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Lecture 22: Path counting

I Recall: We recall some definitions and the spectral theorem
for normal matrices.



Self-adjoint and normal matrices

I Definition 20.1: (i) A complex square matrix A is said to be
self-adjoint if A∗ = A. (ii) A complex square matrix A is said
to be normal if A∗A = AA∗.

I Recall that for A = [aij ]1≤i ,j≤n, we have A∗ = [aji ]1≤i ,j≤n.

I In particular, every real symmetric matrix is self-adjoint.

I Here is an example of a self-adjoint matrix which is not real
and symmetric:

B =

[
2 3 + 5i

3− 5i 1

]
.

I Note that diagonal entry of every self-adjoint matrix is real as
aii = aii for every i .
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Examples of normal matrices

I Remark 20.2: (i) If A is self-adjoint then A is normal as

A∗A = A.A = AA∗.

I (ii) If A is a unitary then A is normal as

AA∗ = A∗A = I .

I (iii) If A is a projection then A = A∗ = A2. Hence A is
self-adjoint and normal.

I (iv) Every diagonal matrix is normal. Every real diagonal
matrix is self-adjoint.

I Example 20.3: Consider

C =

[
0 1
0 0

]
.

Then C is not normal.
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Normal upper triangular matrices

I Theorem 20.4: If a square matrix is upper triangular and
normal then it is diagonal.

I Proof: Suppose

T =


t11 t12 t13 . . . t1n
0 t22 t23 . . . t2n
0 0 t33 . . . t3n
...

...
...

. . .
...

0 0 0 . . . tnn


is normal.

I We have

T ∗ =


t11 0 0 . . . 0
t12 t22 0 . . . 0
t13 t23 t33 . . . 0
...

...
...

. . .
...

t1n t2n t3n . . . tnn


.
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Continuation

I Computing the first diagonal entries of T ∗T and TT ∗, as T
is normal, we get

|t11|2 = |t11|2 + |t12|2 + · · ·+ |t1n|2.

I Hence |t12|2 + · · ·+ |t1n|2 = 0 or

t12 = t13 = · · · = t1n = 0.

I So we get

T =
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Continuation

I Now from (T ∗T )22 = (TT ∗)22 we get

|t22|2 = |t22|2 + |t23|2 + · · ·+ |t2n|2.

I Consequently,

t23 = t24 = · · · = t2n = 0.

I Continuing this way (that is, by mathematical induction) we
see that tij = 0, ∀i 6= j .

I In other words, T is diagonal. �
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Unitary equivalence

I Definition 20.5: A complex matrix B is said to be unitarily
equivalent to a matrix A if there exists a unitary matrix U
such that

B = UAU∗.

I It is easy to see that unitary equivalence is an equivalence
relation in the space of matrices.

I B is unitarily equivalent to A means that A,B are matrices of
same linear map on different orthonormal bases.

I Proposition 20.6: Suppose B is unitarily equivalent to A.
Then B is normal (resp. self-adjoint, unitary, projection) if
and only if A is normal (resp. self-adjoint, unitary, projection).

I Proof: Suppose U is a unitary such that B = UAU∗. Then
B∗B = (UAU∗)∗(UAU∗) = UA∗UU∗AU = UA∗AU∗. Similarly,
BB∗ = UAA∗U∗. Now the result follows easily.
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Spectral theorem (Version -I)

I Theorem 20.7 (Spectral Theorem-I): Let A be a complex
matrix. Then there exists a unitary matrix U and a diagonal
matrix D such that

A = UDU∗

if and only if A is normal.

I The theorem tells us that a matrix is diagonalizable through a
unitary iff it is normal. In particular, every normal matrix is
diagonalizable.

I Proof: Suppose A is a normal matrix.
I By Schur’s upper triangularization theorem (Theorem 19.2)

there exists a unitary U and an upper triangular matrix T
such that

A = UTU∗.

I Note that A and T are unitarily equivalent. Consequently T
is normal. Then by Theorem 20.4, as T is both upper
triangular and normal it must be diagonal. Taking D = T , we
have A = UDU∗ and we are done.
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Continuation

I Conversely, suppose A = UDU∗ where D is diagonal and U is
a unitary.

I Since every diagonal matrix is normal, D is normal.

I Then as A is unitarily equivalent to D, A is also normal. �.
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Consequences of the spectral theorem

I Corollary 21.1: Let A be an n × n complex matrix. Then A is
normal if and only if there exists an orthonormal basis
{v1, v2, . . . , vn} of Cn consisting of eigenvectors of A.

I Proof: Suppose A is normal. Then by the spectral theorem
there exists a unitary matrix U and a diagonal matrix D such
that

A = UDU∗.

I Writing this as AU = UD, we see that columns of U are
eigenvectors for A. Since U is a unitary its columns form an
orthonormal basis for Cn.

I Conversely, suppose {v1, . . . , vn} is an orthonormal basis of
Cn consisting of eigenvectors of A, say Avj = djvj , 1 ≤ j ≤ n.

I Take U = [v1, . . . , vn]. Then U is a unitary and AU = UD.
Hence A = UDU∗. Consequently A is normal. �
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Example

I Example 21.2: Suppose

A =

[
2 1
1 2

]
.

I Then as A is self-adjoint it is normal.

I The characteristic polynomial of A is

p(x) = det(xI−A) = (x−2)2−1 = x2−4x+3 = (x−3)(x−1).

I Hence the eigenvalues of A are 1 and 3.

I Solving corresponding eigen equations we see that

A

(
1
1

)
= 3

(
1
1

)
, A

(
1
−1

)
=

(
1
−1

)
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Continuation

I Normalizing these eigenvectors, and taking them as columns
we get a unitary,

U =
1√
2

[
1 1
1 −1

]

I satisfying,

AU = U

[
3 0
0 1

]
.

I Alternatively,

A = U

[
3 0
0 1

]
U∗.
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Terminology and notation

I Definition 21.3: Let A be a complex square matrix. Then

σ(A) = {c ∈ C : (cI − A) is not invertible}

is known as the spectrum of A.

I Note that for a matrix A, if a1, a2, . . . , an are eigenvalues of A,
then

σ(A) = {a1, a2, . . . , an}
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Some characterizations

I Theorem 21.4: Let A be a normal matrix. Then,
(i) A is self-adjoint iff σ(A) ⊂ R.
(ii) A is a unitary iff σ(A) ⊂ {z ∈ C : |z | = 1}.
(iii) A is a projection iff σ(A) ⊆ {0, 1}.

I Proof: By spectral theorem

A = UDU∗

for some unitary U and a diagonal matrix D. By taking
adjoint,

A∗ = (UDU∗)∗ = UD∗U∗.

I If A is self-adjoint, then A = A∗. Hence,

UDU∗ = UD∗U∗.

I Multiplication by U∗,U, yields D = D∗. Since D is diagonal,
this means that all the diagonal entries are real. Hence

σ(A) ⊂ R.
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Continuation

I Conversely, if the eigenvalues of A are real, then the diagonal
entries of D are real and hence D = D∗. Now A = A∗ is clear.

I Properties (ii) and (iii) also follow easily from the spectral
theorem. �

I Remark 21.5: In this theorem the hypothesis of A being
normal is crucial. Just from knowing that eigenvalues of A are
real one can’t say that it is self-adjoint.

I For instance,

A =

[
3 5
0 7

]
has {3, 7} as its spectrum, which is a subset of the real line.

I However, clearly A is not self-adjoint.

I Similarly (ii) and (iii) of this theorem do not hold without the
assumption of normality.
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Another characterization of a normal matrix

I Theorem 21.6: Let A be an n × n complex matrix. Then A is
normal iff ‖Ax‖ = ‖A∗x‖ for all x ∈ Cn.

I Proof: Suppose A is normal. Then for x ∈ Cn,

‖Ax‖2 = 〈Ax ,Ax〉
= 〈x ,A∗Ax〉
= 〈x ,AA∗x〉
= 〈A∗x .A∗x〉
= ‖A∗x‖2.

I Hence ‖Ax‖ = ‖A∗x‖, ∀x ∈ Cn.
I Conversely, suppose ‖Ax‖ = ‖A∗x‖, ∀x ∈ Cn.
I Then 〈x ,A∗Ax〉 = 〈x ,AA∗x〉, ∀x ∈ Cn.
I Polarization identity yields,

〈x ,A∗Ay〉 = 〈x ,AA∗y〉, ∀x , y ∈ Cn.

I Hence A∗A = AA∗. �
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Adjoint of a normal matrix

I Suppose A is a normal matrix. Then from the definition of
normality, A∗ is also a normal matrix.

I If A = UDU∗ is a diagonalization of A with unitary U, then
A∗ = UD∗U∗. In particular d is an eigenvalue of A if and only
if d̄ is an eigenvalue of A∗.

I For any c ∈ C, A− cI is also normal.

I Therefore

‖(A− cI )x‖ = ‖(A− cI )∗x‖, ∀x ∈ Cn.

I In particular, ‖(A− cI )x‖ = 0 if and only if ‖(A− cI )∗x‖ = 0.

I As (A− cI )∗ = A∗ − c̄ I this shows that x is an eigenvector for
A with eigenvalue c if and only if it is an eigenvector for A∗

with eigenvalue c̄ .



Adjoint of a normal matrix

I Suppose A is a normal matrix. Then from the definition of
normality, A∗ is also a normal matrix.

I If A = UDU∗ is a diagonalization of A with unitary U, then
A∗ = UD∗U∗. In particular d is an eigenvalue of A if and only
if d̄ is an eigenvalue of A∗.

I For any c ∈ C, A− cI is also normal.

I Therefore

‖(A− cI )x‖ = ‖(A− cI )∗x‖, ∀x ∈ Cn.

I In particular, ‖(A− cI )x‖ = 0 if and only if ‖(A− cI )∗x‖ = 0.

I As (A− cI )∗ = A∗ − c̄ I this shows that x is an eigenvector for
A with eigenvalue c if and only if it is an eigenvector for A∗

with eigenvalue c̄ .



Adjoint of a normal matrix

I Suppose A is a normal matrix. Then from the definition of
normality, A∗ is also a normal matrix.

I If A = UDU∗ is a diagonalization of A with unitary U, then
A∗ = UD∗U∗. In particular d is an eigenvalue of A if and only
if d̄ is an eigenvalue of A∗.

I For any c ∈ C, A− cI is also normal.

I Therefore

‖(A− cI )x‖ = ‖(A− cI )∗x‖, ∀x ∈ Cn.

I In particular, ‖(A− cI )x‖ = 0 if and only if ‖(A− cI )∗x‖ = 0.

I As (A− cI )∗ = A∗ − c̄ I this shows that x is an eigenvector for
A with eigenvalue c if and only if it is an eigenvector for A∗

with eigenvalue c̄ .



Adjoint of a normal matrix

I Suppose A is a normal matrix. Then from the definition of
normality, A∗ is also a normal matrix.

I If A = UDU∗ is a diagonalization of A with unitary U, then
A∗ = UD∗U∗. In particular d is an eigenvalue of A if and only
if d̄ is an eigenvalue of A∗.

I For any c ∈ C, A− cI is also normal.

I Therefore

‖(A− cI )x‖ = ‖(A− cI )∗x‖, ∀x ∈ Cn.

I In particular, ‖(A− cI )x‖ = 0 if and only if ‖(A− cI )∗x‖ = 0.

I As (A− cI )∗ = A∗ − c̄ I this shows that x is an eigenvector for
A with eigenvalue c if and only if it is an eigenvector for A∗

with eigenvalue c̄ .



Adjoint of a normal matrix

I Suppose A is a normal matrix. Then from the definition of
normality, A∗ is also a normal matrix.

I If A = UDU∗ is a diagonalization of A with unitary U, then
A∗ = UD∗U∗. In particular d is an eigenvalue of A if and only
if d̄ is an eigenvalue of A∗.

I For any c ∈ C, A− cI is also normal.

I Therefore

‖(A− cI )x‖ = ‖(A− cI )∗x‖, ∀x ∈ Cn.

I In particular, ‖(A− cI )x‖ = 0 if and only if ‖(A− cI )∗x‖ = 0.

I As (A− cI )∗ = A∗ − c̄ I this shows that x is an eigenvector for
A with eigenvalue c if and only if it is an eigenvector for A∗

with eigenvalue c̄ .



Exercises

I Exercise 22.1: Show that eigenvectors of a normal matrix
corresponding to distinct eigenvalues are mutually orthogonal.

I Exercise 22.2: Let A be a normal matrix and q is a
polynomial. Show that q(A) is normal.

I Exercise 22.3: Suppose A is a normal matrix. Show that there
exists a polynomial p (depending upon A) such that
A∗ = p(A). Show that this result may not hold with out the
assumption that A is normal.

I Exercise 22.4: Suppose A is a normal matrix. Then show that
a matrix B commutes with A if and only if it commutes with
A∗.
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Path counting

I Consider a graph G . A graph consists of vertices and some
edges between them. (A formal definition will be given later.)

I Given two vertices in the graph we wish to count the number
of paths from one vertex to another with fixed number of
steps.

I Example 22.5: Consider a ‘square graph’ with vertices
{1, 2, 3, 4} as in the picture:

1 −− 2
| |
3 −− 4

I We want to go from vertex 1 to 4 in four steps.

I Examples of such paths:

I 1→ 2→ 4→ 2→ 4, 1→ 2→ 1→ 3→ 4.
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Continuation

I What is the total number of such paths?

I What is the number of paths from 1 to 4 in 100 steps?

I How do we count such paths?
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Continuation

I A graph G is a pair (V ,E ) where V is a set called the set of
vertices and E is a collection of pairs of the form {x , y} where
x , y ∈ V , with x 6= y , called the edges of the graph.

I We are talking about simple graphs, which means no multiple
edges between vertices and no loops and the edges are
undirected. There are more general notions of graphs which
we will not go into.

I For the square graph example above: V = {1, 2, 3, 4} and

E = {{1, 2}, {2, 4}, {1, 3}, {3, 4}}.
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Paths

I In the following, we take V = {1, 2, . . . , n} for some n ∈ N
and so E is a collection of pairs of the form {i , j} with
i , j ∈ V .

I For m ≥ 2, a path of length m from i to j , is a tuple of the
form (i , k1, k2, . . . , km−1, j) where
{i , k1}, {k1, k2}, . . . , {km−1, j} are edges, i.e., they are
elements of E .

I Note that kj ’s need not be distinct.
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elements of E .

I Note that kj ’s need not be distinct.



Adjacency matrix

I Definition 22.6: The adjacency matrix A = [aij ]1≤i ,j≤n of a
graph G = (V ,E ) where V = {1, 2, . . . , n} is defined by
taking

aij =

{
1 if {i , j} ∈ E
0 otherwise

I Note that A is a real symmetric matrix and the diagonal
entries are all equal to zero.
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from (i , j).



Two step paths

I We have

(A2)ij =
n∑

k=1

aikakj

=
∑

k:aik .akj 6=0

aikakj

= ]{k : aik .akj 6= 0}
= ]{k : aik 6= 0, akj 6= 0}
= ]{k : (i , k), (k , j) ∈ E}
= The number of two step paths from i to j .

I Therefore, (i , j)th-entry of A2 is the number of two step paths
from (i , j).



m-step paths

I For m ≥ 2,

I

(Am)ij

=
∑

k1,k2,...,km−1

aik1ak1k2ak2k3 · · · akm−2km−1akm−1j

= ]{(k1, k2, . . . , km−1) : a1k1ak1k2ak2k3 · · · akm−2km−1akm−1j 6= 0}
= ]{(i , k1, . . . , km−1, j) : (i , k1), (k1, k2), . . . , (km−1, j) ∈ E}
= Number of paths of length m from i to j .

I In other words, (i , j)th-entry of Am is exactly the number of
paths of length m from i to j in the graph G , where A is the
adjacency matrix of the graph G .
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Computation

I Observe that the adjacency matrix of a graph G is a real
symmetric matrix. Hence it is normal and also has real
eigenvalues.

I By the spectral theorem

A = UDU∗

for some unitary U and real diagonal matrix D.

I Consequently Am = UDmU∗. This allows us to compute the
number of paths of length m between any to vertices.
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Example

I Consider the ‘square graph’ with vertices {1, 2, 3, 4}:

1 −− 2
| |
3 −− 4

I The adjacency matrix of this graph is given by

A =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


I You may compute the eigenvalues of A and diagonalize it to

compute the powers.

I Here we will take a different approach.
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The powers of A

I By direct computation,

A2 =


2 0 0 2
0 2 2 0
0 2 2 0
2 0 0 2



I and

A3 =


0 4 4 0
4 0 0 4
4 0 0 4
0 4 4 0

 .
I In other words, A3 = 4A.
I Therefore, A4 = 4A2, A5 = 4A3 = 16A, A6 = 16A2.
I By induction, we get A2m+1 = 4mA,A2m+2 = 4mA2 for all

m ≥ 0.
I This we can write down the number of paths of given length

between any two vertices of the square graph.
I END OF LECTURE 22
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