
LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore



Lecture 21: More on Normal matrices

I Recall: We recall some definitions and the spectral theorem
for normal matrices.



Self-adjoint and normal matrices

I Definition 20.1: (i) A complex square matrix A is said to be
self-adjoint if A∗ = A. (ii) A complex square matrix A is said
to be normal if A∗A = AA∗.

I Recall that for A = [aij ]1≤i ,j≤n, we have A∗ = [aji ]1≤i ,j≤n.

I In particular, every real symmetric matrix is self-adjoint.

I Here is an example of a self-adjoint matrix which is not real
and symmetric:

B =

[
2 3 + 5i

3− 5i 1

]
.

I Note that diagonal entry of every self-adjoint matrix is real as
aii = aii for every i .
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Examples of normal matrices

I Remark 20.2: (i) If A is self-adjoint then A is normal as

A∗A = A.A = AA∗.

I (ii) If A is a unitary then A is normal as

AA∗ = A∗A = I .

I (iii) If A is a projection then A = A∗ = A2. Hence A is
self-adjoint and normal.

I (iv) Every diagonal matrix is normal. Every real diagonal
matrix is self-adjoint.

I Example 20.3: Consider

C =

[
0 1
0 0

]
.

Then C is not normal.
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Normal upper triangular matrices

I Theorem 20.4: If a square matrix is upper triangular and
normal then it is diagonal.

I Proof: Suppose

T =


t11 t12 t13 . . . t1n
0 t22 t23 . . . t2n
0 0 t33 . . . t3n
...

...
...

. . .
...

0 0 0 . . . tnn


is normal.

I We have

T ∗ =


t11 0 0 . . . 0
t12 t22 0 . . . 0
t13 t23 t33 . . . 0
...

...
...

. . .
...

t1n t2n t3n . . . tnn


.
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Continuation

I Computing the first diagonal entries of T ∗T and TT ∗, as T
is normal, we get

|t11|2 = |t11|2 + |t12|2 + · · ·+ |t1n|2.

I Hence |t12|2 + · · ·+ |t1n|2 = 0 or

t12 = t13 = · · · = t1n = 0.

I So we get
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Continuation

I Now from (T ∗T )22 = (TT ∗)22 we get

|t22|2 = |t22|2 + |t23|2 + · · ·+ |t2n|2.

I Consequently,

t23 = t24 = · · · = t2n = 0.

I Continuing this way (that is, by mathematical induction) we
see that tij = 0, ∀i 6= j .

I In other words, T is diagonal. �
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Unitary equivalence

I Definition 20.5: A complex matrix B is said to be unitarily
equivalent to a matrix A if there exists a unitary matrix U
such that

B = UAU∗.

I It is easy to see that unitary equivalence is an equivalence
relation in the space of matrices.

I B is unitarily equivalent to A means that A,B are matrices of
same linear map on different orthonormal bases.

I Proposition 20.6: Suppose B is unitarily equivalent to A.
Then B is normal (resp. self-adjoint, unitary, projection) if
and only if A is normal (resp. self-adjoint, unitary, projection).

I Proof: Suppose U is a unitary such that B = UAU∗. Then
B∗B = (UAU∗)∗(UAU∗) = UA∗UU∗AU = UA∗AU∗. Similarly,
BB∗ = UAA∗U∗. Now the result follows easily.
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Spectral theorem (Version -I)

I Theorem 20.7 (Spectral Theorem-I): Let A be a complex
matrix. Then there exists a unitary matrix U and a diagonal
matrix D such that

A = UDU∗

if and only if A is normal.

I The theorem tells us that a matrix is diagonalizable through a
unitary iff it is normal. In particular, every normal matrix is
diagonalizable.

I Proof: Suppose A is a normal matrix.
I By Schur’s upper triangularization theorem (Theorem 19.2)

there exists a unitary U and an upper triangular matrix T
such that

A = UTU∗.

I Note that A and T are unitarily equivalent. Consequently T
is normal. Then by Theorem 20.4, as T is both upper
triangular and normal it must be diagonal. Taking D = T , we
have A = UDU∗ and we are done.
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Continuation

I Conversely, suppose A = UDU∗ where D is diagonal and U is
a unitary.

I Since every diagonal matrix is normal, D is normal.

I Then as A is unitarily equivalent to D, A is also normal. �.
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Consequences of the spectral theorem

I Corollary 21.1: Let A be an n × n complex matrix. Then A is
normal if and only if there exists an orthonormal basis
{v1, v2, . . . , vn} of Cn consisting of eigenvectors of A.

I Proof: Suppose A is normal. Then by the spectral theorem
there exists a unitary matrix U and a diagonal matrix D such
that

A = UDU∗.

I Writing this as AU = UD, we see that columns of U are
eigenvectors for A. Since U is a unitary its columns form an
orthonormal basis for Cn.

I Conversely, suppose {v1, . . . , vn} is an orthonormal basis of
Cn consisting of eigenvectors of A, say Avj = djvj , 1 ≤ j ≤ n.

I Take U = [v1, . . . , vn]. Then U is a unitary and AU = UD.
Hence A = UDU∗. Consequently A is normal. �
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Example

I Example 21.2: Suppose

A =

[
2 1
1 2

]
.

I Then as A is self-adjoint it is normal.

I The characteristic polynomial of A is

p(x) = det(xI−A) = (x−2)2−1 = x2−4x+3 = (x−3)(x−1).

I Hence the eigenvalues of A are 1 and 3.

I Solving corresponding eigen equations we see that

A

(
1
1

)
= 3

(
1
1

)
, A

(
1
−1

)
=

(
1
−1

)
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Continuation

I Normalizing these eigenvectors, and taking them as columns
we get a unitary,

U =
1√
2

[
1 1
1 −1

]

I satisfying,

AU = U

[
3 0
0 1

]
.

I Alternatively,

A = U

[
3 0
0 1

]
U∗.
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Terminology and notation

I Definition 21.3: Let A be a complex square matrix. Then

σ(A) = {c ∈ C : (cI − A) is not invertible}

is known as the spectrum of A.

I Note that for a matrix A, if a1, a2, . . . , an are eigenvalues of A,
then

σ(A) = {a1, a2, . . . , an}
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Some characterizations

I Theorem 21.4: Let A be a normal matrix. Then,
(i) A is self-adjoint iff σ(A) ⊂ R.
(ii) A is a unitary iff σ(A) ⊂ {z ∈ C : |z | = 1}.
(iii) A is a projection iff σ(A) ⊆ {0, 1}.

I Proof: By spectral theorem

A = UDU∗

for some unitary U and a diagonal matrix D. By taking
adjoint,

A∗ = (UDU∗)∗ = UD∗U∗.

I If A is self-adjoint, then A = A∗. Hence,

UDU∗ = UD∗U∗.

I Multiplication by U∗,U, yields D = D∗. Since D is diagonal,
this means that all the diagonal entries are real. Hence

σ(A) ⊂ R.
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Continuation

I Conversely, if the eigenvalues of A are real, then the diagonal
entries of D are real and hence D = D∗. Now A = A∗ is clear.

I Properties (ii) and (iii) also follow easily from the spectral
theorem. �

I Remark 21.5: In this theorem the hypothesis of A being
normal is crucial. Just from knowing that eigenvalues of A are
real one can’t say that it is self-adjoint.

I For instance,

A =

[
3 5
0 7

]
has {3, 7} as its spectrum, which is a subset of the real line.

I However, clearly A is not self-adjoint.

I Similarly (ii) and (iii) of this theorem do not hold without the
assumption of normality.



Continuation

I Conversely, if the eigenvalues of A are real, then the diagonal
entries of D are real and hence D = D∗. Now A = A∗ is clear.

I Properties (ii) and (iii) also follow easily from the spectral
theorem. �

I Remark 21.5: In this theorem the hypothesis of A being
normal is crucial. Just from knowing that eigenvalues of A are
real one can’t say that it is self-adjoint.

I For instance,

A =

[
3 5
0 7

]
has {3, 7} as its spectrum, which is a subset of the real line.

I However, clearly A is not self-adjoint.

I Similarly (ii) and (iii) of this theorem do not hold without the
assumption of normality.



Continuation

I Conversely, if the eigenvalues of A are real, then the diagonal
entries of D are real and hence D = D∗. Now A = A∗ is clear.

I Properties (ii) and (iii) also follow easily from the spectral
theorem. �

I Remark 21.5: In this theorem the hypothesis of A being
normal is crucial. Just from knowing that eigenvalues of A are
real one can’t say that it is self-adjoint.

I For instance,

A =

[
3 5
0 7

]
has {3, 7} as its spectrum, which is a subset of the real line.

I However, clearly A is not self-adjoint.

I Similarly (ii) and (iii) of this theorem do not hold without the
assumption of normality.



Continuation

I Conversely, if the eigenvalues of A are real, then the diagonal
entries of D are real and hence D = D∗. Now A = A∗ is clear.

I Properties (ii) and (iii) also follow easily from the spectral
theorem. �

I Remark 21.5: In this theorem the hypothesis of A being
normal is crucial. Just from knowing that eigenvalues of A are
real one can’t say that it is self-adjoint.

I For instance,

A =

[
3 5
0 7

]
has {3, 7} as its spectrum, which is a subset of the real line.

I However, clearly A is not self-adjoint.

I Similarly (ii) and (iii) of this theorem do not hold without the
assumption of normality.



Continuation

I Conversely, if the eigenvalues of A are real, then the diagonal
entries of D are real and hence D = D∗. Now A = A∗ is clear.

I Properties (ii) and (iii) also follow easily from the spectral
theorem. �

I Remark 21.5: In this theorem the hypothesis of A being
normal is crucial. Just from knowing that eigenvalues of A are
real one can’t say that it is self-adjoint.

I For instance,

A =

[
3 5
0 7

]
has {3, 7} as its spectrum, which is a subset of the real line.

I However, clearly A is not self-adjoint.

I Similarly (ii) and (iii) of this theorem do not hold without the
assumption of normality.



Continuation

I Conversely, if the eigenvalues of A are real, then the diagonal
entries of D are real and hence D = D∗. Now A = A∗ is clear.

I Properties (ii) and (iii) also follow easily from the spectral
theorem. �

I Remark 21.5: In this theorem the hypothesis of A being
normal is crucial. Just from knowing that eigenvalues of A are
real one can’t say that it is self-adjoint.

I For instance,

A =

[
3 5
0 7

]
has {3, 7} as its spectrum, which is a subset of the real line.

I However, clearly A is not self-adjoint.

I Similarly (ii) and (iii) of this theorem do not hold without the
assumption of normality.



Another characterization of a normal matrix

I Theorem 21.6: Let A be an n × n complex matrix. Then A is
normal iff ‖Ax‖ = ‖A∗x‖ for all x ∈ Cn.

I Proof: Suppose A is normal. Then for x ∈ Cn,

‖Ax‖2 = 〈Ax ,Ax〉
= 〈x ,A∗Ax〉
= 〈x ,AA∗x〉
= 〈A∗x .A∗x〉
= ‖A∗x‖2.

I Hence ‖Ax‖ = ‖A∗x‖, ∀x ∈ Cn.
I Conversely, suppose ‖Ax‖ = ‖A∗x‖, ∀x ∈ Cn.
I Then 〈x ,A∗Ax〉 = 〈x ,AA∗x〉, ∀x ∈ Cn.
I Polarization identity yields,

〈x ,A∗Ay〉 = 〈x ,AA∗y〉, ∀x , y ∈ Cn.

I Hence A∗A = AA∗. �
I END OF LECTURE 21



Another characterization of a normal matrix

I Theorem 21.6: Let A be an n × n complex matrix. Then A is
normal iff ‖Ax‖ = ‖A∗x‖ for all x ∈ Cn.

I Proof: Suppose A is normal. Then for x ∈ Cn,

‖Ax‖2 = 〈Ax ,Ax〉
= 〈x ,A∗Ax〉
= 〈x ,AA∗x〉
= 〈A∗x .A∗x〉
= ‖A∗x‖2.

I Hence ‖Ax‖ = ‖A∗x‖, ∀x ∈ Cn.
I Conversely, suppose ‖Ax‖ = ‖A∗x‖, ∀x ∈ Cn.
I Then 〈x ,A∗Ax〉 = 〈x ,AA∗x〉, ∀x ∈ Cn.
I Polarization identity yields,

〈x ,A∗Ay〉 = 〈x ,AA∗y〉, ∀x , y ∈ Cn.

I Hence A∗A = AA∗. �
I END OF LECTURE 21



Another characterization of a normal matrix

I Theorem 21.6: Let A be an n × n complex matrix. Then A is
normal iff ‖Ax‖ = ‖A∗x‖ for all x ∈ Cn.

I Proof: Suppose A is normal. Then for x ∈ Cn,

‖Ax‖2 = 〈Ax ,Ax〉
= 〈x ,A∗Ax〉
= 〈x ,AA∗x〉
= 〈A∗x .A∗x〉
= ‖A∗x‖2.

I Hence ‖Ax‖ = ‖A∗x‖, ∀x ∈ Cn.

I Conversely, suppose ‖Ax‖ = ‖A∗x‖, ∀x ∈ Cn.
I Then 〈x ,A∗Ax〉 = 〈x ,AA∗x〉, ∀x ∈ Cn.
I Polarization identity yields,

〈x ,A∗Ay〉 = 〈x ,AA∗y〉, ∀x , y ∈ Cn.

I Hence A∗A = AA∗. �
I END OF LECTURE 21



Another characterization of a normal matrix

I Theorem 21.6: Let A be an n × n complex matrix. Then A is
normal iff ‖Ax‖ = ‖A∗x‖ for all x ∈ Cn.

I Proof: Suppose A is normal. Then for x ∈ Cn,

‖Ax‖2 = 〈Ax ,Ax〉
= 〈x ,A∗Ax〉
= 〈x ,AA∗x〉
= 〈A∗x .A∗x〉
= ‖A∗x‖2.

I Hence ‖Ax‖ = ‖A∗x‖, ∀x ∈ Cn.
I Conversely, suppose ‖Ax‖ = ‖A∗x‖, ∀x ∈ Cn.

I Then 〈x ,A∗Ax〉 = 〈x ,AA∗x〉, ∀x ∈ Cn.
I Polarization identity yields,

〈x ,A∗Ay〉 = 〈x ,AA∗y〉, ∀x , y ∈ Cn.

I Hence A∗A = AA∗. �
I END OF LECTURE 21



Another characterization of a normal matrix

I Theorem 21.6: Let A be an n × n complex matrix. Then A is
normal iff ‖Ax‖ = ‖A∗x‖ for all x ∈ Cn.

I Proof: Suppose A is normal. Then for x ∈ Cn,

‖Ax‖2 = 〈Ax ,Ax〉
= 〈x ,A∗Ax〉
= 〈x ,AA∗x〉
= 〈A∗x .A∗x〉
= ‖A∗x‖2.

I Hence ‖Ax‖ = ‖A∗x‖, ∀x ∈ Cn.
I Conversely, suppose ‖Ax‖ = ‖A∗x‖, ∀x ∈ Cn.
I Then 〈x ,A∗Ax〉 = 〈x ,AA∗x〉, ∀x ∈ Cn.

I Polarization identity yields,

〈x ,A∗Ay〉 = 〈x ,AA∗y〉, ∀x , y ∈ Cn.

I Hence A∗A = AA∗. �
I END OF LECTURE 21



Another characterization of a normal matrix

I Theorem 21.6: Let A be an n × n complex matrix. Then A is
normal iff ‖Ax‖ = ‖A∗x‖ for all x ∈ Cn.

I Proof: Suppose A is normal. Then for x ∈ Cn,

‖Ax‖2 = 〈Ax ,Ax〉
= 〈x ,A∗Ax〉
= 〈x ,AA∗x〉
= 〈A∗x .A∗x〉
= ‖A∗x‖2.

I Hence ‖Ax‖ = ‖A∗x‖, ∀x ∈ Cn.
I Conversely, suppose ‖Ax‖ = ‖A∗x‖, ∀x ∈ Cn.
I Then 〈x ,A∗Ax〉 = 〈x ,AA∗x〉, ∀x ∈ Cn.
I Polarization identity yields,

〈x ,A∗Ay〉 = 〈x ,AA∗y〉, ∀x , y ∈ Cn.

I Hence A∗A = AA∗. �
I END OF LECTURE 21



Another characterization of a normal matrix

I Theorem 21.6: Let A be an n × n complex matrix. Then A is
normal iff ‖Ax‖ = ‖A∗x‖ for all x ∈ Cn.

I Proof: Suppose A is normal. Then for x ∈ Cn,

‖Ax‖2 = 〈Ax ,Ax〉
= 〈x ,A∗Ax〉
= 〈x ,AA∗x〉
= 〈A∗x .A∗x〉
= ‖A∗x‖2.

I Hence ‖Ax‖ = ‖A∗x‖, ∀x ∈ Cn.
I Conversely, suppose ‖Ax‖ = ‖A∗x‖, ∀x ∈ Cn.
I Then 〈x ,A∗Ax〉 = 〈x ,AA∗x〉, ∀x ∈ Cn.
I Polarization identity yields,

〈x ,A∗Ay〉 = 〈x ,AA∗y〉, ∀x , y ∈ Cn.

I Hence A∗A = AA∗. �

I END OF LECTURE 21



Another characterization of a normal matrix

I Theorem 21.6: Let A be an n × n complex matrix. Then A is
normal iff ‖Ax‖ = ‖A∗x‖ for all x ∈ Cn.

I Proof: Suppose A is normal. Then for x ∈ Cn,

‖Ax‖2 = 〈Ax ,Ax〉
= 〈x ,A∗Ax〉
= 〈x ,AA∗x〉
= 〈A∗x .A∗x〉
= ‖A∗x‖2.

I Hence ‖Ax‖ = ‖A∗x‖, ∀x ∈ Cn.
I Conversely, suppose ‖Ax‖ = ‖A∗x‖, ∀x ∈ Cn.
I Then 〈x ,A∗Ax〉 = 〈x ,AA∗x〉, ∀x ∈ Cn.
I Polarization identity yields,

〈x ,A∗Ay〉 = 〈x ,AA∗y〉, ∀x , y ∈ Cn.

I Hence A∗A = AA∗. �
I END OF LECTURE 21


