

LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 19: Schur's upper triangularization theorem

- ▶ Recall:

Lecture 19: Schur's upper triangularization theorem

- ▶ Recall:
- ▶ **Definition 17.1:** A matrix A is said to be **diagonalizable** if there exists an invertible matrix S and a diagonal matrix D such that that

$$A = SDS^{-1}.$$

Lecture 19: Schur's upper triangularization theorem

- ▶ Recall:
- ▶ **Definition 17.1:** A matrix A is said to be **diagonalizable** if there exists an invertible matrix S and a diagonal matrix D such that that

$$A = SDS^{-1}.$$

- ▶ The diagonal entries of D are eigenvalues of A and columns of S are corresponding eigenvectors.

Diagonalizability

- **Theorem 17.4:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:

Diagonalizability

- ▶ **Theorem 17.4:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
 - ▶ (i) A is diagonalizable, that is, there exists an invertible matrix S and a diagonal matrix D such that

$$A = SDS^{-1}.$$

Diagonalizability

- ▶ **Theorem 17.4:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
- ▶ (i) A is diagonalizable, that is, there exists an invertible matrix S and a diagonal matrix D such that

$$A = SDS^{-1}.$$

- ▶ (ii) There exists a basis of \mathbb{C}^n consisting of eigenvectors of A .

Diagonalizability

- ▶ **Theorem 17.4:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
- ▶ (i) A is diagonalizable, that is, there exists an invertible matrix S and a diagonal matrix D such that

$$A = SDS^{-1}.$$

- ▶ (ii) There exists a basis of \mathbb{C}^n consisting of eigenvectors of A .
- ▶ (iii) The geometric multiplicity is same as the algebraic multiplicity for every eigenvalue of A .

Diagonalizability

- ▶ **Theorem 17.4:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
- ▶ (i) A is diagonalizable, that is, there exists an invertible matrix S and a diagonal matrix D such that

$$A = SDS^{-1}.$$

- ▶ (ii) There exists a basis of \mathbb{C}^n consisting of eigenvectors of A .
- ▶ (iii) The geometric multiplicity is same as the algebraic multiplicity for every eigenvalue of A .
- ▶ There are matrices which are not diagonalizable. The next best would be to make the matrix 'triangular'.

Upper and lower triangular matrices

- ▶ **Definition 19.1:** A matrix $T = [t_{ij}]_{1 \leq i, j \leq n}$ is said to be **upper triangular** if

$$t_{ij} = 0, \text{ for } 1 \leq j < i \leq n.$$

Upper and lower triangular matrices

- ▶ **Definition 19.1:** A matrix $T = [t_{ij}]_{1 \leq i, j \leq n}$ is said to be **upper triangular** if

$$t_{ij} = 0, \text{ for } 1 \leq j < i \leq n.$$

- ▶ A matrix $T = [t_{ij}]_{1 \leq i, j \leq n}$ is said to be **lower triangular** if

$$t_{ij} = 0, \text{ for } 1 \leq i < j \leq n.$$

Upper and lower triangular matrices

- ▶ **Definition 19.1:** A matrix $T = [t_{ij}]_{1 \leq i,j \leq n}$ is said to be **upper triangular** if

$$t_{ij} = 0, \text{ for } 1 \leq j < i \leq n.$$

- ▶ A matrix $T = [t_{ij}]_{1 \leq i,j \leq n}$ is said to be **lower triangular** if

$$t_{ij} = 0, \text{ for } 1 \leq i < j \leq n.$$

- ▶ Upper triangular:

$$T = \begin{bmatrix} t_{11} & t_{12} & t_{13} & \dots & t_{1n} \\ 0 & t_{22} & t_{23} & \dots & t_{2n} \\ 0 & 0 & t_{33} & \dots & t_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & t_{nn} \end{bmatrix}.$$

- ▶ Note that products of upper triangular matrices are upper triangular. If a matrix is both upper triangular and lower triangular then it is diagonal.

Upper triangularization

- Theorem 19.2 (Schur's upper triangularization theorem): Let A be an $n \times n$ complex matrix. Then there exists a unitary matrix U and an upper triangular matrix T such that

$$A = UTU^*.$$

Upper triangularization

- Theorem 19.2 (Schur's upper triangularization theorem): Let A be an $n \times n$ complex matrix. Then there exists a unitary matrix U and an upper triangular matrix T such that

$$A = UTU^*.$$

Upper triangularization

- ▶ **Theorem 19.2 (Schur's upper triangularization theorem):** Let A be an $n \times n$ complex matrix. Then there exists a unitary matrix U and an upper triangular matrix T such that

$$A = UTU^*.$$

- ▶ **Proof:** We will prove this by induction on n .

Upper triangularization

- ▶ **Theorem 19.2 (Schur's upper triangularization theorem):** Let A be an $n \times n$ complex matrix. Then there exists a unitary matrix U and an upper triangular matrix T such that

$$A = UTU^*.$$

- ▶ **Proof:** We will prove this by induction on n .
- ▶ For $n = 1$ there is nothing to prove, as every 1×1 matrix is upper triangular, we can take U as the 1×1 identity matrix.

Upper triangularization

- ▶ **Theorem 19.2 (Schur's upper triangularization theorem):** Let A be an $n \times n$ complex matrix. Then there exists a unitary matrix U and an upper triangular matrix T such that

$$A = UTU^*.$$

- ▶ **Proof:** We will prove this by induction on n .
- ▶ For $n = 1$ there is nothing to prove, as every 1×1 matrix is upper triangular, we can take U as the 1×1 identity matrix.
- ▶ Now take $n \geq 2$ and assume the result for all $(n - 1) \times (n - 1)$ matrices.

Continuation

- ▶ Consider $A = [a_{ij}]_{1 \leq i, j \leq n}$.

Continuation

- ▶ Consider $A = [a_{ij}]_{1 \leq i, j \leq n}$.
- ▶ Let a_1 be some eigenvalue of A .

Continuation

- ▶ Consider $A = [a_{ij}]_{1 \leq i, j \leq n}$.
- ▶ Let a_1 be some eigenvalue of A .
- ▶ Let v_1 be an eigenvector of A with eigenvalue a_1 . (Since $\det(A - a_1 I) = 0$, $A - a_1 I$ is singular and so there exists a non-zero vector v_1 such that $(A - a_1 I)v_1 = 0$.)

Continuation

- ▶ Consider $A = [a_{ij}]_{1 \leq i,j \leq n}$.
- ▶ Let a_1 be some eigenvalue of A .
- ▶ Let v_1 be an eigenvector of A with eigenvalue a_1 . (Since $\det(A - a_1 I) = 0$, $A - a_1 I$ is singular and so there exists a non-zero vector v_1 such that $(A - a_1 I)v_1 = 0$.)
- ▶ By dividing v_1 by its norm if necessary, we may assume that v_1 is a unit vector.

Continuation

- ▶ Extend $\{v_1\}$ to an orthonormal basis $\{v_1, v_2, \dots, v_n\}$ of \mathbb{C}^n .
(Such an extension exists due to Gram-Schmidt orthogonalization process.)

Continuation

- ▶ Extend $\{v_1\}$ to an orthonormal basis $\{v_1, v_2, \dots, v_n\}$ of \mathbb{C}^n .
(Such an extension exists due to Gram-Schmidt orthogonalization process.)
- ▶ We have $Av_1 = a_1 v_1$ and for every j , expanding Av_j using the basis $\{v_1, \dots, v_n\}$:

$$Av_j = \sum_{i=1}^n \langle v_i, Av_j \rangle v_i.$$

Continuation

- ▶ Extend $\{v_1\}$ to an orthonormal basis $\{v_1, v_2, \dots, v_n\}$ of \mathbb{C}^n .
(Such an extension exists due to Gram-Schmidt orthogonalization process.)
- ▶ We have $Av_1 = a_1 v_1$ and for every j , expanding Av_j using the basis $\{v_1, \dots, v_n\}$:

$$Av_j = \sum_{i=1}^n \langle v_i, Av_j \rangle v_i.$$

- ▶ Let V be the matrix $V = [v_1, v_2, \dots, v_n]$. Then these linear equations can be written as:

$$AV = VS$$

where $S = [s_{ij}]$ is the matrix defined by

$$s_{ij} = \langle v_i, Av_j \rangle.$$

Continuation

- ▶ Extend $\{v_1\}$ to an orthonormal basis $\{v_1, v_2, \dots, v_n\}$ of \mathbb{C}^n . (Such an extension exists due to Gram-Schmidt orthogonalization process.)
- ▶ We have $Av_1 = a_1 v_1$ and for every j , expanding Av_j using the basis $\{v_1, \dots, v_n\}$:

$$Av_j = \sum_{i=1}^n \langle v_i, Av_j \rangle v_i.$$

- ▶ Let V be the matrix $V = [v_1, v_2, \dots, v_n]$. Then these linear equations can be written as:

$$AV = VS$$

where $S = [s_{ij}]$ is the matrix defined by

$$s_{ij} = \langle v_i, Av_j \rangle.$$

- ▶ In other words, S is the matrix of the linear map $x \mapsto Ax$, on the basis $\{v_1, \dots, v_n\}$.

Continuation

- We have $AV = VS$.

Continuation

- ▶ We have $AV = VS$.
- ▶ Since columns of V form an orthonormal basis, V is a unitary, that is, $V^*V = VV^* = I$.

Continuation

- ▶ We have $AV = VS$.
- ▶ Since columns of V form an orthonormal basis, V is a unitary, that is, $V^*V = VV^* = I$.
- ▶ Hence we get,

$$A = VSV^*.$$

Continuation

- ▶ We have $AV = VS$.
- ▶ Since columns of V form an orthonormal basis, V is a unitary, that is, $V^*V = VV^* = I$.
- ▶ Hence we get,

$$A = VSV^*.$$

- ▶ Note that since $Av_1 = a_1v_1$ and $s_{ij} = \langle v_i, Av_j \rangle$, the matrix S is of the form:

$$S = \begin{bmatrix} a_1 & y \\ 0 & B \end{bmatrix}$$

for some $1 \times (n-1)$ vector y and $(n-1) \times (n-1)$ matrix B .

Continuation

- ▶ We have $AV = VS$.
- ▶ Since columns of V form an orthonormal basis, V is a unitary, that is, $V^*V = VV^* = I$.
- ▶ Hence we get,

$$A = VSV^*.$$

- ▶ Note that since $Av_1 = a_1v_1$ and $s_{ij} = \langle v_i, Av_j \rangle$, the matrix S is of the form:

$$S = \begin{bmatrix} a_1 & y \\ 0 & B \end{bmatrix}$$

for some $1 \times (n-1)$ vector y and $(n-1) \times (n-1)$ matrix B .

- ▶ By induction hypothesis, there exists an $(n-1) \times (n-1)$ unitary matrix U_1 and an upper triangular matrix T_1 such that

$$B = U_1 T_1 U_1^*.$$

Continuation

- ▶ So we get

$$\begin{aligned} A &= VSV^* \\ &= V \begin{bmatrix} a_1 & y \\ 0 & B \end{bmatrix} V^* \\ &= V \begin{bmatrix} 1 & y \\ 0 & U_1 T_1 U_1^* \end{bmatrix} V^* \end{aligned}$$

Continuation

- So we get

$$\begin{aligned} A &= VSV^* \\ &= V \begin{bmatrix} a_1 & y \\ 0 & B \end{bmatrix} V^* \\ &= V \begin{bmatrix} 1 & y \\ 0 & U_1 T_1 U_1^* \end{bmatrix} V^* \end{aligned}$$

- We may re-write this as:

$$A = V \begin{bmatrix} 1 & 0 \\ 0 & U_1 \end{bmatrix} \begin{bmatrix} a_1 & z \\ 0 & T_1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & U_1^* \end{bmatrix} V^* = UTU^*,$$

Continuation

- So we get

$$\begin{aligned} A &= VSV^* \\ &= V \begin{bmatrix} a_1 & y \\ 0 & B \end{bmatrix} V^* \\ &= V \begin{bmatrix} 1 & y \\ 0 & U_1 T_1 U_1^* \end{bmatrix} V^* \end{aligned}$$

- We may re-write this as:

$$A = V \begin{bmatrix} 1 & 0 \\ 0 & U_1 \end{bmatrix} \begin{bmatrix} a_1 & z \\ 0 & T_1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & U_1^* \end{bmatrix} V^* = UTU^*,$$

- where $U = V \begin{bmatrix} 1 & 0 \\ 0 & U_1 \end{bmatrix}$ and $z = yU_1$.
- Now U being a product of two unitaries is a unitary and

Continuation

- So we get

$$\begin{aligned} A &= VSV^* \\ &= V \begin{bmatrix} a_1 & y \\ 0 & B \end{bmatrix} V^* \\ &= V \begin{bmatrix} 1 & y \\ 0 & U_1 T_1 U_1^* \end{bmatrix} V^* \end{aligned}$$

- We may re-write this as:

$$A = V \begin{bmatrix} 1 & 0 \\ 0 & U_1 \end{bmatrix} \begin{bmatrix} a_1 & z \\ 0 & T_1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & U_1^* \end{bmatrix} V^* = UTU^*,$$

- where $U = V \begin{bmatrix} 1 & 0 \\ 0 & U_1 \end{bmatrix}$ and $z = yU_1$.
- Now U being a product of two unitaries is a unitary and
- $\begin{bmatrix} a_1 & y \\ 0 & T_1 \end{bmatrix}$ with T_1 upper triangular is upper triangular.

Continuation

- So we get

$$\begin{aligned} A &= VSV^* \\ &= V \begin{bmatrix} a_1 & y \\ 0 & B \end{bmatrix} V^* \\ &= V \begin{bmatrix} 1 & y \\ 0 & U_1 T_1 U_1^* \end{bmatrix} V^* \end{aligned}$$

- We may re-write this as:

$$A = V \begin{bmatrix} 1 & 0 \\ 0 & U_1 \end{bmatrix} \begin{bmatrix} a_1 & z \\ 0 & T_1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & U_1^* \end{bmatrix} V^* = UTU^*,$$

- where $U = V \begin{bmatrix} 1 & 0 \\ 0 & U_1 \end{bmatrix}$ and $z = yU_1$.
- Now U being a product of two unitaries is a unitary and
- $\begin{bmatrix} a_1 & y \\ 0 & T_1 \end{bmatrix}$ with T_1 upper triangular is upper triangular.
- This completes the proof.

Diagonal entries

- ▶ **Remark 19.2:** Suppose A is an $n \times n$ matrix, U is a unitary and T is an $n \times n$ upper triangular matrix such that $A = UTU^*$. Then the characteristic polynomials of A and T are same. Further, diagonal entries of T are eigenvalues of A .

Diagonal entries

- ▶ **Remark 19.2:** Suppose A is an $n \times n$ matrix, U is a unitary and T is an $n \times n$ upper triangular matrix such that $A = UTU^*$. Then the characteristic polynomials of A and T are same. Further, diagonal entries of T are eigenvalues of A .
- ▶ AS A and T are similar they have same characteristic polynomial.

Diagonal entries

- ▶ **Remark 19.2:** Suppose A is an $n \times n$ matrix, U is a unitary and T is an $n \times n$ upper triangular matrix such that $A = UTU^*$. Then the characteristic polynomials of A and T are same. Further, diagonal entries of T are eigenvalues of A .
- ▶ AS A and T are similar they have same characteristic polynomial.
- ▶ The second part follows as determinant of any upper triangular matrix is product of its diagonal entries and hence

$$\det(I - A) = \det(xI - T) = (x - t_{11})(x - t_{22}) \cdots (x - t_{nn}).$$

Linear recurrence relations

- ▶ **Recall:** Suppose $a_0, a_1, \dots, a_n, \dots$ is a sequence of real/complex numbers defined by

$$a_0 = v_0, a_1 = v_1$$

and

$$a_n = ba_{n-1} + ca_{n-2}, \quad \forall n \geq 2$$

where v_0, v_1, b, c are some complex numbers.

Linear recurrence relations

- ▶ Recall: Suppose $a_0, a_1, \dots, a_n, \dots$ is a sequence of real/complex numbers defined by

$$a_0 = v_0, a_1 = v_1$$

and

$$a_n = ba_{n-1} + ca_{n-2}, \quad \forall n \geq 2$$

where v_0, v_1, b, c are some complex numbers.

- ▶ We want to get a formula for a_n .

Linear recurrence relations

- ▶ **Recall:** Suppose $a_0, a_1, \dots, a_n, \dots$ is a sequence of real/complex numbers defined by

$$a_0 = v_0, a_1 = v_1$$

and

$$a_n = ba_{n-1} + ca_{n-2}, \quad \forall n \geq 2$$

where v_0, v_1, b, c are some complex numbers.

- ▶ We want to get a formula for a_n .
- ▶ Take

$$A = \begin{bmatrix} b & c \\ 1 & 0 \end{bmatrix}.$$

Linear recurrence relations

- ▶ Recall: Suppose $a_0, a_1, \dots, a_n, \dots$ is a sequence of real/complex numbers defined by

$$a_0 = v_0, a_1 = v_1$$

and

$$a_n = ba_{n-1} + ca_{n-2}, \quad \forall n \geq 2$$

where v_0, v_1, b, c are some complex numbers.

- ▶ We want to get a formula for a_n .
- ▶ Take

$$A = \begin{bmatrix} b & c \\ 1 & 0 \end{bmatrix}.$$

- ▶ We have

$$A \begin{pmatrix} a_{n-1} \\ a_{n-2} \end{pmatrix} = \begin{pmatrix} a_n \\ a_{n-1} \end{pmatrix}.$$

Linear recurrence relations

- ▶ **Recall:** Suppose $a_0, a_1, \dots, a_n, \dots$ is a sequence of real/complex numbers defined by

$$a_0 = v_0, a_1 = v_1$$

and

$$a_n = ba_{n-1} + ca_{n-2}, \quad \forall n \geq 2$$

where v_0, v_1, b, c are some complex numbers.

- ▶ We want to get a formula for a_n .
- ▶ Take

$$A = \begin{bmatrix} b & c \\ 1 & 0 \end{bmatrix}.$$

- ▶ We have

$$A \begin{pmatrix} a_{n-1} \\ a_{n-2} \end{pmatrix} = \begin{pmatrix} a_n \\ a_{n-1} \end{pmatrix}.$$

- ▶ Therefore,

$$\begin{pmatrix} a_n \\ a_{n-1} \end{pmatrix} = A^{n-1} \begin{pmatrix} v_1 \\ v_0 \end{pmatrix}.$$

Eigenvalues and eigenvectors

► $A = \begin{bmatrix} b & c \\ 1 & 0 \end{bmatrix}.$

Eigenvalues and eigenvectors

- ▶ $A = \begin{bmatrix} b & c \\ 1 & 0 \end{bmatrix}.$
- ▶ The characteristic polynomial of A is:

$$p(x) = (x - b)x - c = x^2 - bx - c.$$

Eigenvalues and eigenvectors

- ▶ $A = \begin{bmatrix} b & c \\ 1 & 0 \end{bmatrix}.$
- ▶ The characteristic polynomial of A is:

$$p(x) = (x - b)x - c = x^2 - bx - c.$$

- ▶ Solving $p(x) = 0$, we get the eigenvalues of A as

$$\alpha = \frac{b + \sqrt{b^2 + 4c}}{2}, \quad \beta = \frac{b - \sqrt{b^2 + 4c}}{2}.$$

Eigenvalues and eigenvectors

- ▶ $A = \begin{bmatrix} b & c \\ 1 & 0 \end{bmatrix}.$
- ▶ The characteristic polynomial of A is:

$$p(x) = (x - b)x - c = x^2 - bx - c.$$

- ▶ Solving $p(x) = 0$, we get the eigenvalues of A as

$$\alpha = \frac{b + \sqrt{b^2 + 4c}}{2}, \quad \beta = \frac{b - \sqrt{b^2 + 4c}}{2}.$$

- ▶ **Case I:** $\alpha \neq \beta$, that is, $b^2 + 4c \neq 0$. We have solved this case by diagonalization.

Eigenvalues and eigenvectors

- ▶ $A = \begin{bmatrix} b & c \\ 1 & 0 \end{bmatrix}.$
- ▶ The characteristic polynomial of A is:

$$p(x) = (x - b)x - c = x^2 - bx - c.$$

- ▶ Solving $p(x) = 0$, we get the eigenvalues of A as

$$\alpha = \frac{b + \sqrt{b^2 + 4c}}{2}, \quad \beta = \frac{b - \sqrt{b^2 + 4c}}{2}.$$

- ▶ **Case I:** $\alpha \neq \beta$, that is, $b^2 + 4c \neq 0$. We have solved this case by diagonalization.
- ▶ Case (ii): $b^2 + 4c = 0$. So the two roots are equal to $\frac{b}{2}$.

Linear recurrence relation with repeated roots

- ▶ Consider the matrix

$$A = \begin{bmatrix} b & c \\ 1 & 0 \end{bmatrix}.$$

where $b^2 + 4c = 0$ and so the eigenvalues of A are $\frac{b}{2}$ and $\frac{b}{2}$.

Linear recurrence relation with repeated roots

- ▶ Consider the matrix

$$A = \begin{bmatrix} b & c \\ 1 & 0 \end{bmatrix}.$$

where $b^2 + 4c = 0$ and so the eigenvalues of A are $\frac{b}{2}$ and $\frac{b}{2}$.

- ▶ Now

$$\begin{pmatrix} \frac{b}{2} \\ 1 \end{pmatrix}$$

is an eigenvector with eigenvalue $\frac{b}{2}$. Up to scaling this is the only eigenvector.

Linear recurrence relation with repeated roots

- ▶ Consider the matrix

$$A = \begin{bmatrix} b & c \\ 1 & 0 \end{bmatrix}.$$

where $b^2 + 4c = 0$ and so the eigenvalues of A are $\frac{b}{2}$ and $\frac{b}{2}$.

- ▶ Now

$$\begin{pmatrix} \frac{b}{2} \\ 1 \end{pmatrix}$$

is an eigenvector with eigenvalue $\frac{b}{2}$. Up to scaling this is the only eigenvector.

- ▶ Further

$$\begin{pmatrix} -1 \\ \frac{b}{2} \end{pmatrix}$$

is a vector orthogonal to

$$\begin{pmatrix} \frac{b}{2} \\ 1 \end{pmatrix}.$$

Continuation

- ▶ Normalizing these vectors we get an orthonormal basis $\{u_1, u_2\}$ for \mathbb{C}^2 where

$$u_1 = \frac{1}{d} \begin{pmatrix} \frac{b}{2} \\ 1 \end{pmatrix}, \quad u_2 = \frac{1}{d} \begin{pmatrix} -1 \\ \frac{\bar{b}}{2} \end{pmatrix}$$

with $d = \sqrt{\frac{|b|^2}{4} + 1}$.

Continuation

- ▶ Normalizing these vectors we get an orthonormal basis $\{u_1, u_2\}$ for \mathbb{C}^2 where

$$u_1 = \frac{1}{d} \begin{pmatrix} \frac{b}{2} \\ 1 \end{pmatrix}, \quad u_2 = \frac{1}{d} \begin{pmatrix} -1 \\ \frac{\bar{b}}{2} \end{pmatrix}$$

with $d = \sqrt{\frac{|b|^2}{4} + 1}$.

- ▶ It follows that

$$A = UTU^*$$

for a unitary U with T upper-triangular.

Continuation

- ▶ Normalizing these vectors we get an orthonormal basis $\{u_1, u_2\}$ for \mathbb{C}^2 where

$$u_1 = \frac{1}{d} \begin{pmatrix} \frac{b}{2} \\ 1 \end{pmatrix}, \quad u_2 = \frac{1}{d} \begin{pmatrix} -1 \\ \frac{b}{2} \end{pmatrix}$$

with $d = \sqrt{\frac{|b|^2}{4} + 1}$.

- ▶ It follows that

$$A = UTU^*$$

for a unitary U with T upper-triangular.

- ▶ By comparing eigenvalues of A and T ,

$$T = \begin{bmatrix} \frac{b}{2} & p \\ 0 & \frac{b}{2} \end{bmatrix}$$

for some p .

Continuation

- ▶ It is easy to see from induction that

$$T^n = \begin{bmatrix} \left(\frac{b}{2}\right)^n & np\left(\frac{b}{2}\right)^{n-1} \\ 0 & \left(\frac{b}{2}\right)^n \end{bmatrix}$$

Continuation

- ▶ It is easy to see from induction that

$$T^n = \begin{bmatrix} \left(\frac{b}{2}\right)^n & np\left(\frac{b}{2}\right)^{n-1} \\ 0 & \left(\frac{b}{2}\right)^n \end{bmatrix}$$

- ▶ Now the recurrence relations yields

$$a_n = s\left(\frac{b}{2}\right)^n + tn\left(\frac{b}{2}\right)^n, \quad \forall n \geq 0,$$

for some scalars s, t . (Do the necessary matrix computations to verify this.)

Continuation

- ▶ It is easy to see from induction that

$$T^n = \begin{bmatrix} \left(\frac{b}{2}\right)^n & np\left(\frac{b}{2}\right)^{n-1} \\ 0 & \left(\frac{b}{2}\right)^n \end{bmatrix}$$

- ▶ Now the recurrence relations yields

$$a_n = s\left(\frac{b}{2}\right)^n + tn\left(\frac{b}{2}\right)^n, \quad \forall n \geq 0,$$

for some scalars s, t . (Do the necessary matrix computations to verify this.)

- ▶ The scalars can be determined using the initial conditions $a_0 = v_0$ and $a_1 = v_1$.

Example

► Example 19.3: Suppose $a_0 = 1$, $a_1 = 2$ and

$$a_n = 6a_{n-1} - 9a_{n-2}, \quad n \geq 2.$$

Example

- ▶ Example 19.3: Suppose $a_0 = 1$, $a_1 = 2$ and

$$a_n = 6a_{n-1} - 9a_{n-2}, \quad n \geq 2.$$

- ▶ The initial few terms are:

$$1, 2, 3, 0, -27, \dots$$

Example

- ▶ Example 19.3: Suppose $a_0 = 1$, $a_1 = 2$ and

$$a_n = 6a_{n-1} - 9a_{n-2}, \quad n \geq 2.$$

- ▶ The initial few terms are:

$$1, 2, 3, 0, -27, \dots$$

- ▶ We have $b^2 + 4c = 6^2 - 4 \cdot 9 = 0$. Hence the two roots are 3 and 3.

Example

- ▶ Example 19.3: Suppose $a_0 = 1$, $a_1 = 2$ and

$$a_n = 6a_{n-1} - 9a_{n-2}, \quad n \geq 2.$$

- ▶ The initial few terms are:

$$1, 2, 3, 0, -27, \dots$$

- ▶ We have $b^2 + 4c = 6^2 - 4 \cdot 9 = 0$. Hence the two roots are 3 and 3.
- ▶ So we must have

$$a_n = s3^n + tn3^n, \quad \forall n \geq 0.$$

Example

- ▶ Example 19.3: Suppose $a_0 = 1$, $a_1 = 2$ and

$$a_n = 6a_{n-1} - 9a_{n-2}, \quad n \geq 2.$$

- ▶ The initial few terms are:

$$1, 2, 3, 0, -27, \dots$$

- ▶ We have $b^2 + 4c = 6^2 - 4 \cdot 9 = 0$. Hence the two roots are 3 and 3.
- ▶ So we must have

$$a_n = s3^n + tn3^n, \quad \forall n \geq 0.$$

- ▶ Taking $n = 0, 1$ we get

$$s = 1, s \cdot 3 + t \cdot 3 = 2.$$

Hence $t = -\frac{1}{3}$.

Example

- ▶ Example 19.3: Suppose $a_0 = 1$, $a_1 = 2$ and

$$a_n = 6a_{n-1} - 9a_{n-2}, \quad n \geq 2.$$

- ▶ The initial few terms are:

$$1, 2, 3, 0, -27, \dots$$

- ▶ We have $b^2 + 4c = 6^2 - 4 \cdot 9 = 0$. Hence the two roots are 3 and 3.
- ▶ So we must have

$$a_n = s3^n + tn3^n, \quad \forall n \geq 0.$$

- ▶ Taking $n = 0, 1$ we get

$$s = 1, s \cdot 3 + t \cdot 3 = 2.$$

Hence $t = -\frac{1}{3}$.

- ▶ Therefore

$$a_n = 3^n \left(1 - \frac{n}{3}\right), \quad \forall n \geq 0.$$

- ▶ END OF LECTURE 19.