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Lecture 23: Spectral theorem -II and III

I Reference: Graphs and Matrices by R. Bapat

I For further information on connections between graph theory
and matrix theory.
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Self-adjoint and normal matrices

I Recall:

I Definition 20.1: (i) A complex square matrix A is said to be
self-adjoint if A∗ = A. (ii) A complex square matrix A is said
to be normal if A∗A = AA∗.

I Recall that for A = [aij ]1≤i ,j≤n, we have A∗ = [aji ]1≤i ,j≤n.

I In particular, every real symmetric matrix is self-adjoint.

I Here is an example of a self-adjoint matrix which is not real
and symmetric:

B =

[
2 3 + 5i

3− 5i 1

]
.

I Note that diagonal entry of every self-adjoint matrix is real as
aii = aii for every i .
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Spectral theorem (Version -I)

I Theorem 20.7 (Spectral Theorem-I): Let A be a complex
matrix. Then there exists a unitary matrix U and a diagonal
matrix D such that

A = UDU∗

if and only if A is normal.

I The theorem tells us that a matrix is diagonalizable through a
unitary iff it is normal. In particular, every normal matrix is
diagonalizable.

I Now we will present this Theorem in a different way.

I Consider the set up as above. Let a1, a2, . . . , ak be the
distinct eigenvalues of A.

I Recall that the diagonal entries of D are the eigenvalues of A,
as the characteristic polynomial of A and D are same.
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Continuation

I This means that every diagonal entry of D is one of the aj ’s.

I Suppose that aj appears nj times in the diagonal with 1 ≤ nj
and n1 + n2 + · · ·+ nk = n.

I Without loss of generality, we may assume that repeated
entries are clubbed together, that is, the diagonal entries of D
are equal to

(a1, a1, . . . , a1, a2, a2, . . . a2, a3, a3, . . . , ak , ak)

where aj appears nj times.
I If Inj denotes the identity matrix of size nj × nj , the matrix D

can be written as:

D =


a1In1 0 0 . . . 0

0 a2In2 0 . . . 0
0 0 a3In3 . . . 0
...

...
...

. . .
...

0 0 0 . . . ak Ink


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Continuation

I We may then re-write D as D = a1Q1 + a2Q2 + · · ·+ akQk

I where,

Q1 =


In1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ,Q2 =


0 0 . . . 0
0 In2 . . . 0
...

...
. . .

...
0 0 . . . 0

 ,

I and so on up to

Qk =


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . Ink

 .

I Clearly Q1,Q2, . . . ,Qk are projections, QiQj = 0, for i 6= j
(they are mutually orthogonal) and Q1 + Q2 + · · ·+ Qk = I .
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Continuation

I Now take Pj = UQjU
∗, 1 ≤ j ≤ k.

I Then we have

A = UDU∗

= U(a1Q1 + a2Q2 + · · ·+ akQk)U∗

= a1UQ1U
∗ + a2UQ2U

∗ + · · ·+ akUQkU
∗

= a1P1 + a2P2 + · · ·+ akPk .

I From Pj = UQjU
∗, 1 ≤ j ≤ k , it is clear that P1,P2, . . . ,Pk

are projections such that PiPj = 0 for i 6= j and

P1 + P2 + · · ·+ Pk = I .
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Spectral Theorem -II

I We have now proved the following Theorem.

I Theorem 23.1 (Spectral Theorem -II): Let A be a normal
matrix and let a1, a2, . . . , ak be the distinct eigenvalues of A.
Then there exist mutually orthogonal projections
P1,P2, . . . ,Pk , such that

I = P1 + P2 + · · ·+ Pk ;

A = a1P1 + a2P2 + · · ·+ akPk .
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Orthogonal Direct sums

I Definition 23.2: Suppose M1,M2, . . . ,Mk are mutually
orthogonal subspaces of a finite dimensional inner product
space V such that every vector x in V decomposes uniquely as

x = y1 + y2 + · · ·+ yk

where yj ∈ Mj , 1 ≤ j ≤ k , then V is said to be an orthogonal
direct sum of M1,M2, . . . ,Mk .

I (Notation) Sometimes this is denoted by

x = y1 ⊕ y2 ⊕ · · · ⊕ yk .

We may also write V = M1 ⊕M2 ⊕ · · · ⊕Mk .

I Note that:

〈y1 ⊕ y2 ⊕ · · · ⊕ yk , z1 ⊕ z2 ⊕ · · · ⊕ zk〉 =
k∑

j=1

〈yj , zj〉.
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Continuation

I Now in Spectral theorem-II, taking
Mj = P(Cn) = {Pjx : x ∈ Cn}, we see that Cn is a direct sum
of M1,M2, . . . ,Mk .

I That is, every vector x in Cn decomposes uniquely as
x = (P1 + P2 + · · ·+ Pk)x = P1x + P2x + · · ·+ Pkx with
Pjx ∈ Mj .

I We also note that

Ax = (a1P1+a2P2+· · ·+akPk)x = a1P1x+a2P2x+· · ·+akPkx

is the unique decomposition of Ax .
I What is this subspace Mj = Pj(Cn)?
I Exercise 23.3: Show that

Mj = {y ∈ Cn : Ay = ajy}.

I In other words, Mj is the eigenspace of A with respect to
eigenvalue aj .
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Continuation

I In other words, we have proved the following statement:

I Theorem 23.4 (Spectral theorem -III): Let A be a normal
matrix. Then the eigenspaces of distinct eigenvalues of A are
mutually orthogonal and Cn is their direct sum.

I Clearly given the normal matrix A, the decomposition of Cn

as in this theorem is uniquely determined and so the
corresponding projections are also uniquely determined. This
also shows that the decomposition of A as in Spectral
Theorem -II:

A = a1P1 + a2P2 + · · ·+ akPk , I = P1 + P2 + · · ·+ Pk

where P1,P2, . . . ,Pk are mutually orthogonal projections is
unique up to permutation.
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Non-uniqueness in diagonalization

I Recall that in Spectral Theorem -I, we had

A = UDU∗

where U is a unitary and D is diagonal. Here D is unique up
to permutation of the diagonal entries.

I However, U is not unique. We can always replace U by zU
where |z | = 1. Then zU is also a unitary and
A = (zU)D(zU)∗.

I Is U unique up to multiplication by scalar when D is fixed?

I Ans: No. If A = I , then A = UIU∗ for any unitary U. Hence
U is not unique even up to scalar.

I END OF LECTURE 23
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