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Lecture 17: Diagonalization

I Consider the sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . .

I You may observe that this is the well-known Fibonacci
sequence defined by: F0 = 0,F1 = 1 and

Fn = Fn−1 + Fn−2, ∀n ≥ 2.

I How to compute F1000?

I Consider the matrix

A =

[
1 1
1 0

]
.
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Continuation

I We have:

A

(
1
0

)
=

[
1 1
1 0

] [
1
0

]
=

(
1
1

)
.

I Further,

A

(
1
1

)
=

(
2
1

)
.

I More generally,

A

(
Fn−1

Fn−2

)
=

(
Fn
Fn−1

)
.

I Therefore,

An

(
1
0

)
=

(
Fn+1

Fn

)
.

I Hence we know F1000 if we know A999.
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How to compute the power?

I This raises the question as to how to efficiently compute
powers of a matrix?

I Observation: Suppose there exists an invertible matrix S such
that S−1AS = D for some diagonal matrix D.

I Then
A = SDS−1.

I This implies A2 = SD2S−1 and more generally,

Am = SDmS−1, ∀m ≥ 1.
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Continuation

I Now if

D =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn



I then

Dm =


dm
1 0 . . . 0
0 dm

2 . . . 0
...

...
. . .

...
0 0 . . . dm

n

 ,

I and

Am = S


dm
1 0 . . . 0
0 dm

2 . . . 0
...

...
. . .

...
0 0 . . . dm

n

S−1.

I Hence computing Am becomes easy.
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Continuation

I Definition 17.1: A matrix A is said to be diagonalizable if
there exists an invertible matrix S and a diagonal matrix D
such that that

A = SDS−1.

I Let us try to understand diagonalizability.

I Suppose A = SDS−1 with D diagonal. What can be the
diagonal entries?

I Let p be the characteristic polynomial of A. From
A = SDS−1, we know that the characteristic polynomial of A
is same as that of D. Hence

p(x) = (x − d1)(x − d2) · · · (x − dn).

I In particular the diagonal entries of D must be the eigenvalues
of A.
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Exmple

I Example 17.2.

B =

[
0 1
0 0

]
is not diagonalizable.

I The eigenvalues of B are just 0 and 0.

I So if B = SDS−1, the diagonal D must be the zero matrix.

I That would mean that B = 0, which is clearly not true. This
is a contradiction. Hence B is not diagonalizable.
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Linear independence

I We need to know how eigenvectors of distinct eigenvalues
behave.

I Theorem 17.3: Let A be an n × n complex matrix. Suppose
a1, . . . , ak are some distinct eigenvalues of A and w1, . . . ,wk

are eigenvectors with

Awj = ajwj , 1 ≤ j ≤ k.

Then {w1, . . . ,wk} is a linearly independent set.

I Proof: Suppose
∑k

j=1 cjwj = 0.

I On applying A, we get
∑k

j=1 ajcjwj = 0.

I By repeated application of A we get

k∑
j=1

asj cjwj = 0,∀1 ≤ s ≤ (k − 1).
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Continuation

I Let N be the n × k matrix formed by taking the vectors
c1w1, . . . , ckwk as its columns:

N = [c1w1, c2w2, . . . , ckwk ].

I Now we may write the linear equations above as: 0 . . . 0
...

. . .
...

0 . . . 0

 = N


1 a1 a21 . . . ak−1

1

1 a2 a22 . . . ak−1
2

...
...

...
...

...

1 ak a2k . . . ak−1
k


I Equivalently, 0 = NV , where V is the k × k Vandermonde

matrix formed out of a1, . . . , ak . Since aj ’s are distinct, V is
invertible.

I Multiplying by V−1 from the right, we get N = 0 or cjwj = 0
for every j . Since wj ’s are assumed to be non-zero (they are
eigenvectors), we get cj = 0 for every j . �

I Challenge: Find a different proof of this result.
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Diagonalizability

I Theorem 17.4: Let A be an n × n complex matrix. Then the
following are equivalent:

I (i) A is diagonalizable, that is, there exists an invertible matrix
S and a diagonal matrix D such that

A = SDS−1.

I (ii) There exists a basis of Cn consisting of eigenvectors of A.

I (iii) The geometric multiplicity is same as the algebraic
multiplicity for every eigenvalue of A.
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Continuation

I Proof: (i)⇔ (ii). The equation A = SDS−1 is same as
AS = SD. Let v1, v2, . . . , vn be the columns of S .

I Now AS = SD means:

A[v1, v2, . . . , vn] = [v1, . . . , vn]D.

I Equivalently,

[Av1,Av2, . . . ,Avn] = [d1v1, d2v2, . . . , dnvn].

I This is same as:

Avj = djvj , 1 ≤ j ≤ n.

In particular columns of S are eigenvectors of A.

I Note that the invertibility of S is equivalent to requiring that
its columns {v1, v2, . . . , vn} forms a basis of Cn.

I This proves (i)⇔ (ii).
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I (i) and (ii)⇒ (iii). From A = SDS−1, we know that the
characteristic polynomial of A is same as that of D and hence
the eigenvalues of A are d1, . . . , dn (including multiplicity).

I Suppose a1, . . . , ak are distinct eigenvalues of A and rj is the
algebraic multiplicity of aj , 1 ≤ j ≤ k.

I Then taking a suitable permutation if necessary, we may
assume that

(d1, d2, . . . , dn) = (a1, a1, . . . , a1, a2, . . . , a2, a3, . . . ak)

where aj appears rj times, 1 ≤ j ≤ k and
r1 + r2 + · · ·+ rk = n.
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I From Avj = djvj and the fact that {v1, . . . vn} are linearly
independent, we see that the geometric multiplicity of aj is at
least rj .

I It can’t be more than rj as we have proved that the geometric
multiplicity of any eigenvalue is less than or equal to its
algebraic multiplicity.

I Therefore for every j , the geometric and algebraic multiplicity
of aj is rj . This proves (iii).
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I (iii)⇒ (ii). Let a1, a2, . . . ak be the distinct eigenvalues of A
and let the geometric/algebraic multiplicity of aj be rj .

I By the fundamental theorem of algebra we know that
r1 + · · ·+ rk = n.

I Let {vj1, vj2, . . . , vjrj} be a basis for the eigenspace of A with
eigenvalue aj . In particular, for every j , {vj1, vj2, . . . , vjrj} are
linearly independent.

I We also have Avji = ajvji for 1 ≤ i ≤ rj .
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I We obtain (ii) if we show that the whole collection

{vji : 1 ≤ i ≤ rj ; 1 ≤ j ≤ k}

is linearly independent.

I Suppose
k∑

j=1

rj∑
i=1

cjivji = 0

I Take wj =
∑rj

i=1 cjivji .

I Note that
∑k

j=1 wj = 0.

I Also a1, a2, . . . , ak are distinct and Awj = ajwj , 1 ≤ j ≤ k.

I Then by the previous theorem, wj = 0 for every j .

I For fixed j , by the linear independence of vji ’s , we get cji = 0
for all i .

I This proves the required linear independence. �
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Application

I Obtain a formula for Fibonacci number Fn by diagonalizing

A =

[
1 1
1 0

]
and getting a formula for An.

I END OF LECTURE 17.
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