

LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 18: Linear Recurrence relations

- Recall: Consider the sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

Lecture 18: Linear Recurrence relations

- ▶ Recall: Consider the sequence:

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \dots$$

- ▶ You may observe that this is the well-known **Fibonacci sequence** defined by: $F_0 = 0, F_1 = 1$ and

$$F_n = F_{n-1} + F_{n-2}, \quad \forall n \geq 2.$$

Lecture 18: Linear Recurrence relations

- ▶ Recall: Consider the sequence:

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \dots$$

- ▶ You may observe that this is the well-known **Fibonacci sequence** defined by: $F_0 = 0, F_1 = 1$ and

$$F_n = F_{n-1} + F_{n-2}, \quad \forall n \geq 2.$$

- ▶ How to compute F_{1000} ?

Lecture 18: Linear Recurrence relations

- ▶ Recall: Consider the sequence:

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \dots$$

- ▶ You may observe that this is the well-known **Fibonacci sequence** defined by: $F_0 = 0, F_1 = 1$ and

$$F_n = F_{n-1} + F_{n-2}, \quad \forall n \geq 2.$$

- ▶ How to compute F_{1000} ?
- ▶ Consider the matrix

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.$$

Continuation

- ▶ We have:

$$A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Continuation

- ▶ We have:

$$A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

- ▶ Further,

$$A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

Continuation

- ▶ We have:

$$A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

- ▶ Further,

$$A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

- ▶ More generally,

$$A \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix} = \begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix}.$$

Continuation

- ▶ We have:

$$A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

- ▶ Further,

$$A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

- ▶ More generally,

$$A \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix} = \begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix}.$$

- ▶ Therefore,

$$A^n \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} F_{n+1} \\ F_n \end{pmatrix}.$$

Continuation

- We have:

$$A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

- Further,

$$A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

- More generally,

$$A \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix} = \begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix}.$$

- Therefore,

$$A^n \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} F_{n+1} \\ F_n \end{pmatrix}.$$

- Hence we know F_{1000} if we know A^{999} .

How to compute the power?

- ▶ This raises the question as to how to efficiently compute powers of a matrix?

How to compute the power?

- ▶ This raises the question as to how to efficiently compute powers of a matrix?
- ▶ **Observation:** Suppose there exists an invertible matrix S such that $S^{-1}AS = D$ for some diagonal matrix D .

How to compute the power?

- ▶ This raises the question as to how to efficiently compute powers of a matrix?
- ▶ **Observation:** Suppose there exists an invertible matrix S such that $S^{-1}AS = D$ for some diagonal matrix D .
- ▶ Then

$$A = SDS^{-1}.$$

How to compute the power?

- ▶ This raises the question as to how to efficiently compute powers of a matrix?
- ▶ **Observation:** Suppose there exists an invertible matrix S such that $S^{-1}AS = D$ for some diagonal matrix D .
- ▶ Then

$$A = SDS^{-1}.$$

- ▶ This implies $A^2 = SD^2S^{-1}$ and more generally,

$$A^m = SD^mS^{-1}, \quad \forall m \geq 1.$$

Continuation

- ▶ Now if

$$D = \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n \end{bmatrix}$$

Continuation

► Now if

$$D = \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n \end{bmatrix}$$

► then

$$D^m = \begin{bmatrix} d_1^m & 0 & \dots & 0 \\ 0 & d_2^m & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n^m \end{bmatrix},$$

Continuation

- ▶ Now if

$$D = \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n \end{bmatrix}$$

- ▶ then

$$D^m = \begin{bmatrix} d_1^m & 0 & \dots & 0 \\ 0 & d_2^m & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n^m \end{bmatrix},$$

- ▶ and

$$A^m = S \begin{bmatrix} d_1^m & 0 & \dots & 0 \\ 0 & d_2^m & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n^m \end{bmatrix} S^{-1}.$$

Continuation

- Now if

$$D = \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n \end{bmatrix}$$

- then

$$D^m = \begin{bmatrix} d_1^m & 0 & \dots & 0 \\ 0 & d_2^m & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n^m \end{bmatrix},$$

- and

$$A^m = S \begin{bmatrix} d_1^m & 0 & \dots & 0 \\ 0 & d_2^m & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n^m \end{bmatrix} S^{-1}.$$

- Hence computing A^m becomes easy.

Continuation

- ▶ **Definition 17.1:** A matrix A is said to be **diagonalizable** if there exists an invertible matrix S and a diagonal matrix D such that that

$$A = SDS^{-1}.$$

Continuation

- ▶ **Definition 17.1:** A matrix A is said to be **diagonalizable** if there exists an invertible matrix S and a diagonal matrix D such that that

$$A = SDS^{-1}.$$

- ▶ Let us try to understand diagonalizability.

Continuation

- ▶ **Definition 17.1:** A matrix A is said to be **diagonalizable** if there exists an invertible matrix S and a diagonal matrix D such that that

$$A = SDS^{-1}.$$

- ▶ Let us try to understand diagonalizability.
- ▶ Suppose $A = SDS^{-1}$ with D diagonal. What can be the diagonal entries?

Continuation

- ▶ **Definition 17.1:** A matrix A is said to be **diagonalizable** if there exists an invertible matrix S and a diagonal matrix D such that that

$$A = SDS^{-1}.$$

- ▶ Let us try to understand diagonalizability.
- ▶ Suppose $A = SDS^{-1}$ with D diagonal. What can be the diagonal entries?
- ▶ Let p be the characteristic polynomial of A . From $A = SDS^{-1}$, we know that the characteristic polynomial of A is same as that of D . Hence

$$p(x) = (x - d_1)(x - d_2) \cdots (x - d_n).$$

Continuation

- ▶ **Definition 17.1:** A matrix A is said to be **diagonalizable** if there exists an invertible matrix S and a diagonal matrix D such that that

$$A = SDS^{-1}.$$

- ▶ Let us try to understand diagonalizability.
- ▶ Suppose $A = SDS^{-1}$ with D diagonal. What can be the diagonal entries?
- ▶ Let p be the characteristic polynomial of A . From $A = SDS^{-1}$, we know that the characteristic polynomial of A is same as that of D . Hence

$$p(x) = (x - d_1)(x - d_2) \cdots (x - d_n).$$

- ▶ In particular the diagonal entries of D must be the eigenvalues of A .

Diagonalizability

- **Theorem 17.4:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:

Diagonalizability

- ▶ **Theorem 17.4:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
 - ▶ (i) A is diagonalizable, that is, there exists an invertible matrix S and a diagonal matrix D such that

$$A = SDS^{-1}.$$

Diagonalizability

- ▶ **Theorem 17.4:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
- ▶ (i) A is diagonalizable, that is, there exists an invertible matrix S and a diagonal matrix D such that

$$A = SDS^{-1}.$$

- ▶ (ii) There exists a basis of \mathbb{C}^n consisting of eigenvectors of A .

Diagonalizability

- ▶ **Theorem 17.4:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
- ▶ (i) A is diagonalizable, that is, there exists an invertible matrix S and a diagonal matrix D such that

$$A = SDS^{-1}.$$

- ▶ (ii) There exists a basis of \mathbb{C}^n consisting of eigenvectors of A .
- ▶ (iii) The geometric multiplicity is same as the algebraic multiplicity for every eigenvalue of A .

Continuation

- ▶ **Proof:** $(i) \Leftrightarrow (ii)$. The equation $A = SDS^{-1}$ is same as $AS = SD$. Let v_1, v_2, \dots, v_n be the columns of S .

Continuation

- ▶ **Proof:** $(i) \Leftrightarrow (ii)$. The equation $A = SDS^{-1}$ is same as $AS = SD$. Let v_1, v_2, \dots, v_n be the columns of S .
- ▶ Now $AS = SD$ means:

$$A[v_1, v_2, \dots, v_n] = [v_1, \dots, v_n]D.$$

Continuation

- ▶ **Proof:** $(i) \Leftrightarrow (ii)$. The equation $A = SDS^{-1}$ is same as $AS = SD$. Let v_1, v_2, \dots, v_n be the columns of S .
- ▶ Now $AS = SD$ means:

$$A[v_1, v_2, \dots, v_n] = [v_1, \dots, v_n]D.$$

- ▶ Equivalently,

$$[Av_1, Av_2, \dots, Av_n] = [d_1 v_1, d_2 v_2, \dots, d_n v_n].$$

Continuation

- ▶ **Proof:** $(i) \Leftrightarrow (ii)$. The equation $A = SDS^{-1}$ is same as $AS = SD$. Let v_1, v_2, \dots, v_n be the columns of S .
- ▶ Now $AS = SD$ means:

$$A[v_1, v_2, \dots, v_n] = [v_1, \dots, v_n]D.$$

- ▶ Equivalently,

$$[Av_1, Av_2, \dots, Av_n] = [d_1 v_1, d_2 v_2, \dots, d_n v_n].$$

- ▶ This is same as:

$$Av_j = d_j v_j, 1 \leq j \leq n.$$

In particular columns of S are eigenvectors of A .

Continuation

- ▶ **Proof:** $(i) \Leftrightarrow (ii)$. The equation $A = SDS^{-1}$ is same as $AS = SD$. Let v_1, v_2, \dots, v_n be the columns of S .
- ▶ Now $AS = SD$ means:

$$A[v_1, v_2, \dots, v_n] = [v_1, \dots, v_n]D.$$

- ▶ Equivalently,

$$[Av_1, Av_2, \dots, Av_n] = [d_1 v_1, d_2 v_2, \dots, d_n v_n].$$

- ▶ This is same as:

$$Av_j = d_j v_j, 1 \leq j \leq n.$$

In particular columns of S are eigenvectors of A .

- ▶ Note that the invertibility of S is equivalent to requiring that its columns $\{v_1, v_2, \dots, v_n\}$ forms a basis of \mathbb{C}^n .

Continuation

- ▶ **Proof:** $(i) \Leftrightarrow (ii)$. The equation $A = SDS^{-1}$ is same as $AS = SD$. Let v_1, v_2, \dots, v_n be the columns of S .
- ▶ Now $AS = SD$ means:

$$A[v_1, v_2, \dots, v_n] = [v_1, \dots, v_n]D.$$

- ▶ Equivalently,

$$[Av_1, Av_2, \dots, Av_n] = [d_1 v_1, d_2 v_2, \dots, d_n v_n].$$

- ▶ This is same as:

$$Av_j = d_j v_j, 1 \leq j \leq n.$$

In particular columns of S are eigenvectors of A .

- ▶ Note that the invertibility of S is equivalent to requiring that its columns $\{v_1, v_2, \dots, v_n\}$ forms a basis of \mathbb{C}^n .
- ▶ This proves $(i) \Leftrightarrow (ii)$.

Summary

- ▶ We understand that to diagonalize a matrix we need to find eigenvalues and eigenvectors of the matrix and we need to get a basis consisting of eigenvectors.

Summary

- ▶ We understand that to diagonalize a matrix we need to find eigenvalues and eigenvectors of the matrix and we need to get a basis consisting of eigenvectors.
- ▶ We now apply this idea to solve some linear recurrence relations.

Linear recurrence relations

- ▶ Suppose $a_0, a_1, \dots, a_n, \dots$ is a sequence of real/complex numbers defined by

$$a_0 = v_0, a_1 = v_1$$

and

$$a_n = ba_{n-1} + ca_{n-2}, \quad \forall n \geq 2$$

where v_0, v_1, b, c are some complex numbers.

Linear recurrence relations

- ▶ Suppose $a_0, a_1, \dots, a_n, \dots$ is a sequence of real/complex numbers defined by

$$a_0 = v_0, a_1 = v_1$$

and

$$a_n = ba_{n-1} + ca_{n-2}, \quad \forall n \geq 2$$

where v_0, v_1, b, c are some complex numbers.

- ▶ We want to get a formula for a_n .

Linear recurrence relations

- ▶ Suppose $a_0, a_1, \dots, a_n, \dots$ is a sequence of real/complex numbers defined by

$$a_0 = v_0, a_1 = v_1$$

and

$$a_n = ba_{n-1} + ca_{n-2}, \quad \forall n \geq 2$$

where v_0, v_1, b, c are some complex numbers.

- ▶ We want to get a formula for a_n .
- ▶ Take

$$A = \begin{bmatrix} b & c \\ 1 & 0 \end{bmatrix}.$$

Linear recurrence relations

- ▶ Suppose $a_0, a_1, \dots, a_n, \dots$ is a sequence of real/complex numbers defined by

$$a_0 = v_0, a_1 = v_1$$

and

$$a_n = ba_{n-1} + ca_{n-2}, \quad \forall n \geq 2$$

where v_0, v_1, b, c are some complex numbers.

- ▶ We want to get a formula for a_n .
- ▶ Take

$$A = \begin{bmatrix} b & c \\ 1 & 0 \end{bmatrix}.$$

- ▶ We have

$$A \begin{pmatrix} a_{n-1} \\ a_{n-2} \end{pmatrix} = \begin{pmatrix} a_n \\ a_{n-1} \end{pmatrix}.$$

Linear recurrence relations

- ▶ Suppose $a_0, a_1, \dots, a_n, \dots$ is a sequence of real/complex numbers defined by

$$a_0 = v_0, a_1 = v_1$$

and

$$a_n = ba_{n-1} + ca_{n-2}, \quad \forall n \geq 2$$

where v_0, v_1, b, c are some complex numbers.

- ▶ We want to get a formula for a_n .
- ▶ Take

$$A = \begin{bmatrix} b & c \\ 1 & 0 \end{bmatrix}.$$

- ▶ We have

$$A \begin{pmatrix} a_{n-1} \\ a_{n-2} \end{pmatrix} = \begin{pmatrix} a_n \\ a_{n-1} \end{pmatrix}.$$

- ▶ Therefore,

$$\begin{pmatrix} a_n \\ a_{n-1} \end{pmatrix} = A^{n-1} \begin{pmatrix} v_1 \\ v_0 \end{pmatrix}.$$

Eigenvalues and eigenvectors

► $A = \begin{bmatrix} b & c \\ 1 & 0 \end{bmatrix}.$

Eigenvalues and eigenvectors

- ▶ $A = \begin{bmatrix} b & c \\ 1 & 0 \end{bmatrix}.$
- ▶ The characteristic polynomial of A is:

$$p(x) = (x - b)x - c = x^2 - bx - c.$$

Eigenvalues and eigenvectors

- ▶ $A = \begin{bmatrix} b & c \\ 1 & 0 \end{bmatrix}.$
- ▶ The characteristic polynomial of A is:

$$p(x) = (x - b)x - c = x^2 - bx - c.$$

- ▶ Solving $p(x) = 0$, we get the eigenvalues of A as

$$\alpha = \frac{b + \sqrt{b^2 + 4c}}{2}, \quad \beta = \frac{b - \sqrt{b^2 + 4c}}{2}.$$

Eigenvalues and eigenvectors

- ▶ $A = \begin{bmatrix} b & c \\ 1 & 0 \end{bmatrix}.$
- ▶ The characteristic polynomial of A is:

$$p(x) = (x - b)x - c = x^2 - bx - c.$$

- ▶ Solving $p(x) = 0$, we get the eigenvalues of A as

$$\alpha = \frac{b + \sqrt{b^2 + 4c}}{2}, \quad \beta = \frac{b - \sqrt{b^2 + 4c}}{2}.$$

- ▶ **Case I:** $\alpha \neq \beta$, that is, $b^2 + 4c \neq 0$.

Continuation

- ▶ By direct computation we obtain eigenvectors

$$\begin{pmatrix} \alpha \\ 1 \end{pmatrix}, \begin{pmatrix} \beta \\ 1 \end{pmatrix}$$

with eigenvalues α, β respectively.

Continuation

- ▶ By direct computation we obtain eigenvectors

$$\begin{pmatrix} \alpha \\ 1 \end{pmatrix}, \begin{pmatrix} \beta \\ 1 \end{pmatrix}$$

with eigenvalues α, β respectively.

- ▶ Take

$$S = \begin{bmatrix} \alpha & \beta \\ 1 & 1 \end{bmatrix}.$$

Continuation

- ▶ By direct computation we obtain eigenvectors

$$\begin{pmatrix} \alpha \\ 1 \end{pmatrix}, \begin{pmatrix} \beta \\ 1 \end{pmatrix}$$

with eigenvalues α, β respectively.

- ▶ Take

$$S = \begin{bmatrix} \alpha & \beta \\ 1 & 1 \end{bmatrix}.$$

- ▶ Then

$$S^{-1} = \frac{1}{\alpha - \beta} \begin{bmatrix} 1 & -\beta \\ -1 & \alpha \end{bmatrix}.$$

Continuation

- ▶ From $A = SDS^{-1}$, we have

$$A = \begin{bmatrix} \alpha & \beta \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix} \cdot \frac{1}{\alpha - \beta} \begin{bmatrix} 1 & -\beta \\ -1 & \alpha \end{bmatrix}.$$

Continuation

- ▶ From $A = SDS^{-1}$, we have

$$A = \begin{bmatrix} \alpha & \beta \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix} \cdot \frac{1}{\alpha - \beta} \begin{bmatrix} 1 & -\beta \\ -1 & \alpha \end{bmatrix}.$$

- ▶ Hence for $n \geq 1$,

$$\begin{aligned} A^{n-1} &= \begin{bmatrix} \alpha & \beta \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \alpha^{n-1} & 0 \\ 0 & \beta^{n-1} \end{bmatrix} \cdot \frac{1}{\alpha - \beta} \begin{bmatrix} 1 & -\beta \\ -1 & \alpha \end{bmatrix} \\ &= \frac{1}{\alpha - \beta} \begin{bmatrix} \alpha & \beta \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha^{n-1} & -\alpha^{n-1}\beta \\ -\beta^{n-1} & \alpha\beta^{n-1} \end{bmatrix} \\ &= \frac{1}{\alpha - \beta} \begin{bmatrix} \alpha^n - \beta^n & \alpha\beta^n - \alpha^n\beta \\ \alpha^{n-1} - \beta^{n-1} & \alpha\beta^{n-1} - \alpha^{n-1}\beta \end{bmatrix}. \end{aligned}$$

Continuation

► Therefore,

$$\begin{aligned}a_n &= \frac{1}{\alpha - \beta} [(\alpha^n - \beta^n)v_1 + (\alpha\beta^n - \alpha^n\beta)v_0] \\&= \frac{1}{\alpha - \beta} [(v_1 - \beta v_0)\alpha^n + (\alpha v_0 - v_1)\beta^n].\end{aligned}$$

Continuation

► Therefore,

$$\begin{aligned}a_n &= \frac{1}{\alpha - \beta} [(\alpha^n - \beta^n)v_1 + (\alpha\beta^n - \alpha^n\beta)v_0] \\&= \frac{1}{\alpha - \beta} [(v_1 - \beta v_0)\alpha^n + (\alpha v_0 - v_1)\beta^n].\end{aligned}$$

► Recall

$$\alpha = \frac{b + \sqrt{b^2 + 4c}}{2}, \quad \beta = \frac{b - \sqrt{b^2 + 4c}}{2}.$$

Continuation

- ▶ Therefore,

$$\begin{aligned}a_n &= \frac{1}{\alpha - \beta} [(\alpha^n - \beta^n)v_1 + (\alpha\beta^n - \alpha^n\beta)v_0] \\&= \frac{1}{\alpha - \beta} [(v_1 - \beta v_0)\alpha^n + (\alpha v_0 - v_1)\beta^n].\end{aligned}$$

- ▶ Recall

$$\alpha = \frac{b + \sqrt{b^2 + 4c}}{2}, \quad \beta = \frac{b - \sqrt{b^2 + 4c}}{2}.$$

- ▶ Therefore, $\alpha - \beta = \sqrt{b^2 + 4c}$.

Continuation

- ▶ Therefore,

$$\begin{aligned}a_n &= \frac{1}{\alpha - \beta} [(\alpha^n - \beta^n)v_1 + (\alpha\beta^n - \alpha^n\beta)v_0] \\&= \frac{1}{\alpha - \beta} [(v_1 - \beta v_0)\alpha^n + (\alpha v_0 - v_1)\beta^n].\end{aligned}$$

- ▶ Recall

$$\alpha = \frac{b + \sqrt{b^2 + 4c}}{2}, \quad \beta = \frac{b - \sqrt{b^2 + 4c}}{2}.$$

- ▶ Therefore, $\alpha - \beta = \sqrt{b^2 + 4c}$.
- ▶ In particular, a_n has the form

$$a_n = s\alpha^n + t\beta^n$$

for some scalars s, t , where α, β are the two distinct roots of $x^2 - bx - c = 0$.

Fibonacci Sequence

- ▶ Consider $F_0 = 0, F_1 = 1$ and

$$F_n = F_{n-1} + F_{n-2}, \quad \forall n \geq 2$$

Fibonacci Sequence

- ▶ Consider $F_0 = 0, F_1 = 1$ and

$$F_n = F_{n-1} + F_{n-2}, \quad \forall n \geq 2$$

- ▶ So $v_0 = 0, v_1 = 1, b = c = 1$.

Fibonacci Sequence

- ▶ Consider $F_0 = 0, F_1 = 1$ and

$$F_n = F_{n-1} + F_{n-2}, \quad \forall n \geq 2$$

- ▶ So $v_0 = 0, v_1 = 1, b = c = 1$.
- ▶ Hence

$$\alpha = \frac{1 + \sqrt{5}}{2}, \quad \beta = \frac{1 - \sqrt{5}}{2}$$

and $\alpha - \beta = \sqrt{5}$.

Fibonacci Sequence

- ▶ Consider $F_0 = 0, F_1 = 1$ and

$$F_n = F_{n-1} + F_{n-2}, \quad \forall n \geq 2$$

- ▶ So $v_0 = 0, v_1 = 1, b = c = 1$.
- ▶ Hence

$$\alpha = \frac{1 + \sqrt{5}}{2}, \quad \beta = \frac{1 - \sqrt{5}}{2}$$

and $\alpha - \beta = \sqrt{5}$.

- ▶ Therefore,

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right], \quad \forall n \geq 0.$$

Example

- ▶ Suppose $a_0 = 0, a_1 = 1$ and $a_n = a_{n-1} - a_{n-2}, \forall n \geq 2$.

Example

- ▶ Suppose $a_0 = 0, a_1 = 1$ and $a_n = a_{n-1} - a_{n-2}, \forall n \geq 2$.
- ▶ Here $b = 1, c = -1$. The roots α, β are not real as $b^2 + 4c < 0$.

Example

- ▶ Suppose $a_0 = 0, a_1 = 1$ and $a_n = a_{n-1} - a_{n-2}, \forall n \geq 2$.
- ▶ Here $b = 1, c = -1$. The roots α, β are not real as $b^2 + 4c < 0$.
- ▶ So the formula for a_n has the form

$$a_n = s\left(\frac{1 + \sqrt{3}i}{2}\right)^n + t\left(\frac{1 - \sqrt{3}i}{2}\right)^n.$$

Example

- ▶ Suppose $a_0 = 0, a_1 = 1$ and $a_n = a_{n-1} - a_{n-2}, \forall n \geq 2$.
- ▶ Here $b = 1, c = -1$. The roots α, β are not real as $b^2 + 4c < 0$.
- ▶ So the formula for a_n has the form

$$a_n = s\left(\frac{1 + \sqrt{3}i}{2}\right)^n + t\left(\frac{1 - \sqrt{3}i}{2}\right)^n.$$

- ▶ Though all the terms of the sequence are real, the formula for a_n requires complex terms!

Going further

- ▶ Case (ii): $\alpha = \beta$.

Going further

- ▶ Case (ii): $\alpha = \beta$.
- ▶ Here our matrix A is not diagonalizable. So our method fails!

Going further

- ▶ Case (ii): $\alpha = \beta$.
- ▶ Here our matrix A is not diagonalizable. So our method fails!
- ▶ It is still possible to get a formula for a_n . This is a challenge for you.

Going further

- ▶ Case (ii): $\alpha = \beta$.
- ▶ Here our matrix A is not diagonalizable. So our method fails!
- ▶ It is still possible to get a formula for a_n . This is a challenge for you.
- ▶ What about higher order recurrence relations such as tribonacci numbers:

0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, ...

Going further

- ▶ Case (ii): $\alpha = \beta$.
- ▶ Here our matrix A is not diagonalizable. So our method fails!
- ▶ It is still possible to get a formula for a_n . This is a challenge for you.
- ▶ What about higher order recurrence relations such as tribonacci numbers:

0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, ...

- ▶ Here

$$t_0 = t_1 = 0, t_2 = 1, t_n = t_{n-1} + t_{n-2} + t_{n-3}, \quad \forall n \geq 3.$$

Continuation

- ▶ Sequences like Fibonacci sequences were studied earlier by Pingala and other Indian mathematicians.

Continuation

- ▶ Sequences like Fibonacci sequences were studied earlier by Pingala and other Indian mathematicians.
- ▶ Here is an excerpt from the Wikipedia:

Continuation

- ▶ Sequences like Fibonacci sequences were studied earlier by Pingala and other Indian mathematicians.
- ▶ Here is an excerpt from the Wikipedia:
- ▶ The Narayana's cows sequence is generated by the recurrence

$$N(k) = N(k - 1) + N(k - 3)$$

Continuation

- ▶ Sequences like Fibonacci sequences were studied earlier by Pingala and other Indian mathematicians.
- ▶ Here is an excerpt from the Wikipedia:
- ▶ The Narayana's cows sequence is generated by the recurrence

$$N(k) = N(k - 1) + N(k - 3)$$

- ▶ A random Fibonacci sequence can be defined by tossing a coin for each position n of the sequence and taking
 $F(n) = F(n - 1) + F(n - 2)$ if it lands heads and
 $F(n) = F(n - 1) - F(n - 2)$ if it lands tails. Work by Furstenberg and Kesten guarantees that this sequence almost surely grows exponentially at a constant rate:
- ▶ The constant is independent of the coin tosses and was computed in 1999 by Divakar Viswanath. It is now known as Viswanath's constant.

Continuation

- ▶ Sequences like Fibonacci sequences were studied earlier by Pingala and other Indian mathematicians.
- ▶ Here is an excerpt from the Wikipedia:
- ▶ The Narayana's cows sequence is generated by the recurrence

$$N(k) = N(k - 1) + N(k - 3)$$

- ▶ A random Fibonacci sequence can be defined by tossing a coin for each position n of the sequence and taking
 - $F(n) = F(n - 1) + F(n - 2)$ if it lands heads and
 - $F(n) = F(n - 1) - F(n - 2)$ if it lands tails.Work by Furstenberg and Kesten guarantees that this sequence almost surely grows exponentially at a constant rate:
- ▶ The constant is independent of the coin tosses and was computed in 1999 by Divakar Viswanath. It is now known as Viswanath's constant.
- ▶ **END OF LECTURE 18.**