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» The diagonal entries of D are eigenvalues of A and columns of
S are corresponding eigenvectors.
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Diagonalizability

» Theorem 17.4: Let A be an n x n complex matrix. Then the
following are equivalent:

» (i) A is diagonalizable, that is, there exists an invertible matrix
S and a diagonal matrix D such that

A=SDS™ L.

» (i) There exists a basis of C" consisting of eigenvectors of A.

» (iii) The geometric multiplicity is same as the algebraic
multiplicity for every eigenvalue of A.

» There are matrices which are not diagonalizable. The next
best would be to make the matrix ‘triangular’.
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Upper and lower triangular matrices

» Definition 19.1: A matrix T = [tjj]1<i j<n is said to be upper
triangular if
ti =0, for 1<j<i<n.

» A matrix T = [tjj]i<ij<n is said to be lower triangular if

tij =0, for 1<i<j<n.

» Upper triangular:

ti11 tiz tiz ... tlip

0 too thz ... ton
T = 0 0 t3 ... ft3g

0 0 0 ... tun i

» Note that products of upper triangular matrices are upper
triangular. If a matrix is both upper triangular and lower
triangular then it is diagonal.
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Upper triangularization

» Theorem 19.2 (Schur's upper triangularization theorem): Let
A be an n X n complex matrix. Then there exists a unitary
matrix U and an upper triangular matrix T such that

A= UTU".

» Proof: We will prove this by induction on n.

» For n =1 there is nothing to prove, as every 1 x 1 matrix is
upper triangular, we can take U as the 1 x 1 identity matrix.

» Now take n > 2 and assume the result for all
(n—1) x (n— 1) matrices.
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v

Consider A = [a,'j]lg,"jsn.
Let a; be some eigenvalue of A.

Let v; be an eigenvector of A with eigenvalue aj. (Since
det(A — a1/) =0, A— a1/ is singular and so there exists a
non-zero vector v; such that (A —ai;/)vy =0.)

By dividing v1 by its norm if necessary, we may assume that
v1 is a unit vector.
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» Extend {v1} to an orthonormal basis {v1, va,...,v,} of C".
(Such an extension exists due to Gram-Schmidt
orthogonalization process.)

» We have Av; = ajv; and for every j, expanding Av; using the

basis {vi,..., vn},:
n
Avj = Z(v,—,Avﬂv,-.
i=1
» Let V be the matrix V = [vi, v2,..., v,]. Then these linear
equations can be written as:

AV = VS
where S = [s;] is the matrix defined by
sij = (vi, Avj).

» In other words, S is the matrix of the linear map x — Ax, on
the basis {vi,...,vp}.
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» We have AV = VS.

» Since columns of V form an orthonormal basis, V is a unitary,
thatis, V*V = VW* =[.

> Hence we get,
A= VSVv*,

» Note that since Av; = ajvi and s;; = (vj, Av;), the matrix S is

of the form:
|l ar Yy
=15 &)

for some 1 x (n— 1) vector y and (n— 1) x (n— 1) matrix B.
» By induction hypothesis, there exists an (n — 1) x (n — 1)
unitary matrix U; and an upper triangular matrix Ty such that

B=UT U
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> We may re-write this as:
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o U ||lo Tnllo
> where U=V |+ O | andz= U
where = 0 U1 a z =YyUx.

» Now U being a product of two unitaries is a unitary and
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Continuation

> So we get
A = VSVv*
_ a y *
- v[o B}v
_ 1 y "
a V[O U1T1Uf}v

> We may re-write this as:

vl alls 2 lle g vmem
1 0
0 U
Now U being a product of two unitaries is a unitary and

[31 y

where U =V [ ] and z = yU;.

0 T
This completes the proof.

] with T upper triangular is upper triangular.
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Diagonal entries

» Remark 19.2: Suppose A is an n x n matrix, U is a unitary
and T is an n X n upper triangular matrix such that
A = UTU*. Then the charactristic polynomials of A and T
are same. Further, diagonal entries of T are eigenvalues of A.

» AS A and T are similar they have same characteristic
polynomial.

» The second part follows as determinant of any upper
triangular matrix is product of its diagonal entries and hence

det(/ — A) =det(x/ — T) = (x — t11)(x — t22) - - - (X — tan)-
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Linear recurrence relations

» Recall: Suppose ag, a1,...,an, ... is a sequence of
real /complex numbers defined by

a = Vo, 91 = V1

and
ap =ba,_1+4+ can_o, Yn>2

where vy, v1, b, ¢ are some complex numbers.
> We want to get a formula for a,.

» Take
b ¢
A_[IO}

» We have

» Therefore,
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Eigenvalues and eigenvectors

A:[’;g]

» The characteristic polynomial of A is:

v

p(x) = (x — b)x — c = x*> — bx — c.
» Solving p(x) = 0, we get the eigenvalues of A as

a—b+\/b2+4c b— /b2 +4c
-2 2

» Case I: a # 3, that is, b?> 4 4c # 0. We have solved this case
by diagonalization.

> Case (ii): b? + 4c = 0. So the two roots are equal to 2.
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b ¢
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» Consider the matrix
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is an eigenvector with eigenvalue g. Up to scaling this is the
only eigenvector.



Linear recurrence relation with repeated roots

>

Consider the matrix
b ¢
A= [ b ¢ } |
where b? + 4c = 0 and so the eigenvalues of A are g and g.

Now
b
2
(1)

is an eigenvector with eigenvalue g. Up to scaling this is the

only eigenvector.

Further

TS
o~

is a vector orthogonal to

N
= Nlo
~_
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{uy, up} for C? where
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» Normalizing these vectors we get an orthonormal basis

{uy, up} for C? where

1
U]_:g

with d = /12 4 1.

» It follows that

A= UTU"

for a unitary U with T upper-triangular.

» By comparing eigenvalues of A and T,

for some p.

b
T:[Q

INlIv e}

0

|
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> |t is easy to see from induction that

-,—n

> Now the recurrence relations yields

b b
ap = 5(5)” + tn(§)”, Vn >0,
for some scalars s, t. (Do the necessary matrix computations

to verify this.)



Continuation

> |t is easy to see from induction that

-,—n

> Now the recurrence relations yields

b b
apn=-s(=)"+tn(z)", VYn>0,
2 2
for some scalars s, t. (Do the necessary matrix computations
to verify this.)
» The scalars can be determined using the initial conditions
ap = v and a; = v.
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Example

» Example 19.3: Suppose ag = 1, a1 = 2 and
ap=6a,_1—9a,_2, n>2.
» The initial few terms are:
1,2,3,0,-27,....

» We have b% + 4¢c = 62 — 4.9 = 0. Hence the two roots are 3
and 3.
» So we must have

a, =5s3"+tn3", VYn>0.
» Taking n = 0,1 we get
s=1,s34+t3=2.

Hence t = —
» Therefore

W=

ap,=3"(1-
» END OF LECTURE 109.

g), Vn > 0.



