

LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 23: Spectral theorem -II and III

- ▶ Reference: Graphs and Matrices by R. Bapat

Lecture 23: Spectral theorem -II and III

- ▶ Reference: Graphs and Matrices by R. Bapat
- ▶ For further information on connections between graph theory and matrix theory.

Self-adjoint and normal matrices

- ▶ Recall:
- ▶ **Definition 20.1:** (i) A complex square matrix A is said to be **self-adjoint** if $A^* = A$. (ii) A complex square matrix A is said to be **normal** if $A^*A = AA^*$.

Self-adjoint and normal matrices

- ▶ Recall:
- ▶ **Definition 20.1:** (i) A complex square matrix A is said to be **self-adjoint** if $A^* = A$. (ii) A complex square matrix A is said to be **normal** if $A^*A = AA^*$.
- ▶ Recall that for $A = [a_{ij}]_{1 \leq i,j \leq n}$, we have $A^* = [\overline{a_{ji}}]_{1 \leq i,j \leq n}$.

Self-adjoint and normal matrices

- ▶ Recall:
- ▶ **Definition 20.1:** (i) A complex square matrix A is said to be **self-adjoint** if $A^* = A$. (ii) A complex square matrix A is said to be **normal** if $A^*A = AA^*$.
- ▶ Recall that for $A = [a_{ij}]_{1 \leq i, j \leq n}$, we have $A^* = [\overline{a_{ji}}]_{1 \leq i, j \leq n}$.
- ▶ In particular, every real symmetric matrix is self-adjoint.
- ▶ Here is an example of a self-adjoint matrix which is not real and symmetric:

$$B = \begin{bmatrix} 2 & 3 + 5i \\ 3 - 5i & 1 \end{bmatrix}.$$

Self-adjoint and normal matrices

- ▶ Recall:
- ▶ **Definition 20.1:** (i) A complex square matrix A is said to be **self-adjoint** if $A^* = A$. (ii) A complex square matrix A is said to be **normal** if $A^*A = AA^*$.
- ▶ Recall that for $A = [a_{ij}]_{1 \leq i, j \leq n}$, we have $A^* = [\overline{a_{ji}}]_{1 \leq i, j \leq n}$.
- ▶ In particular, every real symmetric matrix is self-adjoint.
- ▶ Here is an example of a self-adjoint matrix which is not real and symmetric:

$$B = \begin{bmatrix} 2 & 3 + 5i \\ 3 - 5i & 1 \end{bmatrix}.$$

- ▶ Note that diagonal entry of every self-adjoint matrix is real as $\overline{a_{ii}} = a_{ii}$ for every i .

Spectral theorem (Version -I)

- **Theorem 20.7 (Spectral Theorem-I):** Let A be a complex matrix. Then there exists a unitary matrix U and a diagonal matrix D such that

$$A = UDU^*$$

if and only if A is normal.

Spectral theorem (Version -I)

- **Theorem 20.7 (Spectral Theorem-I):** Let A be a complex matrix. Then there exists a unitary matrix U and a diagonal matrix D such that

$$A = UDU^*$$

if and only if A is normal.

- The theorem tells us that a matrix is diagonalizable through a unitary iff it is normal. In particular, every normal matrix is diagonalizable.

Spectral theorem (Version -I)

- **Theorem 20.7 (Spectral Theorem-I):** Let A be a complex matrix. Then there exists a unitary matrix U and a diagonal matrix D such that

$$A = UDU^*$$

if and only if A is normal.

- The theorem tells us that a matrix is diagonalizable through a unitary iff it is normal. In particular, every normal matrix is diagonalizable.
- Now we will present this Theorem in a different way.

Spectral theorem (Version -I)

- **Theorem 20.7 (Spectral Theorem-I):** Let A be a complex matrix. Then there exists a unitary matrix U and a diagonal matrix D such that

$$A = UDU^*$$

if and only if A is normal.

- The theorem tells us that a matrix is diagonalizable through a unitary iff it is normal. In particular, every normal matrix is diagonalizable.
- Now we will present this Theorem in a different way.
- Consider the set up as above. Let a_1, a_2, \dots, a_k be the distinct eigenvalues of A .

Spectral theorem (Version -I)

- **Theorem 20.7 (Spectral Theorem-I):** Let A be a complex matrix. Then there exists a unitary matrix U and a diagonal matrix D such that

$$A = UDU^*$$

if and only if A is normal.

- The theorem tells us that a matrix is diagonalizable through a unitary iff it is normal. In particular, every normal matrix is diagonalizable.
- Now we will present this Theorem in a different way.
- Consider the set up as above. Let a_1, a_2, \dots, a_k be the distinct eigenvalues of A .
- Recall that the diagonal entries of D are the eigenvalues of A , as the characteristic polynomial of A and D are same.

Continuation

- ▶ This means that every diagonal entry of D is one of the a_j 's.

Continuation

- ▶ This means that every diagonal entry of D is one of the a_j 's.
- ▶ Suppose that a_j appears n_j times in the diagonal with $1 \leq n_j$ and $n_1 + n_2 + \cdots + n_k = n$.

Continuation

- ▶ This means that every diagonal entry of D is one of the a_j 's.
- ▶ Suppose that a_j appears n_j times in the diagonal with $1 \leq n_j$ and $n_1 + n_2 + \dots + n_k = n$.
- ▶ Without loss of generality, we may assume that repeated entries are clubbed together, that is, the diagonal entries of D are equal to

$$(a_1, a_1, \dots, a_1, a_2, a_2, \dots, a_2, a_3, a_3, \dots, a_k, a_k)$$

where a_j appears n_j times.

Continuation

- ▶ This means that every diagonal entry of D is one of the a_j 's.
- ▶ Suppose that a_j appears n_j times in the diagonal with $1 \leq n_j$ and $n_1 + n_2 + \dots + n_k = n$.
- ▶ Without loss of generality, we may assume that repeated entries are clubbed together, that is, the diagonal entries of D are equal to

$$(a_1, a_1, \dots, a_1, a_2, a_2, \dots, a_2, a_3, a_3, \dots, a_k, a_k)$$

where a_j appears n_j times.

- ▶ If I_{n_j} denotes the identity matrix of size $n_j \times n_j$, the matrix D can be written as:

$$D = \begin{bmatrix} a_1 I_{n_1} & 0 & 0 & \dots & 0 \\ 0 & a_2 I_{n_2} & 0 & \dots & 0 \\ 0 & 0 & a_3 I_{n_3} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_k I_{n_k} \end{bmatrix}$$

Continuation

- We may then re-write D as $D = a_1 Q_1 + a_2 Q_2 + \cdots + a_k Q_k$

Continuation

- ▶ We may then re-write D as $D = a_1 Q_1 + a_2 Q_2 + \cdots + a_k Q_k$
- ▶ where,

$$Q_1 = \begin{bmatrix} I_{n_1} & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}, Q_2 = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & I_{n_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix},$$

Continuation

- ▶ We may then re-write D as $D = a_1 Q_1 + a_2 Q_2 + \cdots + a_k Q_k$
- ▶ where,

$$Q_1 = \begin{bmatrix} I_{n_1} & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}, Q_2 = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & I_{n_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix},$$

- ▶ and so on up to

$$Q_k = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & I_{n_k} \end{bmatrix}.$$

Continuation

- ▶ We may then re-write D as $D = a_1 Q_1 + a_2 Q_2 + \cdots + a_k Q_k$
- ▶ where,

$$Q_1 = \begin{bmatrix} I_{n_1} & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}, Q_2 = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & I_{n_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix},$$

- ▶ and so on up to

$$Q_k = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & I_{n_k} \end{bmatrix}.$$

- ▶ Clearly Q_1, Q_2, \dots, Q_k are projections, $Q_i Q_j = 0$, for $i \neq j$ (they are mutually orthogonal) and $Q_1 + Q_2 + \cdots + Q_k = I$.

Continuation

- ▶ Now take $P_j = UQ_jU^*$, $1 \leq j \leq k$.

Continuation

- ▶ Now take $P_j = UQ_j U^*$, $1 \leq j \leq k$.
- ▶ Then we have

$$\begin{aligned} A &= UDU^* \\ &= U(a_1 Q_1 + a_2 Q_2 + \cdots + a_k Q_k)U^* \\ &= a_1 UQ_1 U^* + a_2 UQ_2 U^* + \cdots + a_k UQ_k U^* \\ &= a_1 P_1 + a_2 P_2 + \cdots + a_k P_k. \end{aligned}$$

Continuation

- ▶ Now take $P_j = UQ_jU^*$, $1 \leq j \leq k$.
- ▶ Then we have

$$\begin{aligned} A &= UDU^* \\ &= U(a_1Q_1 + a_2Q_2 + \cdots + a_kQ_k)U^* \\ &= a_1UQ_1U^* + a_2UQ_2U^* + \cdots + a_kUQ_kU^* \\ &= a_1P_1 + a_2P_2 + \cdots + a_kP_k. \end{aligned}$$

- ▶ From $P_j = UQ_jU^*$, $1 \leq j \leq k$, it is clear that P_1, P_2, \dots, P_k are projections such that $P_iP_j = 0$ for $i \neq j$ and

$$P_1 + P_2 + \cdots + P_k = I.$$

Spectral Theorem -II

- We have now proved the following Theorem.

Spectral Theorem -II

- ▶ We have now proved the following Theorem.
- ▶ **Theorem 23.1 (Spectral Theorem -II):** Let A be a normal matrix and let a_1, a_2, \dots, a_k be the distinct eigenvalues of A . Then there exist mutually orthogonal projections P_1, P_2, \dots, P_k , such that

$$I = P_1 + P_2 + \cdots + P_k;$$

$$A = a_1 P_1 + a_2 P_2 + \cdots + a_k P_k.$$

Orthogonal Direct sums

- ▶ **Definition 23.2:** Suppose M_1, M_2, \dots, M_k are mutually orthogonal subspaces of a finite dimensional inner product space V such that every vector x in V decomposes uniquely as

$$x = y_1 + y_2 + \cdots + y_k$$

where $y_j \in M_j$, $1 \leq j \leq k$, then V is said to be an **orthogonal direct sum** of M_1, M_2, \dots, M_k .

Orthogonal Direct sums

- ▶ **Definition 23.2:** Suppose M_1, M_2, \dots, M_k are mutually orthogonal subspaces of a finite dimensional inner product space V such that every vector x in V decomposes uniquely as

$$x = y_1 + y_2 + \cdots + y_k$$

where $y_j \in M_j$, $1 \leq j \leq k$, then V is said to be an **orthogonal direct sum** of M_1, M_2, \dots, M_k .

- ▶ (Notation) Sometimes this is denoted by

$$x = y_1 \oplus y_2 \oplus \cdots \oplus y_k.$$

We may also write $V = M_1 \oplus M_2 \oplus \cdots \oplus M_k$.

Orthogonal Direct sums

- ▶ **Definition 23.2:** Suppose M_1, M_2, \dots, M_k are mutually orthogonal subspaces of a finite dimensional inner product space V such that every vector x in V decomposes uniquely as

$$x = y_1 + y_2 + \cdots + y_k$$

where $y_j \in M_j$, $1 \leq j \leq k$, then V is said to be an **orthogonal direct sum** of M_1, M_2, \dots, M_k .

- ▶ (Notation) Sometimes this is denoted by

$$x = y_1 \oplus y_2 \oplus \cdots \oplus y_k.$$

We may also write $V = M_1 \oplus M_2 \oplus \cdots \oplus M_k$.

- ▶ Note that:

$$\langle y_1 \oplus y_2 \oplus \cdots \oplus y_k, z_1 \oplus z_2 \oplus \cdots \oplus z_k \rangle = \sum_{j=1}^k \langle y_j, z_j \rangle.$$

Continuation

- ▶ Now in Spectral theorem-II, taking $M_j = P(\mathbb{C}^n) = \{P_j x : x \in \mathbb{C}^n\}$, we see that \mathbb{C}^n is a direct sum of M_1, M_2, \dots, M_k .

Continuation

- ▶ Now in Spectral theorem-II, taking $M_j = P(\mathbb{C}^n) = \{P_j x : x \in \mathbb{C}^n\}$, we see that \mathbb{C}^n is a direct sum of M_1, M_2, \dots, M_k .
- ▶ That is, every vector x in \mathbb{C}^n decomposes uniquely as $x = (P_1 + P_2 + \dots + P_k)x = P_1x + P_2x + \dots + P_kx$ with $P_jx \in M_j$.

Continuation

- ▶ Now in Spectral theorem-II, taking $M_j = P(\mathbb{C}^n) = \{P_j x : x \in \mathbb{C}^n\}$, we see that \mathbb{C}^n is a direct sum of M_1, M_2, \dots, M_k .
- ▶ That is, every vector x in \mathbb{C}^n decomposes uniquely as $x = (P_1 + P_2 + \dots + P_k)x = P_1x + P_2x + \dots + P_kx$ with $P_jx \in M_j$.
- ▶ We also note that

$$Ax = (a_1 P_1 + a_2 P_2 + \dots + a_k P_k)x = a_1 P_1x + a_2 P_2x + \dots + a_k P_kx$$

is the unique decomposition of Ax .

Continuation

- ▶ Now in Spectral theorem-II, taking $M_j = P_j(\mathbb{C}^n) = \{P_jx : x \in \mathbb{C}^n\}$, we see that \mathbb{C}^n is a direct sum of M_1, M_2, \dots, M_k .
- ▶ That is, every vector x in \mathbb{C}^n decomposes uniquely as $x = (P_1 + P_2 + \dots + P_k)x = P_1x + P_2x + \dots + P_kx$ with $P_jx \in M_j$.
- ▶ We also note that

$$Ax = (a_1P_1 + a_2P_2 + \dots + a_kP_k)x = a_1P_1x + a_2P_2x + \dots + a_kP_kx$$

is the unique decomposition of Ax .

- ▶ What is this subspace $M_j = P_j(\mathbb{C}^n)$?

Continuation

- ▶ Now in Spectral theorem-II, taking $M_j = P_j(\mathbb{C}^n) = \{P_jx : x \in \mathbb{C}^n\}$, we see that \mathbb{C}^n is a direct sum of M_1, M_2, \dots, M_k .
- ▶ That is, every vector x in \mathbb{C}^n decomposes uniquely as $x = (P_1 + P_2 + \dots + P_k)x = P_1x + P_2x + \dots + P_kx$ with $P_jx \in M_j$.
- ▶ We also note that

$$Ax = (a_1P_1 + a_2P_2 + \dots + a_kP_k)x = a_1P_1x + a_2P_2x + \dots + a_kP_kx$$

is the unique decomposition of Ax .

- ▶ What is this subspace $M_j = P_j(\mathbb{C}^n)$?
- ▶ **Exercise 23.3:** Show that

$$M_j = \{y \in \mathbb{C}^n : Ay = a_j y\}.$$

Continuation

- ▶ Now in Spectral theorem-II, taking $M_j = P_j(\mathbb{C}^n) = \{P_jx : x \in \mathbb{C}^n\}$, we see that \mathbb{C}^n is a direct sum of M_1, M_2, \dots, M_k .
- ▶ That is, every vector x in \mathbb{C}^n decomposes uniquely as $x = (P_1 + P_2 + \dots + P_k)x = P_1x + P_2x + \dots + P_kx$ with $P_jx \in M_j$.
- ▶ We also note that

$$Ax = (a_1P_1 + a_2P_2 + \dots + a_kP_k)x = a_1P_1x + a_2P_2x + \dots + a_kP_kx$$

is the unique decomposition of Ax .

- ▶ What is this subspace $M_j = P_j(\mathbb{C}^n)$?
- ▶ **Exercise 23.3:** Show that

$$M_j = \{y \in \mathbb{C}^n : Ay = a_jy\}.$$

- ▶ In other words, M_j is the eigenspace of A with respect to eigenvalue a_j .

Continuation

- ▶ In other words, we have proved the following statement:

Continuation

- ▶ In other words, we have proved the following statement:
- ▶ **Theorem 23.4 (Spectral theorem -III):** Let A be a normal matrix. Then the eigenspaces of distinct eigenvalues of A are mutually orthogonal and \mathbb{C}^n is their direct sum.

Continuation

- ▶ In other words, we have proved the following statement:
- ▶ **Theorem 23.4 (Spectral theorem -III):** Let A be a normal matrix. Then the eigenspaces of distinct eigenvalues of A are mutually orthogonal and \mathbb{C}^n is their direct sum.
- ▶ Clearly given the normal matrix A , the decomposition of \mathbb{C}^n as in this theorem is uniquely determined and so the corresponding projections are also uniquely determined. This also shows that the decomposition of A as in Spectral Theorem -II:

$$A = a_1 P_1 + a_2 P_2 + \cdots + a_k P_k, I = P_1 + P_2 + \cdots + P_k$$

where P_1, P_2, \dots, P_k are mutually orthogonal projections is unique up to permutation.

Non-uniqueness in diagonalization

- ▶ Recall that in Spectral Theorem -I, we had

$$A = UDU^*$$

where U is a unitary and D is diagonal. Here D is unique up to permutation of the diagonal entries.

Non-uniqueness in diagonalization

- ▶ Recall that in Spectral Theorem -I, we had

$$A = UDU^*$$

where U is a unitary and D is diagonal. Here D is unique up to permutation of the diagonal entries.

- ▶ However, U is not unique. We can always replace U by zU where $|z| = 1$. Then zU is also a unitary and

$$A = (zU)D(zU)^*.$$

Non-uniqueness in diagonalization

- ▶ Recall that in Spectral Theorem -I, we had

$$A = UDU^*$$

where U is a unitary and D is diagonal. Here D is unique up to permutation of the diagonal entries.

- ▶ However, U is not unique. We can always replace U by zU where $|z| = 1$. Then zU is also a unitary and $A = (zU)D(zU)^*$.
- ▶ Is U unique up to multiplication by scalar when D is fixed?

Non-uniqueness in diagonalization

- ▶ Recall that in Spectral Theorem -I, we had

$$A = UDU^*$$

where U is a unitary and D is diagonal. Here D is unique up to permutation of the diagonal entries.

- ▶ However, U is not unique. We can always replace U by zU where $|z| = 1$. Then zU is also a unitary and
$$A = (zU)D(zU)^*.$$
- ▶ Is U unique up to multiplication by scalar when D is fixed?
- ▶ Ans: No. If $A = I$, then $A = UIU^*$ for any unitary U . Hence U is not unique even up to scalar.

Non-uniqueness in diagonalization

- ▶ Recall that in Spectral Theorem -I, we had

$$A = UDU^*$$

where U is a unitary and D is diagonal. Here D is unique up to permutation of the diagonal entries.

- ▶ However, U is not unique. We can always replace U by zU where $|z| = 1$. Then zU is also a unitary and
$$A = (zU)D(zU)^*.$$
- ▶ Is U unique up to multiplication by scalar when D is fixed?
- ▶ Ans: No. If $A = I$, then $A = UIU^*$ for any unitary U . Hence U is not unique even up to scalar.
- ▶ **END OF LECTURE 23**