

I Suppose V is a finite dimensional inner product space and let
y be a non-zero vector in V .

I Consider the one dimensional space V0 = {cy : c ∈ F}.
I Now {v} is an ortho-normal basis for V0 where

v =
y

‖y‖
.

I Therefore any x ∈ V decomposes as x = 〈v , x〉v + z where z
is orthogonal to v .

I As shown in the previous lecture this is related to
Cauchy-Schwarz inequality.
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Example

I Example 13.1: Let V = Rn with the standard inner product.
Let V0 = {x ∈ Rn :

∑n
i=1 xi = 0}.

I We first analyze the case when n = 3. Now V = R3 and

V0 = {

 x1
x2
x3

 : x1 + x2 + x3 = 0}.

I One can see that

{

 1
−1
0

 ,

 1
0
−1

}
is a basis for V0.

I Let us apply Gram-Schmidt on this to get an orthonormal
basis for V0.
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Continuation

I We get the first vector as

v1 =

 1/
√

2

−1/
√

2
0

 .

I Now take

w2 =

 1
0
−1

− 〈
 1/

√
2

−1/
√

2
0
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 1
0
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 1/

√
2

−1/
√

2
0


=

 1
0
−1

−
 1/2
−1/2

0


=

 1/2
1/2
−1

 .
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Continuation

I Now

v2 =
w2

‖w2‖
=

 1/
√

6

1/
√

6

−2/
√

6



I {v1, v2} is an ortho-normal basis for V0.

I Given x ∈ R3, it decomposes as y + z , where y ∈ V0, z ∈ V⊥0 .

y = 〈v1, x〉v1 + 〈v2, x〉v2
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3
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−x1 − x2 + 2x3
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Continuation

I z = 1
3

 x1 + x2 + x3
x1 + x2 + x3
x1 + x2 + x3

 .

I For general n, with x = 1
n (x1 + x2 + · · ·+ xn),

y =


x1 − x
x2 − x

...
xn − x

 , z =


x
x
...
x


I It is easy to see that y ∈ V0, z ∈ (V0)⊥ and x = y + z .
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Projection as a linear map

I Definition 13.2: Let V0 be a subspace of a finite dimensional
inner product space V . Then the projection on to V0, is the
map

P : V → V

defined by
P(x) = y

where x = y + z , with y ∈ V0, z ∈ (V0)⊥.

I Note that since every x ∈ V decomposes uniquely as above, P
is well-defined. If we want to emphasize the dependence of P
on V0, we may denote it by PV0 .

I Theorem 13.3: Under the set up as above,
I (i) P is a linear map. (ii) Px = x if and only if x ∈ V0 and

Px = 0 if and only if x ∈ (V0)⊥.
I (iii) P(V ) = V0.
I (iv) P = P2 = P∗.
I (v) PV1 = I − P where V1 = (V0)⊥.
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is well-defined. If we want to emphasize the dependence of P
on V0, we may denote it by PV0 .

I Theorem 13.3: Under the set up as above,

I (i) P is a linear map. (ii) Px = x if and only if x ∈ V0 and
Px = 0 if and only if x ∈ (V0)⊥.

I (iii) P(V ) = V0.
I (iv) P = P2 = P∗.
I (v) PV1 = I − P where V1 = (V0)⊥.
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Continuation

I Proof. If V0 = {0} then P = 0 and all the properties
mentioned above are easy to see.

I So assume V0 6= {0}.
I (i). Let {v1, . . . , vk} be an orthonormal basis of V0. Extend it

to an orthonormal basis {v1, v2, . . . , vn} of V .

I Then we know that

P(x) =
k∑

j=1

〈vj , x〉vj .

(Note that P does not depend upon the choice of this basis!)

I Since the inner product is linear in the second variable, P is a
linear map. This proves (i).
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Continuation

I (ii). We know that x =
∑n

j=1〈vj , x〉vj . Therefore Px = x
implies

n∑
j=k+1

〈vj , x〉vj = 0.

Therefore x =
∑k

j=1〈vj , x〉vj and hence x ∈ V0.

I The converse is easy to see from the definition of P.

I Now if Px = 0, then
∑k

j=1〈vj , x〉vj = 0 and hence

x =
∑n

j=k+1〈vj , x〉vj , that is, x ∈ (V0)⊥.

I Conversely if x ∈ (V0)⊥, then x =
∑n

j=k+1〈vj , x〉vj , and
consequently Px = 0.

I This proves (ii).
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Continuation

I (iii). We want to show P(V ) = V0.

I From the formula given for P, Px ∈ V0 for every x ∈ V and
hence P(V ) ⊆ V0. Since Px = x for every x ∈ V0, the range
of P includes whole of V0. This proves (iii).

I (iv). If x =
∑n

j=1 cjvj , then Px =
∑k

j=1 cjvj .

I Now P(P(x)) = P(
∑k

j=1 cjvj) =
∑k

j=1 cjvj = Px .

I Hence P2(x) = P(x) for every x , or P2 = P.
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Continuation

I Suppose x1, x2 are in V . Let x1 = y1 + z1 and x2 = y2 + z2 be
the unique decompositions of x1, x2 so that

y1, y2 ∈ V0; z1, z2 ∈ V⊥0 .

I Note that 〈yi , zj〉 = 0 for all i , j .

I Now
〈Px1, x2〉 = 〈y1, y2 + z2〉 = 〈y1, y2〉.

I Similarly,

〈x1,Px2〉 = 〈y1 + z1, y2〉 = 〈y1, y2〉.

I Consequently,
〈Px1, x2〉 = 〈x1,Px2〉

for all x1, x2 in V .

I This shows that P∗ = P from the defining property of the
adjoint of P.
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Continuation

I (v). If x =
∑n

j=1 cjvj ,

PV0(x) =
k∑

j=1

cjvj , PV1(x) =
n∑

j=k+1

cjvj .

I From these formulae, it is easy to see that PV1 = 1− PV0 .

I This completes the proof Theorem 13.2.

I Remark 13.4: Observe that P{0} = 0 and PV = I . In
particular,

PV (x) = x =
n∑

j=1

〈vj , x〉vj

independent of the choice of the basis.

I We have just revisited our formula for the expansion of x in
terms of an orthonormal basis.
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Distance between sets

I Notation: Let A,B be non-empty subsets of an inner product
space V and let a ∈ V . Then

d(A,B) := inf{d(a, b) : a ∈ A, b ∈ B}

and
d(a,B) := inf{d(a, b) : b ∈ B}.

I We may informally call d(A,B) as the distance between A,B
and d(a,B) as the distance between a and B. But note that
now we may have d(A,B) = 0 without having A = B.

I In general, d(a,B) may not be attained at any point in B.
Also when it is attained it may not be at some unique point in
B.

I Example 14.1: Take V = R2. Take a = (1, 0). Consider
B1 = {(x1, x2) : x1 < 0} and B2 = {(x1, x2) : |x1 − 1| ≥ 1}

I Then d(a,B1) = 1 is not attained at any point. d(a,B2) = 1
gets attained at two points.
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now we may have d(A,B) = 0 without having A = B.

I In general, d(a,B) may not be attained at any point in B.
Also when it is attained it may not be at some unique point in
B.

I Example 14.1: Take V = R2. Take a = (1, 0). Consider
B1 = {(x1, x2) : x1 < 0} and B2 = {(x1, x2) : |x1 − 1| ≥ 1}

I Then d(a,B1) = 1 is not attained at any point. d(a,B2) = 1
gets attained at two points.



Best approximation property

I Theorem 14.2: Let V0 be a subspace of an inner product
space V . Let P be the projection onto V0. Then for x ∈ V ,

d(x ,V0) = d(x ,Px).

Moreover, Px is the unique point v such that
d(x , v) = d(x ,V0).

I This theorem tells us that Px is the unique ‘best
approximation’ for x in V0.

I Proof: Suppose x = y + z , is the unique decomposition of x ,
with y ∈ V0, z ∈ V⊥0 .
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Continuation

I We have Px = y . Now consider any v ∈ V0. Due to
orthogonality of y − v and z , we get

I

‖x − v‖2 = ‖(y + z)− v‖2

= 〈(y − v) + z , (y − v) + z〉
= ‖(y − v)‖2 + ‖z‖2.

I Hence
inf
v∈V0

‖x − v‖2 = ‖z‖2

and the infimum is attained only at v = y .

I This proves the theorem.

I Note that we are using the ‘Pythagoras theorem’ of inner
product spaces.
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Example

I Consider the Example 13.1, where V = Rn and

I V0 = {x ∈ V :
∑n

j=1 xj = 0}.
I

V1 = (V0)⊥ = {


c
c
...
c

 : c ∈ R}.

I Let P1 be the projection onto V1.

I Then P1x = 1
n (x1 + · · ·+ xn) =: x .
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Continuation

I So the best approximation for x = (x1, . . . , xn) among
constant sequences is (x , . . . , x).

I In other words, we have proved the theorem

inf
c∈R

n∑
j=1

(xj − c)2 =
n∑

j=1

(xj − x)2.

I This value is n times the variance of the tuple {x1 . . . , xn}. In
other words,

inf
c∈R

1

n

n∑
j=1

(xj − c)2 = Var {x1, . . . , xn},

and the infimum gets attained only at x .

I Exercise: Work out more examples.
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Example

I Example 14.3: Consider V = R2. Let

V0 = {c
(

cos θ
sin θ

)
: c ∈ R} where θ is a fixed real number.

Write down the matrix of the projection onto V0.

I Solution. We take

P =

(
cos θ
sin θ

)
.
(

cos θ sin θ
)
.

I Then for any vector x ∈ R2,

Px =

(
cos θ
sin θ

)
.
(

cos θ sin θ
)( x1

x2

)
= v〈v , x〉 = 〈v , x〉.v ,

I where

v =

(
cos θ
sin θ

)
.
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Continuation

I Observe that {v} is an orthonormal basis for V0.

I Therefore P given as above, that is,

P =

[
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

]
,

is the projection on to V0.

I You may verify P = P2 = P∗ and P(R2) = V0.

I END OF LECTURE 14.
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