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A:“é]
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» We have:

» Further,

> More generally,

» Therefore,
n 1 _ Fn+1
“(o)=("5)

» Hence we know Figoo if we know A%,
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How to compute the power?

» This raises the question as to how to efficiently compute
powers of a matrix?

» Observation: Suppose there exists an invertible matrix S such
that ST1AS = D for some diagonal matrix D.

» Then
A=SDS1L.

» This implies A2 = SD?S~1 and more generally,

A™ = SD"S™Y Vm > 1.
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» Now if
d 0
0 o
0 O

» then

da’ o0
o _ 0 dy
0 0
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» Now if

0

» then

> and

0 O
» Hence computing A™ becomes easy.
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» Definition 17.1: A matrix A is said to be diagonalizable if
there exists an invertible matrix S and a diagonal matrix D
such that that

A=SDS™1.

P Let us try to understand diagonalizability.

» Suppose A = SDS~! with D diagonal. What can be the
diagonal entries?

» Let p be the characteristic polynomial of A. From
A = SDS™!, we know that the characteristic polynomial of A
is same as that of D. Hence

p(x) = (x — di)(x — o)+~ (x — d).

» In particular the diagonal entries of D must be the eigenvalues
of A.
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v

Example 17.2.
01
#1500

The eigenvalues of B are just 0 and 0.
So if B = SDS™!, the diagonal D must be the zero matrix.

That would mean that B = 0, which is clearly not true. This
is a contradiction. Hence B is not diagonalizable.

is not diagonalizable.
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Linear independence

> We need to know how eigenvectors of distinct eigenvalues
behave.

» Theorem 17.3: Let A be an n x n complex matrix. Suppose
ai,...,ax are some distinct eigenvalues of A and wy, ..., wg
are eigenvectors with

Aw; = ajwj, 1< j< k.
Then {wi, ..., wg} is a linearly independent set.
» Proof: Suppose 2};1 cjw; = 0.

» On applying A, we get ijzl ajcjw; = 0.
> By repeated application of A we get

k
D aigw =0,V1<s < (k-1).
j=1
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> Let N be the n x k matrix formed by taking the vectors

CiWi,...,CkWg as its columns:
N = [C1W1, Cowo, .. .,Cka].

Now we may write the linear equations above as:

o . 0 1 a5 af all‘f1
1 a a% ag_l
: IR =N| . .
0 ... 0 S ' 1
1 ay ai N
Equivalently, 0 = NV, where V is the k x k Vandermonde
matrix formed out of ay, ..., ax. Since aj's are distinct, V' is
invertible.

Multiplying by V=1 from the right, we get N =0 or ¢jw; = 0
for every j. Since w;'s are assumed to be non-zero (they are
eigenvectors), we get ¢; = 0 for every j. B

Challenge: Find a different proof of this result.
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» Theorem 17.4: Let A be an n X n complex matrix. Then the
following are equivalent:

» (i) A is diagonalizable, that is, there exists an invertible matrix
S and a diagonal matrix D such that

A=SDS™ L

» (ii) There exists a basis of C" consisting of eigenvectors of A.

» (iii) The geometric multiplicity is same as the algebraic
multiplicity for every eigenvalue of A.
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Proof: (i) < (ii). The equation A= SDS~! is same as
AS = SD. Let w1, vo, ..., v, be the columns of S.
Now AS = SD means:

Alvi,va, ..., vp] = [va,...,vy|D.
Equivalently,
[Avi, Ava, ...  Av,] = [dhva, dava, ..., dpvy).
This is same as:
Av; =djvj,1 <j < n.

In particular columns of S are eigenvectors of A.

Note that the invertibility of S is equivalent to requiring that
its columns {v1, vz, ..., vy} forms a basis of C".

This proves (i) < (ii).
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» (i) and (ii) = (iii). From A = SDS™!, we know that the
characteristic polynomial of A is same as that of D and hence
the eigenvalues of A are di, ..., d, (including multiplicity).

» Suppose ay, ..., ax are distinct eigenvalues of A and r; is the
algebraic multiplicity of a;, 1 < j < k.

» Then taking a suitable permutation if necessary, we may
assume that

(dl,dg,...,dn):(al,al,...,31782,...,82,33,...81()

where a; appears r; times, 1 < j < k and
n+nrn+---+rn=n
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» From Avj = djv; and the fact that {vq,...v,} are linearly
independent, we see that the geometric multiplicity of a; is at
least r;.

» It can’t be more than r; as we have proved that the geometric
multiplicity of any eigenvalue is less than or equal to its
algebraic multiplicity.

» Therefore for every j, the geometric and algebraic multiplicity
of aj is rj. This proves (iii).
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(iiif) = (ii). Let a1, a2, . .. ax be the distinct eigenvalues of A
and let the geometric/algebraic multiplicity of a; be r;.

By the fundamental theorem of algebra we know that
n—+---+rn=n

Let {vj1,Vj2, ...,V } be a basis for the eigenspace of A with
eigenvalue a;. In particular, for every j, {vj1,vj2,..., Vv, } are
linearly independent.

We also have Avj; = ajvji for 1 < <r;.
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kK on
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.
J— J Vs
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> Note that > ;_; w; = 0.
» Also a1, ap,...,a are distinct and Aw; = ajw;,1 < j < k.
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» We obtain (ii) if we show that the whole collection
{vi-1<i<rl<j<k}

is linearly independent.

» Suppose
k 0
> > Givi=0
j=1 i=1
> Take wj = 327, cjivi.
k
> Note that > ;_; w; = 0.
» Also a1, ap,...,a are distinct and Aw; = ajw;,1 < j < k.
» Then by the previous theorem, w; = 0 for every j.
» For fixed j, by the linear independence of vji's , we get ¢;; = 0
for all i.
» This proves the required linear independence. B
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