

LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 17: Diagonalization

- ▶ Consider the sequence:

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \dots$$

Lecture 17: Diagonalization

- ▶ Consider the sequence:

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \dots$$

- ▶ You may observe that this is the well-known **Fibonacci sequence** defined by: $F_0 = 0, F_1 = 1$ and

$$F_n = F_{n-1} + F_{n-2}, \quad \forall n \geq 2.$$

Lecture 17: Diagonalization

- ▶ Consider the sequence:

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \dots$$

- ▶ You may observe that this is the well-known **Fibonacci sequence** defined by: $F_0 = 0, F_1 = 1$ and

$$F_n = F_{n-1} + F_{n-2}, \quad \forall n \geq 2.$$

- ▶ How to compute F_{1000} ?

Lecture 17: Diagonalization

- ▶ Consider the sequence:

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \dots$$

- ▶ You may observe that this is the well-known **Fibonacci sequence** defined by: $F_0 = 0, F_1 = 1$ and

$$F_n = F_{n-1} + F_{n-2}, \quad \forall n \geq 2.$$

- ▶ How to compute F_{1000} ?
- ▶ Consider the matrix

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.$$

Continuation

- ▶ We have:

$$A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Continuation

- ▶ We have:

$$A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

- ▶ Further,

$$A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

Continuation

- ▶ We have:

$$A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

- ▶ Further,

$$A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

- ▶ More generally,

$$A \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix} = \begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix}.$$

Continuation

- ▶ We have:

$$A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

- ▶ Further,

$$A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

- ▶ More generally,

$$A \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix} = \begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix}.$$

- ▶ Therefore,

$$A^n \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} F_{n+1} \\ F_n \end{pmatrix}.$$

Continuation

- We have:

$$A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

- Further,

$$A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

- More generally,

$$A \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix} = \begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix}.$$

- Therefore,

$$A^n \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} F_{n+1} \\ F_n \end{pmatrix}.$$

- Hence we know F_{1000} if we know A^{999} .

How to compute the power?

- ▶ This raises the question as to how to efficiently compute powers of a matrix?

How to compute the power?

- ▶ This raises the question as to how to efficiently compute powers of a matrix?
- ▶ **Observation:** Suppose there exists an invertible matrix S such that $S^{-1}AS = D$ for some diagonal matrix D .

How to compute the power?

- ▶ This raises the question as to how to efficiently compute powers of a matrix?
- ▶ **Observation:** Suppose there exists an invertible matrix S such that $S^{-1}AS = D$ for some diagonal matrix D .
- ▶ Then

$$A = SDS^{-1}.$$

How to compute the power?

- ▶ This raises the question as to how to efficiently compute powers of a matrix?
- ▶ **Observation:** Suppose there exists an invertible matrix S such that $S^{-1}AS = D$ for some diagonal matrix D .
- ▶ Then

$$A = SDS^{-1}.$$

- ▶ This implies $A^2 = SD^2S^{-1}$ and more generally,

$$A^m = SD^mS^{-1}, \quad \forall m \geq 1.$$

Continuation

- ▶ Now if

$$D = \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n \end{bmatrix}$$

Continuation

► Now if

$$D = \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n \end{bmatrix}$$

► then

$$D^m = \begin{bmatrix} d_1^m & 0 & \dots & 0 \\ 0 & d_2^m & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n^m \end{bmatrix},$$

Continuation

- ▶ Now if

$$D = \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n \end{bmatrix}$$

- ▶ then

$$D^m = \begin{bmatrix} d_1^m & 0 & \dots & 0 \\ 0 & d_2^m & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n^m \end{bmatrix},$$

- ▶ and

$$A^m = S \begin{bmatrix} d_1^m & 0 & \dots & 0 \\ 0 & d_2^m & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n^m \end{bmatrix} S^{-1}.$$

Continuation

- Now if

$$D = \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n \end{bmatrix}$$

- then

$$D^m = \begin{bmatrix} d_1^m & 0 & \dots & 0 \\ 0 & d_2^m & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n^m \end{bmatrix},$$

- and

$$A^m = S \begin{bmatrix} d_1^m & 0 & \dots & 0 \\ 0 & d_2^m & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n^m \end{bmatrix} S^{-1}.$$

- Hence computing A^m becomes easy.

Continuation

- ▶ **Definition 17.1:** A matrix A is said to be **diagonalizable** if there exists an invertible matrix S and a diagonal matrix D such that that

$$A = SDS^{-1}.$$

Continuation

- ▶ **Definition 17.1:** A matrix A is said to be **diagonalizable** if there exists an invertible matrix S and a diagonal matrix D such that that

$$A = SDS^{-1}.$$

- ▶ Let us try to understand diagonalizability.

Continuation

- ▶ **Definition 17.1:** A matrix A is said to be **diagonalizable** if there exists an invertible matrix S and a diagonal matrix D such that that

$$A = SDS^{-1}.$$

- ▶ Let us try to understand diagonalizability.
- ▶ Suppose $A = SDS^{-1}$ with D diagonal. What can be the diagonal entries?

Continuation

- ▶ **Definition 17.1:** A matrix A is said to be **diagonalizable** if there exists an invertible matrix S and a diagonal matrix D such that that

$$A = SDS^{-1}.$$

- ▶ Let us try to understand diagonalizability.
- ▶ Suppose $A = SDS^{-1}$ with D diagonal. What can be the diagonal entries?
- ▶ Let p be the characteristic polynomial of A . From $A = SDS^{-1}$, we know that the characteristic polynomial of A is same as that of D . Hence

$$p(x) = (x - d_1)(x - d_2) \cdots (x - d_n).$$

Continuation

- ▶ **Definition 17.1:** A matrix A is said to be **diagonalizable** if there exists an invertible matrix S and a diagonal matrix D such that that

$$A = SDS^{-1}.$$

- ▶ Let us try to understand diagonalizability.
- ▶ Suppose $A = SDS^{-1}$ with D diagonal. What can be the diagonal entries?
- ▶ Let p be the characteristic polynomial of A . From $A = SDS^{-1}$, we know that the characteristic polynomial of A is same as that of D . Hence

$$p(x) = (x - d_1)(x - d_2) \cdots (x - d_n).$$

- ▶ In particular the diagonal entries of D must be the eigenvalues of A .

Exmple

- ▶ Example 17.2.

$$B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

is not diagonalizable.

Exmple

► Example 17.2.

$$B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

is not diagonalizable.

► The eigenvalues of B are just 0 and 0.

Exmple

► Example 17.2.

$$B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

is not diagonalizable.

- The eigenvalues of B are just 0 and 0.
- So if $B = SDS^{-1}$, the diagonal D must be the zero matrix.

Exmple

► Example 17.2.

$$B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

is not diagonalizable.

- The eigenvalues of B are just 0 and 0.
- So if $B = SDS^{-1}$, the diagonal D must be the zero matrix.
- That would mean that $B = 0$, which is clearly not true. This is a contradiction. Hence B is not diagonalizable.

Linear independence

- We need to know how eigenvectors of distinct eigenvalues behave.

Linear independence

- ▶ We need to know how eigenvectors of distinct eigenvalues behave.
- ▶ **Theorem 17.3:** Let A be an $n \times n$ complex matrix. Suppose a_1, \dots, a_k are some distinct eigenvalues of A and w_1, \dots, w_k are eigenvectors with

$$Aw_j = a_j w_j, \quad 1 \leq j \leq k.$$

Then $\{w_1, \dots, w_k\}$ is a linearly independent set.

Linear independence

- ▶ We need to know how eigenvectors of distinct eigenvalues behave.
- ▶ **Theorem 17.3:** Let A be an $n \times n$ complex matrix. Suppose a_1, \dots, a_k are some distinct eigenvalues of A and w_1, \dots, w_k are eigenvectors with

$$Aw_j = a_j w_j, \quad 1 \leq j \leq k.$$

Then $\{w_1, \dots, w_k\}$ is a linearly independent set.

- ▶ **Proof:** Suppose $\sum_{j=1}^k c_j w_j = 0$.

Linear independence

- ▶ We need to know how eigenvectors of distinct eigenvalues behave.
- ▶ **Theorem 17.3:** Let A be an $n \times n$ complex matrix. Suppose a_1, \dots, a_k are some distinct eigenvalues of A and w_1, \dots, w_k are eigenvectors with

$$Aw_j = a_j w_j, \quad 1 \leq j \leq k.$$

Then $\{w_1, \dots, w_k\}$ is a linearly independent set.

- ▶ **Proof:** Suppose $\sum_{j=1}^k c_j w_j = 0$.
- ▶ On applying A , we get $\sum_{j=1}^k a_j c_j w_j = 0$.

Linear independence

- ▶ We need to know how eigenvectors of distinct eigenvalues behave.
- ▶ **Theorem 17.3:** Let A be an $n \times n$ complex matrix. Suppose a_1, \dots, a_k are some distinct eigenvalues of A and w_1, \dots, w_k are eigenvectors with

$$Aw_j = a_j w_j, \quad 1 \leq j \leq k.$$

Then $\{w_1, \dots, w_k\}$ is a linearly independent set.

- ▶ **Proof:** Suppose $\sum_{j=1}^k c_j w_j = 0$.
- ▶ On applying A , we get $\sum_{j=1}^k a_j c_j w_j = 0$.
- ▶ By repeated application of A we get

$$\sum_{j=1}^k a_j^s c_j w_j = 0, \quad \forall 1 \leq s \leq (k-1).$$

Continuation

- ▶ Let N be the $n \times k$ matrix formed by taking the vectors $c_1 w_1, \dots, c_k w_k$ as its columns:

$$N = [c_1 w_1, c_2 w_2, \dots, c_k w_k].$$

Continuation

- Let N be the $n \times k$ matrix formed by taking the vectors $c_1 w_1, \dots, c_k w_k$ as its columns:

$$N = [c_1 w_1, c_2 w_2, \dots, c_k w_k].$$

- Now we may write the linear equations above as:

$$\begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix} = N \begin{bmatrix} 1 & a_1 & a_1^2 & \dots & a_1^{k-1} \\ 1 & a_2 & a_2^2 & \dots & a_2^{k-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_k & a_k^2 & \dots & a_k^{k-1} \end{bmatrix}$$

Continuation

- Let N be the $n \times k$ matrix formed by taking the vectors $c_1 w_1, \dots, c_k w_k$ as its columns:

$$N = [c_1 w_1, c_2 w_2, \dots, c_k w_k].$$

- Now we may write the linear equations above as:

$$\begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix} = N \begin{bmatrix} 1 & a_1 & a_1^2 & \dots & a_1^{k-1} \\ 1 & a_2 & a_2^2 & \dots & a_2^{k-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_k & a_k^2 & \dots & a_k^{k-1} \end{bmatrix}$$

- Equivalently, $0 = NV$, where V is the $k \times k$ Vandermonde matrix formed out of a_1, \dots, a_k . Since a_j 's are distinct, V is invertible.

Continuation

- Let N be the $n \times k$ matrix formed by taking the vectors $c_1 w_1, \dots, c_k w_k$ as its columns:

$$N = [c_1 w_1, c_2 w_2, \dots, c_k w_k].$$

- Now we may write the linear equations above as:

$$\begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix} = N \begin{bmatrix} 1 & a_1 & a_1^2 & \dots & a_1^{k-1} \\ 1 & a_2 & a_2^2 & \dots & a_2^{k-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_k & a_k^2 & \dots & a_k^{k-1} \end{bmatrix}$$

- Equivalently, $0 = NV$, where V is the $k \times k$ Vandermonde matrix formed out of a_1, \dots, a_k . Since a_j 's are distinct, V is invertible.
- Multiplying by V^{-1} from the right, we get $N = 0$ or $c_j w_j = 0$ for every j . Since w_j 's are assumed to be non-zero (they are eigenvectors), we get $c_j = 0$ for every j . ■

Continuation

- Let N be the $n \times k$ matrix formed by taking the vectors $c_1 w_1, \dots, c_k w_k$ as its columns:

$$N = [c_1 w_1, c_2 w_2, \dots, c_k w_k].$$

- Now we may write the linear equations above as:

$$\begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix} = N \begin{bmatrix} 1 & a_1 & a_1^2 & \dots & a_1^{k-1} \\ 1 & a_2 & a_2^2 & \dots & a_2^{k-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_k & a_k^2 & \dots & a_k^{k-1} \end{bmatrix}$$

- Equivalently, $0 = NV$, where V is the $k \times k$ Vandermonde matrix formed out of a_1, \dots, a_k . Since a_j 's are distinct, V is invertible.
- Multiplying by V^{-1} from the right, we get $N = 0$ or $c_j w_j = 0$ for every j . Since w_j 's are assumed to be non-zero (they are eigenvectors), we get $c_j = 0$ for every j . ■
- Challenge:** Find a different proof of this result.

Diagonalizability

- **Theorem 17.4:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:

Diagonalizability

- ▶ **Theorem 17.4:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
 - ▶ (i) A is diagonalizable, that is, there exists an invertible matrix S and a diagonal matrix D such that

$$A = SDS^{-1}.$$

Diagonalizability

- ▶ **Theorem 17.4:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
- ▶ (i) A is diagonalizable, that is, there exists an invertible matrix S and a diagonal matrix D such that

$$A = SDS^{-1}.$$

- ▶ (ii) There exists a basis of \mathbb{C}^n consisting of eigenvectors of A .

Diagonalizability

- ▶ **Theorem 17.4:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
- ▶ (i) A is diagonalizable, that is, there exists an invertible matrix S and a diagonal matrix D such that

$$A = SDS^{-1}.$$

- ▶ (ii) There exists a basis of \mathbb{C}^n consisting of eigenvectors of A .
- ▶ (iii) The geometric multiplicity is same as the algebraic multiplicity for every eigenvalue of A .

Continuation

- ▶ **Proof:** $(i) \Leftrightarrow (ii)$. The equation $A = SDS^{-1}$ is same as $AS = SD$. Let v_1, v_2, \dots, v_n be the columns of S .

Continuation

- ▶ **Proof:** $(i) \Leftrightarrow (ii)$. The equation $A = SDS^{-1}$ is same as $AS = SD$. Let v_1, v_2, \dots, v_n be the columns of S .
- ▶ Now $AS = SD$ means:

$$A[v_1, v_2, \dots, v_n] = [v_1, \dots, v_n]D.$$

Continuation

- ▶ **Proof:** $(i) \Leftrightarrow (ii)$. The equation $A = SDS^{-1}$ is same as $AS = SD$. Let v_1, v_2, \dots, v_n be the columns of S .
- ▶ Now $AS = SD$ means:

$$A[v_1, v_2, \dots, v_n] = [v_1, \dots, v_n]D.$$

- ▶ Equivalently,

$$[Av_1, Av_2, \dots, Av_n] = [d_1 v_1, d_2 v_2, \dots, d_n v_n].$$

Continuation

- ▶ **Proof:** $(i) \Leftrightarrow (ii)$. The equation $A = SDS^{-1}$ is same as $AS = SD$. Let v_1, v_2, \dots, v_n be the columns of S .
- ▶ Now $AS = SD$ means:

$$A[v_1, v_2, \dots, v_n] = [v_1, \dots, v_n]D.$$

- ▶ Equivalently,

$$[Av_1, Av_2, \dots, Av_n] = [d_1 v_1, d_2 v_2, \dots, d_n v_n].$$

- ▶ This is same as:

$$Av_j = d_j v_j, 1 \leq j \leq n.$$

In particular columns of S are eigenvectors of A .

Continuation

- ▶ **Proof:** $(i) \Leftrightarrow (ii)$. The equation $A = SDS^{-1}$ is same as $AS = SD$. Let v_1, v_2, \dots, v_n be the columns of S .
- ▶ Now $AS = SD$ means:

$$A[v_1, v_2, \dots, v_n] = [v_1, \dots, v_n]D.$$

- ▶ Equivalently,

$$[Av_1, Av_2, \dots, Av_n] = [d_1 v_1, d_2 v_2, \dots, d_n v_n].$$

- ▶ This is same as:

$$Av_j = d_j v_j, 1 \leq j \leq n.$$

In particular columns of S are eigenvectors of A .

- ▶ Note that the invertibility of S is equivalent to requiring that its columns $\{v_1, v_2, \dots, v_n\}$ forms a basis of \mathbb{C}^n .

Continuation

- ▶ **Proof:** $(i) \Leftrightarrow (ii)$. The equation $A = SDS^{-1}$ is same as $AS = SD$. Let v_1, v_2, \dots, v_n be the columns of S .
- ▶ Now $AS = SD$ means:

$$A[v_1, v_2, \dots, v_n] = [v_1, \dots, v_n]D.$$

- ▶ Equivalently,

$$[Av_1, Av_2, \dots, Av_n] = [d_1 v_1, d_2 v_2, \dots, d_n v_n].$$

- ▶ This is same as:

$$Av_j = d_j v_j, 1 \leq j \leq n.$$

In particular columns of S are eigenvectors of A .

- ▶ Note that the invertibility of S is equivalent to requiring that its columns $\{v_1, v_2, \dots, v_n\}$ forms a basis of \mathbb{C}^n .
- ▶ This proves $(i) \Leftrightarrow (ii)$.

Continuation

- ▶ (i) and (ii) \Rightarrow (iii). From $A = SDS^{-1}$, we know that the characteristic polynomial of A is same as that of D and hence the eigenvalues of A are d_1, \dots, d_n (including multiplicity).

Continuation

- ▶ (i) and (ii) \Rightarrow (iii). From $A = SDS^{-1}$, we know that the characteristic polynomial of A is same as that of D and hence the eigenvalues of A are d_1, \dots, d_n (including multiplicity).
- ▶ Suppose a_1, \dots, a_k are distinct eigenvalues of A and r_j is the algebraic multiplicity of a_j , $1 \leq j \leq k$.

Continuation

- ▶ (i) and (ii) \Rightarrow (iii). From $A = SDS^{-1}$, we know that the characteristic polynomial of A is same as that of D and hence the eigenvalues of A are d_1, \dots, d_n (including multiplicity).
- ▶ Suppose a_1, \dots, a_k are distinct eigenvalues of A and r_j is the algebraic multiplicity of a_j , $1 \leq j \leq k$.
- ▶ Then taking a suitable permutation if necessary, we may assume that

$$(d_1, d_2, \dots, d_n) = (a_1, a_1, \dots, a_1, a_2, \dots, a_2, a_3, \dots, a_k)$$

where a_j appears r_j times, $1 \leq j \leq k$ and
 $r_1 + r_2 + \dots + r_k = n$.

Continuation

- ▶ From $Av_j = d_j v_j$ and the fact that $\{v_1, \dots, v_n\}$ are linearly independent, we see that the geometric multiplicity of a_j is at least r_j .

Continuation

- ▶ From $Av_j = d_j v_j$ and the fact that $\{v_1, \dots, v_n\}$ are linearly independent, we see that the geometric multiplicity of a_j is at least r_j .
- ▶ It can't be more than r_j as we have proved that the geometric multiplicity of any eigenvalue is less than or equal to its algebraic multiplicity.

Continuation

- ▶ From $Av_j = d_j v_j$ and the fact that $\{v_1, \dots, v_n\}$ are linearly independent, we see that the geometric multiplicity of a_j is at least r_j .
- ▶ It can't be more than r_j as we have proved that the geometric multiplicity of any eigenvalue is less than or equal to its algebraic multiplicity.
- ▶ Therefore for every j , the geometric and algebraic multiplicity of a_j is r_j . This proves (iii).

Continuation

- ▶ (iii) \Rightarrow (ii). Let a_1, a_2, \dots, a_k be the distinct eigenvalues of A and let the geometric/algebraic multiplicity of a_j be r_j .

Continuation

- ▶ (iii) \Rightarrow (ii). Let a_1, a_2, \dots, a_k be the distinct eigenvalues of A and let the geometric/algebraic multiplicity of a_j be r_j .
- ▶ By the fundamental theorem of algebra we know that $r_1 + \dots + r_k = n$.

Continuation

- ▶ (iii) \Rightarrow (ii). Let a_1, a_2, \dots, a_k be the distinct eigenvalues of A and let the geometric/algebraic multiplicity of a_j be r_j .
- ▶ By the fundamental theorem of algebra we know that $r_1 + \dots + r_k = n$.
- ▶ Let $\{v_{j1}, v_{j2}, \dots, v_{jr_j}\}$ be a basis for the eigenspace of A with eigenvalue a_j . In particular, for every j , $\{v_{j1}, v_{j2}, \dots, v_{jr_j}\}$ are linearly independent.

Continuation

- ▶ (iii) \Rightarrow (ii). Let a_1, a_2, \dots, a_k be the distinct eigenvalues of A and let the geometric/algebraic multiplicity of a_j be r_j .
- ▶ By the fundamental theorem of algebra we know that $r_1 + \dots + r_k = n$.
- ▶ Let $\{v_{j1}, v_{j2}, \dots, v_{jr_j}\}$ be a basis for the eigenspace of A with eigenvalue a_j . In particular, for every j , $\{v_{j1}, v_{j2}, \dots, v_{jr_j}\}$ are linearly independent.
- ▶ We also have $Av_{ji} = a_j v_{ji}$ for $1 \leq i \leq r_j$.

Continuation

- We obtain (ii) if we show that the whole collection

$$\{v_{ji} : 1 \leq i \leq r_j; 1 \leq j \leq k\}$$

is linearly independent.

Continuation

- We obtain (ii) if we show that the whole collection

$$\{v_{ji} : 1 \leq i \leq r_j; 1 \leq j \leq k\}$$

is linearly independent.

- Suppose

$$\sum_{j=1}^k \sum_{i=1}^{r_j} c_{ji} v_{ji} = 0$$

Continuation

- We obtain (ii) if we show that the whole collection

$$\{v_{ji} : 1 \leq i \leq r_j; 1 \leq j \leq k\}$$

is linearly independent.

- Suppose

$$\sum_{j=1}^k \sum_{i=1}^{r_j} c_{ji} v_{ji} = 0$$

- Take $w_j = \sum_{i=1}^{r_j} c_{ji} v_{ji}$.

Continuation

- We obtain (ii) if we show that the whole collection

$$\{v_{ji} : 1 \leq i \leq r_j; 1 \leq j \leq k\}$$

is linearly independent.

- Suppose

$$\sum_{j=1}^k \sum_{i=1}^{r_j} c_{ji} v_{ji} = 0$$

- Take $w_j = \sum_{i=1}^{r_j} c_{ji} v_{ji}$.
- Note that $\sum_{j=1}^k w_j = 0$.

Continuation

- We obtain (ii) if we show that the whole collection

$$\{v_{ji} : 1 \leq i \leq r_j; 1 \leq j \leq k\}$$

is linearly independent.

- Suppose

$$\sum_{j=1}^k \sum_{i=1}^{r_j} c_{ji} v_{ji} = 0$$

- Take $w_j = \sum_{i=1}^{r_j} c_{ji} v_{ji}$.
- Note that $\sum_{j=1}^k w_j = 0$.
- Also a_1, a_2, \dots, a_k are distinct and $Aw_j = a_j w_j, 1 \leq j \leq k$.

Continuation

- We obtain (ii) if we show that the whole collection

$$\{v_{ji} : 1 \leq i \leq r_j; 1 \leq j \leq k\}$$

is linearly independent.

- Suppose

$$\sum_{j=1}^k \sum_{i=1}^{r_j} c_{ji} v_{ji} = 0$$

- Take $w_j = \sum_{i=1}^{r_j} c_{ji} v_{ji}$.
- Note that $\sum_{j=1}^k w_j = 0$.
- Also a_1, a_2, \dots, a_k are distinct and $Aw_j = a_j w_j, 1 \leq j \leq k$.
- Then by the previous theorem, $w_j = 0$ for every j .

Continuation

- We obtain (ii) if we show that the whole collection

$$\{v_{ji} : 1 \leq i \leq r_j; 1 \leq j \leq k\}$$

is linearly independent.

- Suppose

$$\sum_{j=1}^k \sum_{i=1}^{r_j} c_{ji} v_{ji} = 0$$

- Take $w_j = \sum_{i=1}^{r_j} c_{ji} v_{ji}$.
- Note that $\sum_{j=1}^k w_j = 0$.
- Also a_1, a_2, \dots, a_k are distinct and $Aw_j = a_j w_j, 1 \leq j \leq k$.
- Then by the previous theorem, $w_j = 0$ for every j .
- For fixed j , by the linear independence of v_{ji} 's, we get $c_{ji} = 0$ for all i .

Continuation

- We obtain (ii) if we show that the whole collection

$$\{v_{ji} : 1 \leq i \leq r_j; 1 \leq j \leq k\}$$

is linearly independent.

- Suppose

$$\sum_{j=1}^k \sum_{i=1}^{r_j} c_{ji} v_{ji} = 0$$

- Take $w_j = \sum_{i=1}^{r_j} c_{ji} v_{ji}$.
- Note that $\sum_{j=1}^k w_j = 0$.
- Also a_1, a_2, \dots, a_k are distinct and $Aw_j = a_j w_j, 1 \leq j \leq k$.
- Then by the previous theorem, $w_j = 0$ for every j .
- For fixed j , by the linear independence of v_{ji} 's, we get $c_{ji} = 0$ for all i .
- This proves the required linear independence. ■

Application

- ▶ Obtain a formula for Fibonacci number F_n by diagonalizing

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

and getting a formula for A^n .

Application

- ▶ Obtain a formula for Fibonacci number F_n by diagonalizing

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

and getting a formula for A^n .

- ▶ END OF LECTURE 17.