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Lecture 20: Normal matrices

I Recall:

I Definition 17.1: A matrix A is said to be diagonalizable if
there exists an invertible matrix S and a diagonal matrix D
such that that

A = SDS−1.

I The diagonal entries of D are eigenvalues of A and columns of
S are corresponding eigenvectors.
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Diagonalizability

I Theorem 17.4: Let A be an n × n complex matrix. Then the
following are equivalent:

I (i) A is diagonalizable, that is, there exists an invertible matrix
S and a diagonal matrix D such that

A = SDS−1.

I (ii) There exists a basis of Cn consisting of eigenvectors of A.

I (iii) The geometric multiplicity is same as the algebraic
multiplicity for every eigenvalue of A.

I There are matrices which are not diagonalizable. The next
best would be to make the matrix ‘triangular’.
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Upper and lower triangular matrices

I Definition 19.1: A matrix T = [tij ]1≤i ,j≤n is said to be upper
triangular if

tij = 0, for 1 ≤ j < i ≤ n.

I A matrix T = [tij ]1≤i ,j≤n is said to be lower triangular if

tij = 0, for 1 ≤ i < j ≤ n.

I Upper triangular:

T =


t11 t12 t13 . . . t1n
0 t22 t23 . . . t2n
0 0 t33 . . . t3n
...

...
...

. . .
...

0 0 0 . . . tnn

 .

I Note that products of upper triangular matrices are upper
triangular. If a matrix is both upper triangular and lower
triangular then it is diagonal.
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Upper triangularization

I Theorem 19.2 (Schur’s upper triangularization theorem): Let
A be an n × n complex matrix. Then there exists a unitary
matrix U and an upper triangular matrix T such that

A = UTU∗.

I Remark 19.3: Suppose A is an n × n matrix, U is a unitary
and T is an n × n upper triangular matrix such that
A = UTU∗. Then the charactristic polynomials of A and T
are same. Further, diagonal entries of T are eigenvalues of A.

I AS A and T are similar they have same characteristic
polynomial.

I The second part follows as determinant of any upper
triangular matrix is product of its diagonal entries and hence

det(xI − A) = det(xI − T ) = (x − t11)(x − t22) · · · (x − tnn).
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Motivation to study normal matrices

I One disadvantage with upper triangularization in comparison
with diagonalization is that though products of upper
triangular matrices is upper traingular there is no simple
method to compute powers of upper triangular matrices.

I We have seen that computations can be made easily with
diagonal matrices.

I However, in general it is very difficult to check
diagonalizability.

I So we focus on a large class of matrices called normal
matrices. Normality is easy to check and it ensures
diagonalizability.
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Self-adjoint and normal matrices

I Definition 20.1: (i) A complex square matrix A is said to be
self-adjoint if A∗ = A. (ii) A complex square matrix A is said
to be normal if A∗A = AA∗.

I Recall that for A = [aij ]1≤i ,j≤n, we have A∗ = [aji ]1≤i ,j≤n.

I In particular, every real symmetric matrix is self-adjoint.

I Here is an example of a self-adjoint matrix which is not real
and symmetric:

B =

[
2 3 + 5i

3− 5i 1

]
.

I Note that diagonal entry of every self-adjoint matrix is real as
aii = aii for every i .
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Examples of normal matrices

I Remark 20.2: (i) If A is self-adjoint then A is normal as

A∗A = A.A = AA∗.

I (ii) If A is a unitary then A is normal as

AA∗ = A∗A = I .

I (iii) If A is a projection then A = A∗ = A2. Hence A is
self-adjoint and normal.

I (iv) Every diagonal matrix is normal. Every real diagonal
matrix is self-adjoint.

I Example 20.3: Consider

C =

[
0 1
0 0

]
.

Then C is not normal.
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Normal upper triangular matrices

I Theorem 20.4: If a square matrix is upper triangular and
normal then it is diagonal.

I Proof: Suppose

T =


t11 t12 t13 . . . t1n
0 t22 t23 . . . t2n
0 0 t33 . . . t3n
...

...
...

. . .
...

0 0 0 . . . tnn
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is normal.

I We have

T ∗ =


t11 0 0 . . . 0
t12 t22 0 . . . 0
t13 t23 t33 . . . 0
...

...
...

. . .
...

t1n t2n t3n . . . tnn


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Continuation

I Computing the first diagonal entries of T ∗T and TT ∗, as T
is normal, we get

|t11|2 = |t11|2 + |t12|2 + · · ·+ |t1n|2.

I Hence |t12|2 + · · ·+ |t1n|2 = 0 or

t12 = t13 = · · · = t1n = 0.

I So we get

T =
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Continuation

I Now from (T ∗T )22 = (TT ∗)22 we get

|t22|2 = |t22|2 + |t23|2 + · · ·+ |t2n|2.

I Consequently,

t23 = t24 = · · · = t2n = 0.

I Continuing this way (that is, by mathematical induction) we
see that tij = 0, ∀i 6= j .

I In other words, T is diagonal. �
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Unitary equivalence

I Definition 20.5: A complex matrix B is said to be unitarily
equivalent to a matrix A if there exists a unitary matrix U
such that

B = UAU∗.

I It is easy to see that unitary equivalence is an equivalence
relation in the space of matrices.

I B is unitarily equivalent to A means that A,B are matrices of
same linear map on different orthonormal bases.

I Proposition 20.6: Suppose B is unitarily equivalent to A.
Then B is normal (resp. self-adjoint, unitary, projection) if
and only if A is normal (resp. self-adjoint, unitary, projection).

I Proof: Suppose U is a unitary such that B = UAU∗. Then
B∗B = (UAU∗)∗(UAU∗) = UA∗UU∗AU = UA∗AU∗. Similarly,
BB∗ = UAA∗U∗. Now the result follows easily.
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Spectral theorem (Version -I)

I Theorem 20.7 (Spectral Theorem-I): Let A be a complex
matrix. Then there exists a unitary matrix U and a diagonal
matrix D such that

A = UDU∗

if and only if A is normal.

I The theorem tells us that a matrix is diagonalizable through a
unitary iff it is normal. In particular, every normal matrix is
diagonalizable.

I Proof: Suppose A is a normal matrix.
I By Schur’s upper triangularization theorem (Theorem 19.2)

there exists a unitary U and an upper triangular matrix T
such that

A = UTU∗.

I Note that A and T are unitarily equivalent. Consequently T
is normal. Then by Theorem 20.4, as T is both upper
triangular and normal it must be diagonal. Taking D = T , we
have A = UDU∗ and we are done.
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Continuation

I Conversely, suppose A = UDU∗ where D is diagonal and U is
a unitary.

I Since every diagonal matrix is normal, D is normal.

I Then as A is unitarily equivalent to D, A is also normal. �.
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