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» Further,

> More generally,

» Therefore,
n 1 _ Fn+1
“(o)=("5)

» Hence we know Figoo if we know A%,
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How to compute the power?

» This raises the question as to how to efficiently compute
powers of a matrix?

» Observation: Suppose there exists an invertible matrix S such
that ST1AS = D for some diagonal matrix D.

» Then
A=SDS1L.

» This implies A2 = SD?S~1 and more generally,

A™ = SD"S™Y Vm > 1.
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» Now if
d 0
0 o
0 O

» then

da’ o0
o _ 0 dy
0 0
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0

» then

> and

0 O
» Hence computing A™ becomes easy.
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» Definition 17.1: A matrix A is said to be diagonalizable if
there exists an invertible matrix S and a diagonal matrix D
such that that

A=SDS™1.

P Let us try to understand diagonalizability.

» Suppose A = SDS~! with D diagonal. What can be the
diagonal entries?

» Let p be the characteristic polynomial of A. From
A = SDS™!, we know that the characteristic polynomial of A
is same as that of D. Hence

p(x) = (x — di)(x — o)+~ (x — d).

» In particular the diagonal entries of D must be the eigenvalues
of A.
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Diagonalizability

» Theorem 17.4: Let A be an n X n complex matrix. Then the
following are equivalent:

» (i) A is diagonalizable, that is, there exists an invertible matrix
S and a diagonal matrix D such that

A=SDS™ L

» (ii) There exists a basis of C" consisting of eigenvectors of A.

» (iii) The geometric multiplicity is same as the algebraic
multiplicity for every eigenvalue of A.
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Proof: (i) < (ii). The equation A= SDS~! is same as
AS = SD. Let w1, vo, ..., v, be the columns of S.
Now AS = SD means:

Alvi,va, ..., vp] = [va,...,vy|D.
Equivalently,
[Avi, Ava, ...  Av,] = [dhva, dava, ..., dpvy).
This is same as:
Av; =djvj,1 <j < n.

In particular columns of S are eigenvectors of A.

Note that the invertibility of S is equivalent to requiring that
its columns {v1, vz, ..., vy} forms a basis of C".

This proves (i) < (ii).
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> We now apply this idea to solve some linear recurrence
relations.



Linear recurrence relations

» Suppose ag, a1, - - -, an, ... IS a sequence of real /complex
numbers defined by
a = Vvp, a1 = V1
and
ap =ba,_1+4+can_o, Yn>2

where vy, v1, b, ¢ are some complex numbers.



Linear recurrence relations

» Suppose ag, a1, - - -, an, ... IS a sequence of real /complex
numbers defined by
a = Vvp, a1 = V1
and
ap =ba,_1+4+can_o, Yn>2

where vy, v1, b, ¢ are some complex numbers.
> We want to get a formula for a,.



Linear

recurrence relations

Suppose ag, a1, - - -, an, ... is a sequence of real /complex
numbers defined by

a = Vp,d1 = V1
and
ap =ba,_1+4+can_o, Yn>2

where vy, v1, b, ¢ are some complex numbers.
We want to get a formula for a,.

Take
b ¢
A_[IO}



Linear

recurrence relations

Suppose ag, a1, - - -, an, ... is a sequence of real /complex
numbers defined by

a = Vo, 91 = V1

and
ap =ba,_1+4+can_o, Yn>2

where vy, v1, b, ¢ are some complex numbers.

We want to get a formula for a,.
Take
b c
A= [ b ¢ } |
We have

(o) -0 )
dpn—2 dn—1



Linear

recurrence relations

Suppose ag, a1, - - -, an, ... is a sequence of real /complex
numbers defined by

a = Vo, 91 = V1

and
ap =ba,_1+4+can_o, Yn>2

where vy, v1, b, ¢ are some complex numbers.

We want to get a formula for a,.
Take
b ¢

A [ b ¢ } .

We have
(2)-(2)

dpn-2 ap-1

Therefore,
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Eigenvalues and eigenvectors

b ¢
> A=
A [10]

» The characteristic polynomial of A is:
p(x) = (x — b)x — c = x* — bx — c.

» Solving p(x) = 0, we get the eigenvalues of A as

a_b+\/b2+4c b— b2 +4c

2 » B= 2

> Case |I: a # 3, that is, b% +4c #0.
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» By direct computation we obtain eigenvectors

(%)

with eigenvalues «, B respectively.

» Take
_|a B
5_[1 1].

L1 [ 1 -
I

» Then
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» From A= SDS~1, we have

SR
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» From A= SDS~1, we have

a f a 0
SRR

» Hence for n > 1,

. B aﬁ an—l
o= [ 1]

|

1
P

LY
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» Therefore,
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» Therefore,

an = - 1 5[(a" = B"Mv1 + (aB” — a"B)w]
T a i ﬁ[(vl — Bwo)a” + (avo — v1)B"].

» Recall

_bh VR, b VT
j— 2 ) — 2 *
» Therefore, « — 3 = Vb2 + 4c.

a
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» Therefore,

an = ol v+ (8" - "
- ozlﬂ[(w — Bwo)a” + (avo — v1)B"].

» Recall

a

_ b+Vb2+4c _ b—+Vb?+4c
N 2 r 2 '
» Therefore, a — B = Vb2 + 4c.

» In particular, a, has the form
anp =sa" +t3"

for some scalars s, t, where «, 3 are the two distinct roots of
x?> —bx—c=0.



Fibonacci Sequence

» Consider Fp =0,F; =1 and

Fn=Fn-1+ Fp2, Vn=>2



Fibonacci Sequence

» Consider Fp =0,F; =1 and
Fn=Fi1+F,2, Vn>2

> SOV(J:O,Vl:l,b:C:l.



Fibonacci Sequence

» Consider Fp =0,F; =1 and
Fn=Fi1+F,2, Vn>2
> SOV(J:O,Vl:l,b:C:l.

» Hence
1++/5 g 1=
2 2P

S

and a — 8 = /5.



Fibonacci Sequence

» Consider Fp =0,F; =1 and
Fn=Fi1+F,2, Vn>2
> SOVQZO,Vlzl,b:C:]..

» Hence
1++5 1-—
2, 8=

S

and a — 8 = /5.

» Therefore,




Example

» Suppose ag =0,a1 =1and a, =a,_1 — ap_2, Vn>2.



Example

» Suppose ag =0,a1 =1and a, =a,_1 — ap_2, Vn>2.

» Here b =1,c = —1. The roots «, 8 are not real as
b? +4c < 0.



Example

» Suppose ag =0,a1 =1and a, =a,_1 — ap_2, Vn>2.

» Here b =1,c = —1. The roots «, 8 are not real as
b? +4c < 0.

» So the formula for a, has the form

an = s(* *2@')" + et _2‘/§’)n.




Example

» Suppose ag =0,a1 =1and a, =a,_1 — ap_2, Vn>2.

» Here b =1,c = —1. The roots «, 8 are not real as
b? +4c < 0.

» So the formula for a, has the form

ERTE

» Though all the terms of the sequence are real, the formula for
an requires complex terms!

1++/3i
an:s(T
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v

Case (ii): a = p.
Here our matrix A is not diagonalizable. So our method fails!

It is still possible to get a formula for a,. This is a challenge
for you.

What about higher order recurrence relations such as
tribonacci numbers:

0,0,1,1,2,4,7,13,24,44,81, 149,274, ...
Here

to=t=0,b=1,t,=th,_1+ tho+ t,_3, VYn>3.
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Sequences like Fibonacci sequences were studied earlier by
Pingala and other Indian mathematicians.

Here is an excerpt from the Wikipedia:

The Narayana's cows sequence is generated by the recurrence

N(k) = N(k —1) + N(k — 3)

A random Fibonacci sequence can be defined by tossing a
coin for each position n of the sequence and taking

F(n) = F(n—1)+ F(n— 2) if it lands heads and

F(n) = F(n—1)— F(n—2) if it lands tails. Work by
Furstenberg and Kesten guarantees that this sequence almost
surely grows exponentially at a constant rate:

The constant is independent of the coin tosses and was
computed in 1999 by Divakar Viswanath. It is now known as
Viswanath's constant.
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A random Fibonacci sequence can be defined by tossing a
coin for each position n of the sequence and taking

F(n) = F(n—1)+ F(n— 2) if it lands heads and

F(n) = F(n—1)— F(n—2) if it lands tails. Work by
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Viswanath's constant.

END OF LECTURE 18.



