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Lecture 19: Schur’s upper triangularization theorem

I Recall:

I Definition 17.1: A matrix A is said to be diagonalizable if
there exists an invertible matrix S and a diagonal matrix D
such that that

A = SDS−1.

I The diagonal entries of D are eigenvalues of A and columns of
S are corresponding eigenvectors.
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Diagonalizability

I Theorem 17.4: Let A be an n × n complex matrix. Then the
following are equivalent:

I (i) A is diagonalizable, that is, there exists an invertible matrix
S and a diagonal matrix D such that

A = SDS−1.

I (ii) There exists a basis of Cn consisting of eigenvectors of A.

I (iii) The geometric multiplicity is same as the algebraic
multiplicity for every eigenvalue of A.

I There are matrices which are not diagonalizable. The next
best would be to make the matrix ‘triangular’.
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Upper and lower triangular matrices

I Definition 19.1: A matrix T = [tij ]1≤i ,j≤n is said to be upper
triangular if

tij = 0, for 1 ≤ j < i ≤ n.

I A matrix T = [tij ]1≤i ,j≤n is said to be lower triangular if

tij = 0, for 1 ≤ i < j ≤ n.

I Upper triangular:

T =


t11 t12 t13 . . . t1n

0 t22 t23 . . . t2n

0 0 t33 . . . t3n
...

...
...

. . .
...

0 0 0 . . . tnn

 .
I Note that products of upper triangular matrices are upper

triangular. If a matrix is both upper triangular and lower
triangular then it is diagonal.
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Upper triangularization

I Theorem 19.2 (Schur’s upper triangularization theorem): Let
A be an n × n complex matrix. Then there exists a unitary
matrix U and an upper triangular matrix T such that

A = UTU∗.

I Proof: We will prove this by induction on n.

I For n = 1 there is nothing to prove, as every 1× 1 matrix is
upper triangular, we can take U as the 1× 1 identity matrix.

I Now take n ≥ 2 and assume the result for all
(n − 1)× (n − 1) matrices.
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Continuation

I Consider A = [aij ]1≤i ,j≤n.

I Let a1 be some eigenvalue of A.

I Let v1 be an eigenvector of A with eigenvalue a1. (Since
det(A− a1I ) = 0, A− a1I is singular and so there exists a
non-zero vector v1 such that (A− a1I )v1 = 0.)

I By dividing v1 by its norm if necessary, we may assume that
v1 is a unit vector.
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Continuation

I Extend {v1} to an orthonormal basis {v1, v2, . . . , vn} of Cn.
(Such an extension exists due to Gram-Schmidt
orthogonalization process.)

I We have Av1 = a1v1 and for every j , expanding Avj using the
basis {v1, . . . , vn},:

Avj =
n∑

i=1

〈vi ,Avj〉vi .

I Let V be the matrix V = [v1, v2, . . . , vn]. Then these linear
equations can be written as:

AV = VS

where S = [sij ] is the matrix defined by

sij = 〈vi ,Avj〉.
I In other words, S is the matrix of the linear map x 7→ Ax , on

the basis {v1, . . . , vn}.
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Continuation

I We have AV = VS .

I Since columns of V form an orthonormal basis, V is a unitary,
that is, V ∗V = VV ∗ = I .

I Hence we get,
A = VSV ∗.

I Note that since Av1 = a1v1 and sij = 〈vi ,Avj〉, the matrix S is
of the form:

S =

[
a1 y
0 B

]
for some 1× (n− 1) vector y and (n− 1)× (n− 1) matrix B.

I By induction hypothesis, there exists an (n − 1)× (n − 1)
unitary matrix U1 and an upper triangular matrix T1 such that

B = U1T1U
∗
1 .



Continuation

I We have AV = VS .

I Since columns of V form an orthonormal basis, V is a unitary,
that is, V ∗V = VV ∗ = I .

I Hence we get,
A = VSV ∗.

I Note that since Av1 = a1v1 and sij = 〈vi ,Avj〉, the matrix S is
of the form:

S =

[
a1 y
0 B

]
for some 1× (n− 1) vector y and (n− 1)× (n− 1) matrix B.

I By induction hypothesis, there exists an (n − 1)× (n − 1)
unitary matrix U1 and an upper triangular matrix T1 such that

B = U1T1U
∗
1 .



Continuation

I We have AV = VS .

I Since columns of V form an orthonormal basis, V is a unitary,
that is, V ∗V = VV ∗ = I .

I Hence we get,
A = VSV ∗.

I Note that since Av1 = a1v1 and sij = 〈vi ,Avj〉, the matrix S is
of the form:

S =

[
a1 y
0 B

]
for some 1× (n− 1) vector y and (n− 1)× (n− 1) matrix B.

I By induction hypothesis, there exists an (n − 1)× (n − 1)
unitary matrix U1 and an upper triangular matrix T1 such that

B = U1T1U
∗
1 .



Continuation

I We have AV = VS .

I Since columns of V form an orthonormal basis, V is a unitary,
that is, V ∗V = VV ∗ = I .

I Hence we get,
A = VSV ∗.

I Note that since Av1 = a1v1 and sij = 〈vi ,Avj〉, the matrix S is
of the form:

S =

[
a1 y
0 B

]
for some 1× (n− 1) vector y and (n− 1)× (n− 1) matrix B.

I By induction hypothesis, there exists an (n − 1)× (n − 1)
unitary matrix U1 and an upper triangular matrix T1 such that

B = U1T1U
∗
1 .



Continuation

I We have AV = VS .

I Since columns of V form an orthonormal basis, V is a unitary,
that is, V ∗V = VV ∗ = I .

I Hence we get,
A = VSV ∗.

I Note that since Av1 = a1v1 and sij = 〈vi ,Avj〉, the matrix S is
of the form:

S =

[
a1 y
0 B

]
for some 1× (n− 1) vector y and (n− 1)× (n− 1) matrix B.

I By induction hypothesis, there exists an (n − 1)× (n − 1)
unitary matrix U1 and an upper triangular matrix T1 such that

B = U1T1U
∗
1 .



Continuation

I So we get

A = VSV ∗

= V

[
a1 y
0 B

]
V ∗

= V

[
1 y
0 U1T1U

∗
1

]
V ∗

I We may re-write this as:

A = V

[
1 0
0 U1

] [
a1 z
0 T1

] [
1 0
0 U∗1

]
V ∗ = UTU∗,

I where U = V

[
1 0
0 U1

]
and z = yU1.

I Now U being a product of two unitaries is a unitary and

I
[
a1 y
0 T1

]
with T1 upper triangular is upper triangular.

I This completes the proof.
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Diagonal entries

I Remark 19.2: Suppose A is an n × n matrix, U is a unitary
and T is an n × n upper triangular matrix such that
A = UTU∗. Then the charactristic polynomials of A and T
are same. Further, diagonal entries of T are eigenvalues of A.

I AS A and T are similar they have same characteristic
polynomial.

I The second part follows as determinant of any upper
triangular matrix is product of its diagonal entries and hence

det(I − A) = det(xI − T ) = (x − t11)(x − t22) · · · (x − tnn).
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Linear recurrence relations

I Recall: Suppose a0, a1, . . . , an, ... is a sequence of
real/complex numbers defined by

a0 = v0, a1 = v1

and
an = ban−1 + can−2, ∀n ≥ 2

where v0, v1, b, c are some complex numbers.

I We want to get a formula for an.
I Take

A =

[
b c
1 0

]
.

I We have

A

(
an−1

an−2

)
=

(
an
an−1

)
.

I Therefore, (
an
an−1

)
= An−1

(
v1

v0

)
.
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Eigenvalues and eigenvectors

I A =

[
b c
1 0

]
.

I The characteristic polynomial of A is:

p(x) = (x − b)x − c = x2 − bx − c.

I Solving p(x) = 0, we get the eigenvalues of A as

α =
b +
√
b2 + 4c

2
, β =

b −
√
b2 + 4c

2
.

I Case I: α 6= β, that is, b2 + 4c 6= 0. We have solved this case
by diagonalization.

I Case (ii): b2 + 4c = 0. So the two roots are equal to b
2 .



Eigenvalues and eigenvectors

I A =

[
b c
1 0

]
.

I The characteristic polynomial of A is:

p(x) = (x − b)x − c = x2 − bx − c.

I Solving p(x) = 0, we get the eigenvalues of A as

α =
b +
√
b2 + 4c

2
, β =

b −
√
b2 + 4c

2
.

I Case I: α 6= β, that is, b2 + 4c 6= 0. We have solved this case
by diagonalization.

I Case (ii): b2 + 4c = 0. So the two roots are equal to b
2 .



Eigenvalues and eigenvectors

I A =

[
b c
1 0

]
.

I The characteristic polynomial of A is:

p(x) = (x − b)x − c = x2 − bx − c.

I Solving p(x) = 0, we get the eigenvalues of A as

α =
b +
√
b2 + 4c

2
, β =

b −
√
b2 + 4c

2
.

I Case I: α 6= β, that is, b2 + 4c 6= 0. We have solved this case
by diagonalization.

I Case (ii): b2 + 4c = 0. So the two roots are equal to b
2 .



Eigenvalues and eigenvectors

I A =

[
b c
1 0

]
.

I The characteristic polynomial of A is:

p(x) = (x − b)x − c = x2 − bx − c.

I Solving p(x) = 0, we get the eigenvalues of A as

α =
b +
√
b2 + 4c

2
, β =

b −
√
b2 + 4c

2
.

I Case I: α 6= β, that is, b2 + 4c 6= 0. We have solved this case
by diagonalization.

I Case (ii): b2 + 4c = 0. So the two roots are equal to b
2 .



Eigenvalues and eigenvectors

I A =

[
b c
1 0

]
.

I The characteristic polynomial of A is:

p(x) = (x − b)x − c = x2 − bx − c.

I Solving p(x) = 0, we get the eigenvalues of A as

α =
b +
√
b2 + 4c

2
, β =

b −
√
b2 + 4c

2
.

I Case I: α 6= β, that is, b2 + 4c 6= 0. We have solved this case
by diagonalization.

I Case (ii): b2 + 4c = 0. So the two roots are equal to b
2 .



Linear recurrence relation with repeated roots

I Consider the matrix

A =

[
b c
1 0

]
.

where b2 + 4c = 0 and so the eigenvalues of A are b
2 and b

2 .

I Now (
b
2
1

)
is an eigenvector with eigenvalue b

2 . Up to scaling this is the
only eigenvector.

I Further (
−1
b
2

)
is a vector orthogonal to (

b
2
1

)
.
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Continuation

I Normalizing these vectors we get an orthonormal basis
{u1, u2} for C2 where

u1 =
1

d

(
b
2
1

)
, u2 =

1

d

(
−1
b̄
2

)

with d =

√
|b|2

4 + 1.

I It follows that
A = UTU∗

for a unitary U with T upper-triangular.

I By comparing eigenvalues of A and T ,

T =

[
b
2 p

0 b
2

]
for some p.
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Continuation

I It is easy to see from induction that

T n =

[
(b2 )n np(b2 )n−1

0 (b2 )n

]

I Now the recurrence relations yields

an = s(
b

2
)n + tn(

b

2
)n, ∀n ≥ 0,

for some scalars s, t. (Do the necessary matrix computations
to verify this.)

I The scalars can be determined using the initial conditions
a0 = v0 and a1 = v1.
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Example

I Example 19.3: Suppose a0 = 1, a1 = 2 and

an = 6an−1 − 9an−2, n ≥ 2.

I The initial few terms are:

1, 2, 3, 0,−27, . . . .

I We have b2 + 4c = 62 − 4.9 = 0. Hence the two roots are 3
and 3.

I So we must have

an = s3n + tn3n, ∀n ≥ 0.

I Taking n = 0, 1 we get

s = 1, s.3 + t.3 = 2.

Hence t = −1
3 .

I Therefore
an = 3n(1− n

3
), ∀n ≥ 0.

I END OF LECTURE 19.
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