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Lecture 16: Eigenvalues and eigenvectors

» Definition 16.1: Let A be a real/complex square matrix. Then
the characteristic polynomial of A is defined as the polynomial

p(x) = det(xI — A).

> If A= [ajli<ij<n

X — aiil —d12 NN —dln
—ani X —az ... —aon
p(x) = det
—dn1 —dn2 ... X —anpn

» Note that the characteristic polynomial of an n x n matrix is
polynomial of degree n. Also its leading coefficient (the
coefficient of x") is equal to 1. Such polynomials are known
as monic polynomials.
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Example

2 -1 0
» Example 162: A=| 0 -3 -8
0 0 2

» Then the characteristic polynomial of A is given by,
p(x) = det(xl — A)

x 0 0 2 -1 0

= det(| 0 x 0| —[0 =3 —-8)
0 0 x 0 0 2
x—=2 +1 0

= det 0 x+3 +8
0 0 x—2i

= (x—=2)(x+3)(x —2i)

= (x> 4 x—6)(x —2i)

= x> 4 x% — 6x — 2ix? — 2ix 4 12i
x3 4 (1= 2i)x* — (6 + 2i)x + 12i
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for some A1, Ao, ..., A\, € C.
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Fundamental theorem of algebra

>

v

Theorem 16.3(Fundamental theorem of algebra): Let

p(x) = apx" 4+ ap_1x""1 + - 4 ag be a polynomial, with
neN ag,...,a, € C,a, #0. Then p factorizes uniquely (up
to permutation) as

p(x) = an(x = Ad)(x = A2) -+ (x = An)

for some A1, Ao, ..., A\, € C.

Note that A1,..., A, are roots of the polynomial, that is,
these are the complex numbers X such that p(\) = 0.

Some of the roots could be repeated. The number of times a
particular root A appears in the factorization is known as the
multiplicity of A. A complex polynomial of degree n has
exactly n roots (counting multiplicity).

We will be assuming this theorem without giving proof.
Example 16.4: Consider the polynomial p(x) = x? + 1.

We have p(x) = (x + i)(x — i). So the roots of p can be
complex even if the coefficients are real.
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Eigenvalues and eigenvectors of complex matrices

» Definition 16.5: Let A be a complex square matrix. Then the
eigenvalues of A are defined as roots of the characteristic
polynomial of A. The algebraic multiplicity of an eigenvalue A
is defined as the multiplicity of A in the factorization of the
characteristic polynomial of A.

» An n x n matrix A is also viewed as the linear map x — Ax on
C".

» Definition 16.6: Suppose A is an n x n complex matrix, and
A€ C. If x € C"is a non-zero vector such that Ax = \x,
then x is said to be an eigenvector with eigenvalue .

> |t is to be noted that if A € C has an eigenvector x:
Ax = Ax.

This means that (A/ — A)x = 0. In particular (Al — A) is not
injective, therefore det(Al — A) = 0 or p(\) = 0 where p is
the characteristic polynomial of A. So A is an eigenvalue.
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Geometric multiplicity

» Definition 16.7: Let A be an n x n complex matrix. Then the
geometric multiplicity of an eigenvalue A is defined as the
dimension of the kernel of (A — A), that is, the dimension of
the eigen space:

{x € C": Ax = A\x}.
510
» Example 16.8: Consider B=| 0 5 1
0 05

» Then the characteristic polynomial of B is given by
p(x) = (x — 5)3. Therefore 5 appears with algebraic

multiplicity 3.
> However, if x is an eigenvector with eigenvalue 5, we see
510 X1 X1
0 51 X2 =5 X2
0 05 X3 X3



Continuation

» That is,

5x1 +x0 = bxy

5X2

5x2 + x3
5X3 = 5X3



Continuation

> That is,

5x1 +x0 = bxy
5X2 +x3 = 5X2
5X3 = 5X3

» Solving this, we see
X1

{x:Bx=5x}={ 0 |}

0

Therefore the geometric multiplicity of the eigenvalue 5 is 1.



Continuation

» More generally, for n > 2, and ¢ € C, the n x n matrix
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» More generally, for n > 2, and ¢ € C, the n x n matrix

Aa
Il

oo on
con =
on ~oO
nmoo

» has characteristic polynomial (x — ¢)". However, the
geometric multiplicity of the eigenvalue c is just 1.
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» Theorem 16.9: Let A be an n X n complex matrix and let A
be an eigenvalue of A. Then

1 < geometric multiplicity of A < algebraic multiplicity of .

» Proof: We have already seen that whenever X is an eigenvalue
there exists non-zero x such that Ax = Ax. Hence the
geometric multiplicity of A is at least 1.

» Now suppose the geometric multiplicity of A is k. Then there

exist k linearly independent vectors {wy, wa, ..., wk} such
that Aw; = Aw; for 1 < j < k.



Continuation

» Extend {wi, wo,...wx} to a basis {wi, ..., wk, Wki1,..., Wn}
of C".



Continuation

» Extend {wi, wo,...wx} to a basis {wi, ..., wk, Wki1,..., Wn}
of C".
» Then the matrix of the linear map x — Ax on this basis has
the form:
| M C
o= 5]

for some Cixn, Din—i)x(n—k), as Awj = Aw;, for 1 < j < k.



Continuation

» Extend {wi, wo,...wx} to a basis {wi, ..., wk, Wki1,..., Wn}
of C".
» Then the matrix of the linear map x — Ax on this basis has
the form:
| M C
o= 5]

for some Cixn, Din—i)x(n—k), as Awj = Aw;, for 1 < j < k.
» Equivalently there exists an invertible matrix S such that
B =S"1AS.



Continuation

>

>

Extend {wi, wo, ... wy} to a basis {wi, ..., wk, Wki1,..., Wn}
of C".
Then the matrix of the linear map x — Ax on this basis has
the form:
| M C
o= 5]

for some Cisxcn, Din—k)x(n—k), @ Awj = Awj, for 1 <j < k.
Equivalently there exists an invertible matrix S such that
B = S71AS.
Observe that,
det(x/ — B) = det(x/ — ST1AS)
det(xS71S — ST1AS)
det S™H(xI — A)S
det(S71) det(x/ — A) det(S)
= det(x/ — A).



Continuation

» Hence, the characteristic polynomial of A, has the form

p(x) = det(xl—[Aék g]

x—M, —C
0 xl — D

= (x — A)*.det(x/ — D).

= det{



Continuation

» Hence, the characteristic polynomial of A, has the form

p(x) = det(xl—[Aék g]

x—M, —C
0 xl — D

= (x— M)k .det(x/ — D).

= det{

» In particular, the algebraic multiplicity of A is at least k. H.
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Real case

» Here also we will consider the eigenvalues of a real matrix as
the (possibly complex) roots of the characteristic polynomial.
The main issue here is that a polynomial with real coefficients
can have complex roots.

» For instance the characteristic polynomial of
0 -1
A=
is p(x) =x?>+1=(x—i)(x+i).

» Therefore the eigenvalues of a real matrix can be complex.
The algebraic multiplicity would be the multiplicity in the
associated characteristic polynomial.

» However, we consider geometric multiplicity of an eigenvalue

A of a real matrix, considered as a linear map on R", as the

dimension of
{x € R": Ax = Ax}



Geometric multiplicity of real maps

» Theorem 16.10: Let A be a real matrix considered as a linear
map on R". Suppose A is an eigenvalue of A.



Geometric multiplicity of real maps

» Theorem 16.10: Let A be a real matrix considered as a linear
map on R". Suppose A is an eigenvalue of A.

» (i) If A ¢ R then the geometric multiplicity of A is zero.



Geometric multiplicity of real maps

» Theorem 16.10: Let A be a real matrix considered as a linear
map on R". Suppose A is an eigenvalue of A.

» (i) If A ¢ R then the geometric multiplicity of A is zero.

» (i) If A € R then the geometric multiplicity of A is at least
one.



Geometric multiplicity of real maps

» Theorem 16.10: Let A be a real matrix considered as a linear
map on R". Suppose A is an eigenvalue of A.

» (i) If A ¢ R then the geometric multiplicity of A is zero.

» (i) If A € R then the geometric multiplicity of A is at least

one.

» Proof: Now for x € R” clearly Ax € R". However as A ¢ R
and 0 # x € R", Ax ¢ R".



Geometric multiplicity of real maps

» Theorem 16.10: Let A be a real matrix considered as a linear
map on R". Suppose A is an eigenvalue of A.

» (i) If A ¢ R then the geometric multiplicity of A is zero.

» (i) If A € R then the geometric multiplicity of A is at least
one.

» Proof: Now for x € R” clearly Ax € R". However as A ¢ R
and 0 # x € R", Ax ¢ R".

» Therefore, Ax = Ax is not possible.



Geometric multiplicity of real maps

» Theorem 16.10: Let A be a real matrix considered as a linear
map on R". Suppose A is an eigenvalue of A.

» (i) If A ¢ R then the geometric multiplicity of A is zero.

» (i) If A € R then the geometric multiplicity of A is at least
one.

» Proof: Now for x € R” clearly Ax € R". However as A ¢ R
and 0 # x € R", Ax ¢ R".

» Therefore, Ax = Ax is not possible.

» Hence the geometric multiplicity of non-real eigenvalues of
real matrices (considered as real maps) is zero.
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> (ii) Let A € R be an eigenvalue.

» Then det(A/ — A) = 0. Hence x — (Al — A)x on R" is not
injective.

» In particular, there exists non-zero x € R” such that Ax = Ax.

» Therefore, geometric multiplicity of any real eigenvalue of any
real matrix is at least one.
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Theorem 16.11: Let A be a real square matrix. Then for any
complex number \ the algebraic multiplicity of X as an
eigenvalue of A is same as the algebraic multiplicity of \.
(Eigenvalues appear in conjugate pairs.)

Proof: Suppose

p(x) =x"+ap1x" P +ax+ag

is the characteristic polynomial of A. Then ag,...,a,—1 are
real numbers.

Now if X is an eigenvalue of A, then p(\) = 0.

Now taking complex conjugate and observing that a; = a; for
every j, we get p(\) = 0.

This shows that (x — A)(x — \) is a factor of p.

We write p(x) = (x — A)(x — A)g(x). Now

(x — (A + A)x + |A\|?) has only real coefficients. Then by the
division algorithm, g also has only real coefficients.

Now the result follows by simple induction. l



Continuation

» Corollary 16.12: Suppose A is a real n x n matrix. If n is odd
then A has at least one real eigenvalue with real eigenvector.



Continuation

» Corollary 16.12: Suppose A is a real n x n matrix. If n is odd
then A has at least one real eigenvalue with real eigenvector.

» Proof: Since the eigenvalues of A appear in conjugate pairs
and n is odd it follows that A has a real eigenvalue.



Continuation

» Corollary 16.12: Suppose A is a real n x n matrix. If n is odd
then A has at least one real eigenvalue with real eigenvector.

» Proof: Since the eigenvalues of A appear in conjugate pairs
and n is odd it follows that A has a real eigenvalue.

» If A is a real eigenvalue of a real matrix then we know that its
geometric multiplicity is at least one. W



Continuation

» Corollary 16.12: Suppose A is a real n x n matrix. If n is odd
then A has at least one real eigenvalue with real eigenvector.

» Proof: Since the eigenvalues of A appear in conjugate pairs
and n is odd it follows that A has a real eigenvalue.

» If A is a real eigenvalue of a real matrix then we know that its
geometric multiplicity is at least one. W

> |t maybe noted that existence of a real root can also be got
from real analysis:



Continuation

>

>

Corollary 16.12: Suppose A is a real n x n matrix. If nis odd
then A has at least one real eigenvalue with real eigenvector.
Proof: Since the eigenvalues of A appear in conjugate pairs
and n is odd it follows that A has a real eigenvalue.
If \is a real eigenvalue of a real matrix then we know that its
geometric multiplicity is at least one. W
It maybe noted that existence of a real root can also be got
from real analysis:
As the characteristic polynomial p is a monic real polynomial
of odd degree

lim p(x) =+o00; lim p(x) =—oc0

X—>00 X—>—00

and so by intermediate value theorem p has at least one real
root.
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Corollary 16.12: Suppose A is a real n x n matrix. If nis odd
then A has at least one real eigenvalue with real eigenvector.

Proof: Since the eigenvalues of A appear in conjugate pairs
and n is odd it follows that A has a real eigenvalue.

If \is a real eigenvalue of a real matrix then we know that its
geometric multiplicity is at least one. W

It maybe noted that existence of a real root can also be got
from real analysis:

As the characteristic polynomial p is a monic real polynomial
of odd degree

lemm p(x) = +o0; Xﬂ)rfoo p(x) = —o0

and so by intermediate value theorem p has at least one real
root.

END OF LECTURE 16.



