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Lecture 16: Eigenvalues and eigenvectors

I Definition 16.1: Let A be a real/complex square matrix. Then
the characteristic polynomial of A is defined as the polynomial

p(x) = det(xI − A).

I If A = [aij ]1≤i ,j≤n

p(x) = det


x − a11 −a12 . . . −a1n
−a21 x − a22 . . . −a2n

...
...

. . .
...

−an1 −an2 . . . x − ann

 .
I Note that the characteristic polynomial of an n × n matrix is

polynomial of degree n. Also its leading coefficient (the
coefficient of xn) is equal to 1. Such polynomials are known
as monic polynomials.
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Example

I Example 16.2: A =

 2 −1 0
0 −3 −8
0 0 2i

 .

I Then the characteristic polynomial of A is given by,

p(x) = det(xI − A)

= det(

 x 0 0
0 x 0
0 0 x

−
 2 −1 0

0 −3 −8
0 0 2i

)

= det

 x − 2 +1 0
0 x + 3 +8
0 0 x − 2i


= (x − 2)(x + 3)(x − 2i)

= (x2 + x − 6)(x − 2i)

= x3 + x2 − 6x − 2ix2 − 2ix + 12i

= x3 + (1− 2i)x2 − (6 + 2i)x + 12i
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Fundamental theorem of algebra

I Theorem 16.3(Fundamental theorem of algebra): Let
p(x) = anx

n + an−1x
n−1 + · · ·+ a0 be a polynomial, with

n ∈ N, a0, . . . , an ∈ C, an 6= 0. Then p factorizes uniquely (up
to permutation) as

p(x) = an(x − λ1)(x − λ2) · · · (x − λn)

for some λ1, λ2, . . . , λn ∈ C.

I Note that λ1, . . . , λn are roots of the polynomial, that is,
these are the complex numbers λ such that p(λ) = 0.

I Some of the roots could be repeated. The number of times a
particular root λ appears in the factorization is known as the
multiplicity of λ. A complex polynomial of degree n has
exactly n roots (counting multiplicity).

I We will be assuming this theorem without giving proof.
I Example 16.4: Consider the polynomial p(x) = x2 + 1.
I We have p(x) = (x + i)(x − i). So the roots of p can be

complex even if the coefficients are real.
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Eigenvalues and eigenvectors of complex matrices

I Definition 16.5: Let A be a complex square matrix. Then the
eigenvalues of A are defined as roots of the characteristic
polynomial of A. The algebraic multiplicity of an eigenvalue λ
is defined as the multiplicity of λ in the factorization of the
characteristic polynomial of A.

I An n× n matrix A is also viewed as the linear map x 7→ Ax on
Cn.

I Definition 16.6: Suppose A is an n × n complex matrix, and
λ ∈ C. If x ∈ Cn is a non-zero vector such that Ax = λx ,
then x is said to be an eigenvector with eigenvalue λ.

I It is to be noted that if λ ∈ C has an eigenvector x :

Ax = λx .

This means that (λI − A)x = 0. In particular (λI − A) is not
injective, therefore det(λI − A) = 0 or p(λ) = 0 where p is
the characteristic polynomial of A. So λ is an eigenvalue.
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Geometric multiplicity

I Definition 16.7: Let A be an n × n complex matrix. Then the
geometric multiplicity of an eigenvalue λ is defined as the
dimension of the kernel of (λI − A), that is, the dimension of
the eigen space:

{x ∈ Cn : Ax = λx}.

I Example 16.8: Consider B =

 5 1 0
0 5 1
0 0 5

 .
I Then the characteristic polynomial of B is given by

p(x) = (x − 5)3. Therefore 5 appears with algebraic
multiplicity 3.

I However, if x is an eigenvector with eigenvalue 5, we see 5 1 0
0 5 1
0 0 5

 x1
x2
x3

 = 5

 x1
x2
x3


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Continuation

I That is,

5x1 + x2 = 5x1

5x2 + x3 = 5x2

5x3 = 5x3

I Solving this, we see

{x : Bx = 5x} = {

 x1
0
0

}
Therefore the geometric multiplicity of the eigenvalue 5 is 1.
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Continuation

I More generally, for n ≥ 2, and c ∈ C, the n × n matrix

C =


c 1 0 0 . . .
0 c 1 0 . . .
0 0 c 1 . . .
0 0 0 c . . .
...

...
...

...
. . .

 ,

I has characteristic polynomial (x − c)n. However, the
geometric multiplicity of the eigenvalue c is just 1.
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Comparing two multiplicities

I Theorem 16.9: Let A be an n × n complex matrix and let λ
be an eigenvalue of A. Then

1 ≤ geometric multiplicity of λ ≤ algebraic multiplicity of λ.

I Proof: We have already seen that whenever λ is an eigenvalue
there exists non-zero x such that Ax = λx . Hence the
geometric multiplicity of λ is at least 1.

I Now suppose the geometric multiplicity of λ is k. Then there
exist k linearly independent vectors {w1,w2, . . . ,wk} such
that Awj = λwj for 1 ≤ j ≤ k .
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Continuation

I Extend {w1,w2, . . .wk} to a basis {w1, . . . ,wk ,wk+1, . . . ,wn}
of Cn.

I Then the matrix of the linear map x 7→ Ax on this basis has
the form:

B =

[
λIk C
0 D

]
for some Ck×n,D(n−k)×(n−k), as Awj = λwj , for 1 ≤ j ≤ k .

I Equivalently there exists an invertible matrix S such that
B = S−1AS .

I Observe that,

det(xI − B) = det(xI − S−1AS)

= det(xS−1S − S−1AS)

= det S−1(xI − A)S

= det(S−1) det(xI − A) det(S)

= det(xI − A).
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Continuation

I Hence, the characteristic polynomial of A, has the form

p(x) = det(xI −
[
λIk C
0 D

]
= det

[
x − λIk −C

0 xI − D

]
= (x − λ)k . det(xI − D).

I In particular, the algebraic multiplicity of λ is at least k. �.
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Real case

I Here also we will consider the eigenvalues of a real matrix as
the (possibly complex) roots of the characteristic polynomial.
The main issue here is that a polynomial with real coefficients
can have complex roots.

I For instance the characteristic polynomial of

A =

[
0 −1
1 0

]
is p(x) = x2 + 1 = (x − i)(x + i).

I Therefore the eigenvalues of a real matrix can be complex.
The algebraic multiplicity would be the multiplicity in the
associated characteristic polynomial.

I However, we consider geometric multiplicity of an eigenvalue
λ of a real matrix, considered as a linear map on Rn, as the
dimension of

{x ∈ Rn : Ax = λx}
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Geometric multiplicity of real maps

I Theorem 16.10: Let A be a real matrix considered as a linear
map on Rn. Suppose λ is an eigenvalue of A.

I (i) If λ /∈ R then the geometric multiplicity of λ is zero.

I (ii) If λ ∈ R then the geometric multiplicity of λ is at least
one.

I Proof: Now for x ∈ Rn clearly Ax ∈ Rn. However as λ /∈ R
and 0 6= x ∈ Rn, λx /∈ Rn.

I Therefore, Ax = λx is not possible.

I Hence the geometric multiplicity of non-real eigenvalues of
real matrices (considered as real maps) is zero.
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Continuation

I (ii) Let λ ∈ R be an eigenvalue.

I Then det(λI − A) = 0. Hence x 7→ (λI − A)x on Rn is not
injective.

I In particular, there exists non-zero x ∈ Rn such that Ax = λx .

I Therefore, geometric multiplicity of any real eigenvalue of any
real matrix is at least one.
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Algebraic multiplicities of real matrices

I Theorem 16.11: Let A be a real square matrix. Then for any
complex number λ the algebraic multiplicity of λ̄ as an
eigenvalue of A is same as the algebraic multiplicity of λ.
(Eigenvalues appear in conjugate pairs.)

I Proof: Suppose

p(x) = xn + an−1x
n−1 + · · ·+ a1x + a0

is the characteristic polynomial of A. Then a0, . . . , an−1 are
real numbers.

I Now if λ is an eigenvalue of A, then p(λ) = 0.
I Now taking complex conjugate and observing that aj = aj for

every j , we get p(λ) = 0.
I This shows that (x − λ)(x − λ̄) is a factor of p.
I We write p(x) = (x − λ)(x − λ̄)q(x). Now

(x − (λ+ λ)x + |λ|2) has only real coefficients. Then by the
division algorithm, q also has only real coefficients.

I Now the result follows by simple induction. �
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Continuation

I Corollary 16.12: Suppose A is a real n × n matrix. If n is odd
then A has at least one real eigenvalue with real eigenvector.

I Proof: Since the eigenvalues of A appear in conjugate pairs
and n is odd it follows that A has a real eigenvalue.

I If λ is a real eigenvalue of a real matrix then we know that its
geometric multiplicity is at least one. �

I It maybe noted that existence of a real root can also be got
from real analysis:

I As the characteristic polynomial p is a monic real polynomial
of odd degree

lim
x→∞

p(x) = +∞; lim
x→−∞

p(x) = −∞

and so by intermediate value theorem p has at least one real
root.

I END OF LECTURE 16.
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