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Lecture 18: Linear Recurrence relations

I Recall: Consider the sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . .

I You may observe that this is the well-known Fibonacci
sequence defined by: F0 = 0,F1 = 1 and

Fn = Fn−1 + Fn−2, ∀n ≥ 2.

I How to compute F1000?

I Consider the matrix

A =

[
1 1
1 0

]
.
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Continuation

I We have:

A

(
1
0

)
=

[
1 1
1 0

] [
1
0

]
=

(
1
1

)
.

I Further,

A

(
1
1

)
=

(
2
1

)
.

I More generally,

A

(
Fn−1

Fn−2

)
=

(
Fn
Fn−1

)
.

I Therefore,

An

(
1
0

)
=

(
Fn+1

Fn

)
.

I Hence we know F1000 if we know A999.
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How to compute the power?

I This raises the question as to how to efficiently compute
powers of a matrix?

I Observation: Suppose there exists an invertible matrix S such
that S−1AS = D for some diagonal matrix D.

I Then
A = SDS−1.

I This implies A2 = SD2S−1 and more generally,

Am = SDmS−1, ∀m ≥ 1.
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Continuation

I Now if

D =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn



I then

Dm =


dm
1 0 . . . 0
0 dm

2 . . . 0
...

...
. . .

...
0 0 . . . dm

n

 ,
I and

Am = S


dm
1 0 . . . 0
0 dm

2 . . . 0
...

...
. . .

...
0 0 . . . dm

n

S−1.

I Hence computing Am becomes easy.
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Continuation

I Definition 17.1: A matrix A is said to be diagonalizable if
there exists an invertible matrix S and a diagonal matrix D
such that that

A = SDS−1.

I Let us try to understand diagonalizability.

I Suppose A = SDS−1 with D diagonal. What can be the
diagonal entries?

I Let p be the characteristic polynomial of A. From
A = SDS−1, we know that the characteristic polynomial of A
is same as that of D. Hence

p(x) = (x − d1)(x − d2) · · · (x − dn).

I In particular the diagonal entries of D must be the eigenvalues
of A.
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Diagonalizability

I Theorem 17.4: Let A be an n × n complex matrix. Then the
following are equivalent:

I (i) A is diagonalizable, that is, there exists an invertible matrix
S and a diagonal matrix D such that

A = SDS−1.

I (ii) There exists a basis of Cn consisting of eigenvectors of A.

I (iii) The geometric multiplicity is same as the algebraic
multiplicity for every eigenvalue of A.
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Continuation

I Proof: (i)⇔ (ii). The equation A = SDS−1 is same as
AS = SD. Let v1, v2, . . . , vn be the columns of S .

I Now AS = SD means:

A[v1, v2, . . . , vn] = [v1, . . . , vn]D.

I Equivalently,

[Av1,Av2, . . . ,Avn] = [d1v1, d2v2, . . . , dnvn].

I This is same as:

Avj = djvj , 1 ≤ j ≤ n.

In particular columns of S are eigenvectors of A.

I Note that the invertibility of S is equivalent to requiring that
its columns {v1, v2, . . . , vn} forms a basis of Cn.

I This proves (i)⇔ (ii).
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Summary

I We understand that to diagonalize a matrix we need to find
eigenvalues and eigenvectors of the matrix and we need to get
a basis consisting of eigenvectors.

I We now apply this idea to solve some linear recurrence
relations.
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Linear recurrence relations

I Suppose a0, a1, . . . , an, ... is a sequence of real/complex
numbers defined by

a0 = v0, a1 = v1

and
an = ban−1 + can−2, ∀n ≥ 2

where v0, v1, b, c are some complex numbers.

I We want to get a formula for an.
I Take

A =

[
b c
1 0

]
.

I We have

A

(
an−1

an−2

)
=

(
an
an−1

)
.

I Therefore, (
an
an−1

)
= An−1

(
v1
v0

)
.
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Eigenvalues and eigenvectors

I A =

[
b c
1 0

]
.

I The characteristic polynomial of A is:

p(x) = (x − b)x − c = x2 − bx − c.

I Solving p(x) = 0, we get the eigenvalues of A as

α =
b +
√
b2 + 4c

2
, β =

b −
√
b2 + 4c

2
.

I Case I: α 6= β, that is, b2 + 4c 6= 0.
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Continuation

I By direct computation we obtain eigenvectors(
α
1

)
,

(
β
1

)
with eigenvalues α, β respectively.

I Take

S =

[
α β
1 1

]
.

I Then

S−1 =
1

α− β

[
1 −β
−1 α

]
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I From A = SDS−1, we have
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]
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]
.
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Continuation

I Therefore,

an =
1

α− β
[(αn − βn)v1 + (αβn − αnβ)v0]

=
1

α− β
[(v1 − βv0)αn + (αv0 − v1)βn].

I Recall

α =
b +
√
b2 + 4c

2
, β =

b −
√
b2 + 4c

2
.

I Therefore, α− β =
√
b2 + 4c.

I In particular, an has the form

an = sαn + tβn

for some scalars s, t, where α, β are the two distinct roots of
x2 − bx − c = 0.
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Fibonacci Sequence

I Consider F0 = 0,F1 = 1 and

Fn = Fn−1 + Fn−2, ∀n ≥ 2

I So v0 = 0, v1 = 1, b = c = 1.

I Hence

α =
1 +
√

5
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Example

I Suppose a0 = 0, a1 = 1 and an = an−1 − an−2, ∀n ≥ 2.

I Here b = 1, c = −1. The roots α, β are not real as
b2 + 4c < 0.

I So the formula for an has the form

an = s(
1 +
√

3i

2
)n + t(

1−
√

3i

2
)n.

I Though all the terms of the sequence are real, the formula for
an requires complex terms!
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Going further

I Case (ii): α = β.

I Here our matrix A is not diagonalizable. So our method fails!

I It is still possible to get a formula for an. This is a challenge
for you.

I What about higher order recurrence relations such as
tribonacci numbers:

0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, ...

I Here

t0 = t1 = 0, t2 = 1, tn = tn−1 + tn−2 + tn−3, ∀n ≥ 3.
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Continuation

I Sequences like Fibonacci sequences were studied earlier by
Pingala and other Indian mathematicians.

I Here is an excerpt from the Wikipedia:
I The Narayana’s cows sequence is generated by the recurrence

N(k) = N(k − 1) + N(k − 3)

.
I A random Fibonacci sequence can be defined by tossing a

coin for each position n of the sequence and taking
F (n) = F (n − 1) + F (n − 2) if it lands heads and
F (n) = F (n − 1)− F (n − 2) if it lands tails. Work by
Furstenberg and Kesten guarantees that this sequence almost
surely grows exponentially at a constant rate:

I The constant is independent of the coin tosses and was
computed in 1999 by Divakar Viswanath. It is now known as
Viswanath’s constant.

I END OF LECTURE 18.
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