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» Reference: Graphs and Matrices by R. Bapat

» For further information on connections between graph theory
and matrix theory.
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Definition 20.1: (i) A complex square matrix A is said to be
self-adjoint if A* = A. (ii) A complex square matrix A is said
to be normal if A*A = AA*.

Recall that for A = [ajj]i<i j<n, we have A* = [3ji]i<i j<n-
In particular, every real symmetric matrix is self-adjoint.

Here is an example of a self-adjoint matrix which is not real
and symmetric:

[ 2 345
B_[3—5i 1 ]
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Recall:

Definition 20.1: (i) A complex square matrix A is said to be
self-adjoint if A* = A. (ii) A complex square matrix A is said
to be normal if A*A = AA*.

Recall that for A = [ajj]i<i j<n, we have A* = [3ji]i<i j<n-
In particular, every real symmetric matrix is self-adjoint.

Here is an example of a self-adjoint matrix which is not real
and symmetric:

[ 2 345
B_[3—5i 1 ]

Note that diagonal entry of every self-adjoint matrix is real as
3;; = aj; for every i.



Spectral theorem (Version -I)

» Theorem 20.7 (Spectral Theorem-1): Let A be a complex

matrix. Then there exists a unitary matrix U and a diagonal
matrix D such that

A= UDU*

if and only if A is normal.



Spectral theorem (Version -I)

» Theorem 20.7 (Spectral Theorem-1): Let A be a complex
matrix. Then there exists a unitary matrix U and a diagonal
matrix D such that

A= UDU*

if and only if A is normal.

» The theorem tells us that a matrix is diagonalizable through a
unitary iff it is normal. In particular, every normal matrix is
diagonalizable.



Spectral theorem (Version -I)

» Theorem 20.7 (Spectral Theorem-1): Let A be a complex
matrix. Then there exists a unitary matrix U and a diagonal
matrix D such that

A= UDU*

if and only if A is normal.

» The theorem tells us that a matrix is diagonalizable through a
unitary iff it is normal. In particular, every normal matrix is
diagonalizable.

> Now we will present this Theorem in a different way.



Spectral theorem (Version -I)

» Theorem 20.7 (Spectral Theorem-1): Let A be a complex
matrix. Then there exists a unitary matrix U and a diagonal
matrix D such that

A= UDU*

if and only if A is normal.

» The theorem tells us that a matrix is diagonalizable through a
unitary iff it is normal. In particular, every normal matrix is
diagonalizable.

> Now we will present this Theorem in a different way.

» Consider the set up as above. Let a1, as, ..., ax be the
distinct eigenvalues of A.



Spectral theorem (Version -I)

» Theorem 20.7 (Spectral Theorem-1): Let A be a complex
matrix. Then there exists a unitary matrix U and a diagonal
matrix D such that

A= UDU*

if and only if A is normal.

» The theorem tells us that a matrix is diagonalizable through a
unitary iff it is normal. In particular, every normal matrix is
diagonalizable.

> Now we will present this Theorem in a different way.

» Consider the set up as above. Let a1, as, ..., ax be the
distinct eigenvalues of A.

» Recall that the diagonal entries of D are the eigenvalues of A,
as the characteristic polynomial of A and D are same.
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and ny +ny+---+ng=n.

> Without loss of generality, we may assume that repeated
entries are clubbed together, that is, the diagonal entries of D
are equal to

(a1, a1,...,a1,a,a,...a2,a3,33,...,ak, ak)

where a; appears n; times.
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This means that every diagonal entry of D is one of the a;’s.
Suppose that aj appears n; times in the diagonal with 1 < n;
and ny +ny+---+ng=n.

Without loss of generality, we may assume that repeated
entries are clubbed together, that is, the diagonal entries of D
are equal to

(a1, a1,...,a1,a,a,...a2,a3,33,...,ak, ak)

where a;j appears n; times.
If I,,J. denotes the identity matrix of size n; x n;, the matrix D
can be written as:

(aly, O 0 ... 0
0 aly O 0
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» We may then re-write D as D = a1Q1 + ax @2 + - - - + ax Qx

> where,
In, O 0 0 0 0
Q= ° 0 , Q2 = ° /’.12 ° ;
0 0 0 0 0 0

» and so on up to

Qk =
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» We may then re-write D as D = a1Q1 + ax @2 + - - - + ax Qx

» where,
In, O 0 0 0 0
Q= ° 0 , Q2 = ° /’.12 ° ;
0 0 0 0 0 0

0 0 0
0 0 0

Q=|. |
00 ... I

» Clearly Q1, @2, ..., Qx are projections, Q;Q; =0, fori#j
(they are mutually orthogonal) and @ + @2 + -+ Qx = /.
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» Now take P; = UQ;U*,1 <j < k.

» Then we have

A = UDU*

U(a1@Q1 + a2@2 + - - + ax Q) U*
31UQ1U*+22UQ2U*+"‘+akUQkU*
= a1P1+aPo+ -+ akPx.
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» Now take P; = UQ;U*,1 <j < k.
» Then we have
A = UDU*
= U(a1Qr +a2@2+ -+ ax Q) U*
= g UQU" + aaUQU* 4 - - - 4+ 3, UQ U*
= a1P1+aPo+ -+ akPx.

» From P; = UQ;U*,1 < j < k, it is clear that Py, Py, ..., Pk
are projections such that P;P; = 0 for i # j and

P1+P2—|---~—|—szl.
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» We have now proved the following Theorem.

» Theorem 23.1 (Spectral Theorem -Il): Let A be a normal
matrix and let a1, ap, ..., ax be the distinct eigenvalues of A.
Then there exist mutually orthogonal projections
Pi1,Ps, ..., Py, such that

I = Pi+Po+--+ Py
A = aiP1+aPy+ -+ acPk.
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where y; € M;, 1 < j < k, then V is said to be an orthogonal
direct sum of My, Mo, ... M.
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Orthogonal Direct sums

» Definition 23.2: Suppose My, My, ..., My are mutually
orthogonal subspaces of a finite dimensional inner product
space V such that every vector x in V decomposes uniquely as

X=y1+y2+-+ Yk
where y; € M;, 1 < j < k, then V is said to be an orthogonal

direct sum of My, Mo, ... M.
» (Notation) Sometimes this is denoted by

X=y1Dy2 D"+ D yk.

We may also write V=M & Mo & --- ® M.
» Note that:
k

MOy D Oy, 21D22D - D z) :Z(yj,2j>.
Jj=1
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» Now in Spectral theorem-Il, taking
M; = P(C") = {Pjx : x € C"}, we see that C" is a direct sum
of Ml, Mz, N Mk.

» That is, every vector x in C" decomposes uniquely as
X:(P1+P2+~-+Pk)X: Pix + Pox + - -+ + Pyx with
PJ'X € Mj.

> We also note that

Ax = (a1Pi+axPo+- - -+akPi)x = a1 Pix+axPox+- - -4ay Pix

is the unique decomposition of Ax.
» What is this subspace M; = P;(C")?
» Exercise 23.3: Show that
M; ={y e C": Ay = ajy}.

» In other words, M, is the eigenspace of A with respect to
eigenvalue a;.
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» Theorem 23.4 (Spectral theorem -1l1): Let A be a normal
matrix. Then the eigenspaces of distinct eigenvalues of A are
mutually orthogonal and C” is their direct sum.
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» In other words, we have proved the following statement:

» Theorem 23.4 (Spectral theorem -1l1): Let A be a normal
matrix. Then the eigenspaces of distinct eigenvalues of A are
mutually orthogonal and C” is their direct sum.

» Clearly given the normal matrix A, the decomposition of C”
as in this theorem is uniquely determined and so the
corresponding projections are also uniquely determined. This
also shows that the decomposition of A as in Spectral
Theorem -II:

A=a1Pi1+aPo+ -+ aP, =P+ Po+---+ Py

where Py, P, ..., P, are mutually orthogonal projections is
unique up to permutation.
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where U is a unitary and D is diagonal. Here D is unique up
to permutation of the diagonal entries.

» However, U is not unique. We can always replace U by zU
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» END OF LECTURE 23



