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Lecture 21: More on Normal matrices

» Recall: We recall some definitions and the spectral theorem
for normal matrices.



Self-adjoint and normal matrices

» Definition 20.1: (i) A complex square matrix A is said to be
self-adjoint if A* = A. (ii) A complex square matrix A is said
to be normal if A*A = AA*.



Self-adjoint and normal matrices

» Definition 20.1: (i) A complex square matrix A is said to be
self-adjoint if A* = A. (ii) A complex square matrix A is said
to be normal if A*A = AA*.

> Recall that for A = [aji]i<ij<n. We have A* = [Gji]i<ij<n-



Self-adjoint and normal matrices
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Definition 20.1: (i) A complex square matrix A is said to be
self-adjoint if A* = A. (ii) A complex square matrix A is said
to be normal if A*A = AA*.

Recall that for A = [ajj]i<ij<n, we have A* = [Gjili<i j<n-
In particular, every real symmetric matrix is self-adjoint.

Here is an example of a self-adjoint matrix which is not real
and symmetric:

[ 2 345
3[3—5/' 1 ]



Self-adjoint and normal matrices

» Definition 20.1: (i) A complex square matrix A is said to be
self-adjoint if A* = A. (ii) A complex square matrix A is said
to be normal if A*A = AA*.

» Recall that for A = [a;]1<;j<n, we have A* = [3j]1<ij<n-

v

In particular, every real symmetric matrix is self-adjoint.

» Here is an example of a self-adjoint matrix which is not real
and symmetric:

[ 2 345
3[3—5/' 1 ]

> Note that diagonal entry of every self-adjoint matrix is real as
a;; = aj; for every i.



Examples of normal matrices

» Remark 20.2: (i) If A is self-adjoint then A is normal as

A*A = AA = AA".
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» Remark 20.2: (i) If A is self-adjoint then A is normal as
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» (i) If Ais a unitary then A is normal as

AA* = A*A= 1.



Examples of normal matrices
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» (iii) If Ais a projection then A= A* = A%, Hence A is
self-adjoint and normal.



Examples of normal matrices

» Remark 20.2: (i) If A is self-adjoint then A is normal as
A*A = AA = AA".
» (i) If Ais a unitary then A is normal as
AA* = A*A= 1.

» (iii) If Ais a projection then A= A* = A%, Hence A is
self-adjoint and normal.

» (iv) Every diagonal matrix is normal. Every real diagonal
matrix is self-adjoint.



Examples of normal matrices

» Remark 20.2: (i) If A is self-adjoint then A is normal as
A*A = AA = AA".
» (i) If Ais a unitary then A is normal as
AA* = A*A= 1.

» (iii) If Ais a projection then A= A* = A%, Hence A is
self-adjoint and normal.

» (iv) Every diagonal matrix is normal. Every real diagonal
matrix is self-adjoint.

» Example 20.3: Consider

=31

Then C is not normal.



Normal upper triangular matrices

» Theorem 20.4: If a square matrix is upper triangular and
normal then it is diagonal.



Normal upper triangular matrices

» Theorem 20.4: If a square matrix is upper triangular and
normal then it is diagonal.
» Proof: Suppose

tin tiz tiz ... tip

0 ty ts ... b,

T = 0 0 t3 ... ft3p
| 0 0 0 ... ton |

is normal.



Normal upper triangular matrices

» Theorem 20.4: If a square matrix is upper triangular and
normal then it is diagonal.
» Proof: Suppose

ti1n ti2 fti3 ... tin
0 ty ty ... tog
T = 0 0 t3 ... ft3p
| 0 0 0 ... ta |
is normal.
> We have - i
t17 0 O 0
tip tp O 0
T = 33

ti3 t3 tz ... O




Continuation

» Computing the first diagonal entries of T*T and TT*, as T
is normal, we get

|1-L11’2 = \t11|2 + |l‘12|2 4+t |t1,,|2.



Continuation

» Computing the first diagonal entries of T*T and TT*, as T
is normal, we get

|ti1|? = |t > + |t2> 4+ - + |t1a]?.
» Hence |tL12|2 + -+ |t1n|2 =0or

tip=t3=---=tp=0.



Continuation

» Computing the first diagonal entries of T*T and TT*, as T
is normal, we get

|1-L11’2 = \t11|2 + |l‘12|2 4+t |t1,,|2.

» Hence [ta|2 + -+ |t1n|> = 0 or

tip =tiz=---=t1, =0.
> So we get
t;17 O 0 0 ]
0 tn t3 ton
T = 0 0 t33 t3n
0O 0 O tan |




Continuation



Continuation

» Now from (T*T)a = (TT*)22 we get

|t22’2 = ‘l’22|2 + |t23|2 + -+ ’tzn‘z.



Continuation

» Now from (T*T)a = (TT*)22 we get
|t22’2 = ‘l’22|2 + |t23‘2 + -+ ’t‘zn‘z.
» Consequently,

tr3 =ty ==ty =0.



Continuation

» Now from (T*T)a = (TT*)22 we get
|t2|* = [t22f* + [tas]® + - + 20,
» Consequently,
tr3 =ty ==ty =0.

» Continuing this way (that is, by mathematical induction) we
see that tj; =0, Vi# .



Continuation

» Now from (T*T)a = (TT*)22 we get
|t2|* = [t22f* + [tas]® + - + 20,
» Consequently,
tr3 =ty ==ty =0.

» Continuing this way (that is, by mathematical induction) we
see that tj; =0, Vi# .
» In other words, T is diagonal.



Unitary equivalence

» Definition 20.5: A complex matrix B is said to be unitarily
equivalent to a matrix A if there exists a unitary matrix U
such that

B = UAU*.



Unitary equivalence

» Definition 20.5: A complex matrix B is said to be unitarily
equivalent to a matrix A if there exists a unitary matrix U
such that
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P It is easy to see that unitary equivalence is an equivalence
relation in the space of matrices.
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» B is unitarily equivalent to A means that A, B are matrices of
same linear map on different orthonormal bases.



Unitary equivalence

» Definition 20.5: A complex matrix B is said to be unitarily
equivalent to a matrix A if there exists a unitary matrix U
such that

B = UAU*.

P It is easy to see that unitary equivalence is an equivalence
relation in the space of matrices.

» B is unitarily equivalent to A means that A, B are matrices of
same linear map on different orthonormal bases.

» Proposition 20.6: Suppose B is unitarily equivalent to A.
Then B is normal (resp. self-adjoint, unitary, projection) if
and only if A is normal (resp. self-adjoint, unitary, projection).



Unitary equivalence

» Definition 20.5: A complex matrix B is said to be unitarily
equivalent to a matrix A if there exists a unitary matrix U
such that

B = UAU*.

P It is easy to see that unitary equivalence is an equivalence
relation in the space of matrices.

» B is unitarily equivalent to A means that A, B are matrices of
same linear map on different orthonormal bases.

» Proposition 20.6: Suppose B is unitarily equivalent to A.
Then B is normal (resp. self-adjoint, unitary, projection) if
and only if A is normal (resp. self-adjoint, unitary, projection).

» Proof: Suppose U is a unitary such that B = UAU*. Then
B*B = (UAU*)*(UAU*) = UA*UU*AU = UA*AU*. Similarly,
BB* = UAA*U*. Now the result follows easily.



Spectral theorem (Version -I)

» Theorem 20.7 (Spectral Theorem-1): Let A be a complex
matrix. Then there exists a unitary matrix U and a diagonal
matrix D such that

A= UDU*
if and only if A is normal.



Spectral theorem (Version -I)

» Theorem 20.7 (Spectral Theorem-1): Let A be a complex
matrix. Then there exists a unitary matrix U and a diagonal
matrix D such that

A= UDU*
if and only if A is normal.

» The theorem tells us that a matrix is diagonalizable through a
unitary iff it is normal. In particular, every normal matrix is
diagonalizable.



Spectral theorem (Version -I)

» Theorem 20.7 (Spectral Theorem-1): Let A be a complex
matrix. Then there exists a unitary matrix U and a diagonal
matrix D such that

A= UDU*
if and only if A is normal.

» The theorem tells us that a matrix is diagonalizable through a
unitary iff it is normal. In particular, every normal matrix is
diagonalizable.

» Proof: Suppose A is a normal matrix.



Spectral theorem (Version -I)

» Theorem 20.7 (Spectral Theorem-1): Let A be a complex
matrix. Then there exists a unitary matrix U and a diagonal
matrix D such that

A= UDU*

if and only if A is normal.

» The theorem tells us that a matrix is diagonalizable through a
unitary iff it is normal. In particular, every normal matrix is
diagonalizable.

» Proof: Suppose A is a normal matrix.

» By Schur's upper triangularization theorem (Theorem 19.2)
there exists a unitary U and an upper triangular matrix T
such that

A=UTU".



Spectral theorem (Version -I)

» Theorem 20.7 (Spectral Theorem-1): Let A be a complex
matrix. Then there exists a unitary matrix U and a diagonal
matrix D such that

A= UDU*

if and only if A is normal.

» The theorem tells us that a matrix is diagonalizable through a
unitary iff it is normal. In particular, every normal matrix is
diagonalizable.

» Proof: Suppose A is a normal matrix.

» By Schur's upper triangularization theorem (Theorem 19.2)
there exists a unitary U and an upper triangular matrix T
such that

A=UTU".

> Note that A and T are unitarily equivalent. Consequently T
is normal. Then by Theorem 20.4, as T is both upper
triangular and normal it must be diagonal. Taking D = T, we
have A = UDU* and we are done.



Continuation

» Conversely, suppose A = UDU* where D is diagonal and U is
a unitary.



Continuation

» Conversely, suppose A = UDU* where D is diagonal and U is
a unitary.

» Since every diagonal matrix is normal, D is normal.



Continuation

» Conversely, suppose A = UDU* where D is diagonal and U is
a unitary.

» Since every diagonal matrix is normal, D is normal.

» Then as A is unitarily equivalent to D, A is also normal. I



Consequences of the spectral theorem

» Corollary 21.1: Let A be an n x n complex matrix. Then A is
normal if and only if there exists an orthonormal basis
{vi,va,...,vp} of C" consisting of eigenvectors of A.
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that
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> Writing this as AU = UD, we see that columns of U are
eigenvectors for A. Since U is a unitary its columns form an
orthonormal basis for C".



Consequences of the spectral theorem

» Corollary 21.1: Let A be an n x n complex matrix. Then A is
normal if and only if there exists an orthonormal basis
{vi,va,...,vp} of C" consisting of eigenvectors of A.

» Proof: Suppose A is normal. Then by the spectral theorem
there exists a unitary matrix U and a diagonal matrix D such
that

A= UDU".

> Writing this as AU = UD, we see that columns of U are
eigenvectors for A. Since U is a unitary its columns form an
orthonormal basis for C".

» Conversely, suppose {vi,..., vy} is an orthonormal basis of
C" consisting of eigenvectors of A, say Av; = djv;,1 <j < n.



Consequences of the spectral theorem

» Corollary 21.1: Let A be an n x n complex matrix. Then A is
normal if and only if there exists an orthonormal basis
{vi,va,...,vp} of C" consisting of eigenvectors of A.

» Proof: Suppose A is normal. Then by the spectral theorem
there exists a unitary matrix U and a diagonal matrix D such
that

A= UDU".

> Writing this as AU = UD, we see that columns of U are
eigenvectors for A. Since U is a unitary its columns form an
orthonormal basis for C".

» Conversely, suppose {vi,...,Vv,} is an orthonormal basis of
C" consisting of eigenvectors of A, say Av; = djv;,1 <j < n.

» Take U =[v1,...,vs]. Then U is a unitary and AU = UD.
Hence A = UDU*. Consequently A is normal. B



Example

» Example 21.2: Suppose

a2 1],



Example

» Example 21.2: Suppose
2 1
[ 1]

» Then as A is self-adjoint it is normal.



Example

» Example 21.2: Suppose
2 1
ERY)
» Then as A is self-adjoint it is normal.

» The characteristic polynomial of A is

p(x) = det(xI —A) = (x—2)?>—1 = x> —4x+3 = (x—3)(x—1).



Example

» Example 21.2: Suppose
2 1
A= [ 2 1 ] |
» Then as A is self-adjoint it is normal.
» The characteristic polynomial of A is
p(x) = det(xI —A) = (x—2)?>—1 = x> —4x+3 = (x—3)(x—1).

P> Hence the eigenvalues of A are 1 and 3.



Example

» Example 21.2: Suppose
2 1
A= [ 2 1 ] |
» Then as A is self-adjoint it is normal.
» The characteristic polynomial of A is
p(x) = det(xI —A) = (x—2)?>—1 = x> —4x+3 = (x—3)(x—1).

P> Hence the eigenvalues of A are 1 and 3.

» Solving corresponding eigen equations we see that

A(1)=5(1) a(4)=(4)



Continuation

» Normalizing these eigenvectors, and taking them as columns
we get a unitary,

5[t 4]



Continuation

» Normalizing these eigenvectors, and taking them as columns
we get a unitary,

5[t 4]

> satisfying,



Continuation

» Normalizing these eigenvectors, and taking them as columns
we get a unitary,

5[t 4]

> satisfying,

> Alternatively,



Terminology and notation

» Definition 21.3: Let A be a complex square matrix. Then
0(A) ={c e C: (c] —A) is not invertible}

is known as the spectrum of A.



Terminology and notation

» Definition 21.3: Let A be a complex square matrix. Then
0(A) ={c e C: (c] —A) is not invertible}

is known as the spectrum of A.

> Note that for a matrix A, if aj, ap, ..., a, are eigenvalues of A,
then

o(A) ={a1,a2,...,an}



Some characterizations

» Theorem 21.4: Let A be a normal matrix. Then,
(i) Ais self-adjoint iff 0(A) C R.
(i) A'is a unitary iff o(A) C {z € C: |z| = 1}.
(iii) Ais a projection iff 0(A) C {0,1}.



Some characterizations

» Theorem 21.4: Let A be a normal matrix. Then,
(i) Ais self-adjoint iff 0(A) C R.
(i) A'is a unitary iff o(A) C {z € C: |z| = 1}.
(iii) A is a projection iff o(A) C {0,1}.

» Proof: By spectral theorem

A= UDU*

for some unitary U and a diagonal matrix D. By taking
adjoint,
A* = (UDU*)* = UD*U".



Some characterizations

» Theorem 21.4: Let A be a normal matrix. Then,
(i) Ais self-adjoint iff 0(A) C R.
(i) A'is a unitary iff o(A) C {z € C: |z| = 1}.
(iii) A is a projection iff o(A) C {0,1}.

» Proof: By spectral theorem

A= UDU*

for some unitary U and a diagonal matrix D. By taking
adjoint,
A* = (UDU*)* = UD*U".
> If A is self-adjoint, then A = A*. Hence,
UbU* = UD*U".



Some characterizations

>

Theorem 21.4: Let A be a normal matrix. Then,
(i) Ais self-adjoint iff 0(A) C R.
(i) A'is a unitary iff o(A) C {z € C: |z| = 1}.
(iii) A is a projection iff o(A) C {0,1}.
Proof: By spectral theorem

A= UDU*

for some unitary U and a diagonal matrix D. By taking
adjoint,
A* = (UDU*)* = UD*U".
If Ais self-adjoint, then A = A*. Hence,
UbU* = UD*U".
Multiplication by U*, U, yields D = D*. Since D is diagonal,
this means that all the diagonal entries are real. Hence

o(A) C R.



Continuation

» Conversely, if the eigenvalues of A are real, then the diagonal
entries of D are real and hence D = D*. Now A = A* is clear.
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» Conversely, if the eigenvalues of A are real, then the diagonal
entries of D are real and hence D = D*. Now A = A* is clear.

» Properties (ii) and (iii) also follow easily from the spectral
theorem. W
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» Conversely, if the eigenvalues of A are real, then the diagonal
entries of D are real and hence D = D*. Now A = A* is clear.

» Properties (ii) and (iii) also follow easily from the spectral
theorem. W

» Remark 21.5: In this theorem the hypothesis of A being
normal is crucial. Just from knowing that eigenvalues of A are
real one can't say that it is self-adjoint.



Continuation

» Conversely, if the eigenvalues of A are real, then the diagonal
entries of D are real and hence D = D*. Now A = A* is clear.

» Properties (ii) and (iii) also follow easily from the spectral
theorem. W

» Remark 21.5: In this theorem the hypothesis of A being
normal is crucial. Just from knowing that eigenvalues of A are
real one can't say that it is self-adjoint.

=16 7]

has {3,7} as its spectrum, which is a subset of the real line.

» For instance,
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» Conversely, if the eigenvalues of A are real, then the diagonal
entries of D are real and hence D = D*. Now A = A* is clear.

» Properties (ii) and (iii) also follow easily from the spectral
theorem. W

» Remark 21.5: In this theorem the hypothesis of A being
normal is crucial. Just from knowing that eigenvalues of A are
real one can't say that it is self-adjoint.

=16 7]

has {3,7} as its spectrum, which is a subset of the real line.

» For instance,

» However, clearly A is not self-adjoint.
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» Conversely, if the eigenvalues of A are real, then the diagonal
entries of D are real and hence D = D*. Now A = A* is clear.

» Properties (ii) and (iii) also follow easily from the spectral
theorem. W

» Remark 21.5: In this theorem the hypothesis of A being
normal is crucial. Just from knowing that eigenvalues of A are
real one can't say that it is self-adjoint.

=16 7]

has {3,7} as its spectrum, which is a subset of the real line.

» For instance,

» However, clearly A is not self-adjoint.

» Similarly (ii) and (iii) of this theorem do not hold without the
assumption of normality.



Another characterization of a normal matrix

> Theorem 21.6: Let A be an n x n complex matrix. Then A is
normal iff ||Ax|| = [|A*x| for all x € C".



Another characterization of a normal matrix

> Theorem 21.6: Let A be an n x n complex matrix. Then A is

normal iff ||Ax|| = [|A*x| for all x € C".
» Proof: Suppose A is normal. Then for x € C”",
[AX[2 = (Ax, Ax)
= (x,A"Ax)
= (x,AA*x)
= (A'x.A*x)

= AP,



Another characterization of a normal matrix

> Theorem 21.6: Let A be an n x n complex matrix. Then A is
normal iff ||Ax|| = [|A*x| for all x € C".
» Proof: Suppose A is normal. Then for x € C”",
|Ax|> = (Ax,Ax)
= (x,A"Ax)
= (x,AA*x)
= (A'x.A*x)
= ||A*x|.
» Hence ||Ax| = [|[A*x||, Vx € C".



Another characterization of a normal matrix

> Theorem 21.6: Let A be an n x n complex matrix. Then A is
normal iff ||Ax|| = [|A*x| for all x € C".
» Proof: Suppose A is normal. Then for x € C”",
|Ax|> = (Ax,Ax)
= (x,A"Ax)
= (x,AA*x)
= (A'x.A*x)
= ||A*x|.
» Hence ||Ax| = [|[A*x||, Vx € C".
» Conversely, suppose ||Ax|| = [|[A*x]|, ¥x € C".



Another characterization of a normal matrix

> Theorem 21.6: Let A be an n x n complex matrix. Then A is
normal iff ||Ax|| = [|A*x| for all x € C".
» Proof: Suppose A is normal. Then for x € C”",
|Ax|> = (Ax,Ax)
= (x,A"Ax)
= (x,AA*x)
= (A'x.A*x)
= ||A*x|.
» Hence ||Ax| = [|[A*x||, Vx € C".

Conversely, suppose ||Ax| = ||A*x]||, Vx e C".
» Then (x, A*Ax) = (x, AA*x), V¥x € C".

v



Another characterization of a normal matrix

> Theorem 21.6: Let A be an n x n complex matrix. Then A is

normal iff ||Ax|| = [|A*x| for all x € C".
» Proof: Suppose A is normal. Then for x € C”",
IAXI2 = (Ax, Ax)
= (x,A"Ax)
= (x,AA*x)
= (A'x.A*x)
— A
Hence |Ax| = |[|A*x||, Vx € C".
Conversely, suppose |Ax|| = ||A*x||, Vx e C".

Then (x, A*Ax) = (x, AA*x), Vx e C".
Polarization identity yields,

(x, A"Ay) = (x, AA*y), ¥x,y € C".

vvyyvyy



Another characterization of a normal matrix

> Theorem 21.6: Let A be an n x n complex matrix. Then A is

normal iff ||Ax|| = [|A*x| for all x € C".
» Proof: Suppose A is normal. Then for x € C”",
IAXI2 = (Ax, Ax)
= (x,A"Ax)
= (x,AA*x)
= (A'x.A*x)
— A
Hence |Ax| = |[|A*x||, Vx € C".
Conversely, suppose |Ax|| = ||A*x||, Vx e C".

Then (x, A*Ax) = (x, AA*x), Vx e C".
Polarization identity yields,

(x, A"Ay) = (x, AA*y), ¥x,y € C".
> Hence A*A = AA*. I

vvyyvyy



Another characterization of a normal matrix

> Theorem 21.6: Let A be an n x n complex matrix. Then A is

normal iff ||Ax|| = [|A*x| for all x € C".
» Proof: Suppose A is normal. Then for x € C”",
IAX|? = {Ax, Ax)
= (x,A"Ax)
= (x,AA*x)
= (A'x.A*x)
= A
» Hence |Ax|| = ||A*x||, Vx e C".
» Conversely, suppose ||Ax|| = ||A*x||, Vx e C".
» Then (x, A*Ax) = (x, AA*x), V¥x € C".
P Polarization identity yields,
(x, A"Ay) = (x, AA*y), ¥x,y € C".
> Hence A*A = AA*. I

» END OF LECTURE 21



