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Lecture 24: Polynomial spectral mapping theorem

I We recall different versions of the spectral theorem.



Spectral theorem (Version -I)

I Theorem 20.7 (Spectral Theorem-I): Let A be a complex
matrix. Then there exists a unitary matrix U and a diagonal
matrix D such that

A = UDU∗

if and only if A is normal.

I The theorem tells us that a matrix is diagonalizable through a
unitary iff it is normal. In particular, every normal matrix is
diagonalizable.

I Now we will present this Theorem in a different way.

I Consider the set up as above. Let a1, a2, . . . , ak be the
distinct eigenvalues of A.

I Recall that the diagonal entries of D are the eigenvalues of A,
as the characteristic polynomial of A and D are same.
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Continuation

I This means that every diagonal entry of D is one of the aj ’s.

I Suppose that aj appears nj times in the diagonal with 1 ≤ nj
and n1 + n2 + · · ·+ nk = n.

I Without loss of generality, we may assume that repeated
entries are clubbed together, that is, the diagonal entries of D
are equal to

(a1, a1, . . . , a1, a2, a2, . . . a2, a3, a3, . . . , ak , ak)

where aj appears nj times.
I If Inj denotes the identity matrix of size nj × nj , the matrix D

can be written as:

D =


a1In1 0 0 . . . 0

0 a2In2 0 . . . 0
0 0 a3In3 . . . 0
...

...
...

. . .
...

0 0 0 . . . ak Ink


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Continuation

I We may then re-write D as D = a1Q1 + a2Q2 + · · ·+ akQk

I where,

Q1 =


In1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ,Q2 =


0 0 . . . 0
0 In2 . . . 0
...

...
. . .

...
0 0 . . . 0

 ,
I and so on up to

Qk =


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . Ink

 .
I Clearly Q1,Q2, . . . ,Qk are projections, QiQj = 0, for i 6= j

(they are mutually orthogonal) and Q1 + Q2 + · · ·+ Qk = I .
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Continuation

I Now take Pj = UQjU
∗, 1 ≤ j ≤ k.

I Then we have

A = UDU∗

= U(a1Q1 + a2Q2 + · · ·+ akQk)U∗

= a1UQ1U
∗ + a2UQ2U

∗ + · · ·+ akUQkU
∗

= a1P1 + a2P2 + · · ·+ akPk .

I From Pj = UQjU
∗, 1 ≤ j ≤ k , it is clear that P1,P2, . . . ,Pk

are projections such that PiPj = 0 for i 6= j and

P1 + P2 + · · ·+ Pk = I .
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Spectral Theorem -II

I We have now proved the following Theorem.

I Theorem 23.1 (Spectral Theorem -II): Let A be a normal
matrix and let a1, a2, . . . , ak be the distinct eigenvalues of A.
Then there exist mutually orthogonal projections
P1,P2, . . . ,Pk , such that

I = P1 + P2 + · · ·+ Pk ;

A = a1P1 + a2P2 + · · ·+ akPk .
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Orthogonal Direct sums

I Definition 23.2: Suppose M1,M2, . . . ,Mk are mutually
orthogonal subspaces of a finite dimensional inner product
space V such that every vector x in V decomposes uniquely as

x = y1 + y2 + · · ·+ yk

where yj ∈ Mj , 1 ≤ j ≤ k , then V is said to be an orthogonal
direct sum of M1,M2, . . . ,Mk .

I (Notation) Sometimes this is denoted by

x = y1 ⊕ y2 ⊕ · · · ⊕ yk .

We may also write V = M1 ⊕M2 ⊕ · · · ⊕Mk .

I Note that:

〈y1 ⊕ y2 ⊕ · · · ⊕ yk , z1 ⊕ z2 ⊕ · · · ⊕ zk〉 =
k∑

j=1

〈yj , zj〉.
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Continuation

I Now in Spectral theorem-II, taking
Mj = P(Cn) = {Pjx : x ∈ Cn}, we see that Cn is a direct sum
of M1,M2, . . . ,Mk .

I That is, every vector x in Cn decomposes uniquely as
x = (P1 + P2 + · · ·+ Pk)x = P1x + P2x + · · ·+ Pkx with
Pjx ∈ Mj .

I We also note that

Ax = (a1P1+a2P2+· · ·+akPk)x = a1P1x+a2P2x+· · ·+akPkx

is the unique decomposition of Ax .
I What is this subspace Mj = Pj(Cn)?
I Exercise 23.3: Show that

Mj = {y ∈ Cn : Ay = ajy}.

I In other words, Mj is the eigenspace of A with respect to
eigenvalue aj .
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Continuation

I In other words, we have proved the following statement:

I Theorem 23.4 (Spectral theorem -III): Let A be a normal
matrix. Then the eigenspaces of distinct eigenvalues of A are
mutually orthogonal and Cn is their direct sum.

I Clearly given the normal matrix A, the decomposition of Cn

as in this theorem is uniquely determined and so the
corresponding projections are also uniquely determined. This
also shows that the decomposition of A as in Spectral
Theorem -II:

A = a1P1 + a2P2 + · · ·+ akPk , I = P1 + P2 + · · ·+ Pk

where P1,P2, . . . ,Pk are mutually orthogonal projections is
unique up to permutation.
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Non-uniqueness in diagonalization

I Recall that in Spectral Theorem -I, we had

A = UDU∗

where U is a unitary and D is diagonal. Here D is unique up
to permutation of the diagonal entries.

I However, U is not unique. We can always replace U by zU
where |z | = 1. Then zU is also a unitary and
A = (zU)D(zU)∗.

I Is U unique up to multiplication by scalar when D is fixed?

I Ans: No. If A = I , then A = UIU∗ for any unitary U. Hence
U is not unique even up to scalar.
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Polynomial spectral mapping theorem

I Theorem 24.1: Let A be an n× n matrix and let d1, d2, . . . , dn
be the eigenvalues of A. Then for any complex polynomial q,
the eigenvalues of q(A) are q(d1), q(d2), . . . , q(dn).

I Proof: By Schur’s upper triangularization theorem there exists
a unitary U and an upper triangular matrix T such that

A = UTU∗.

I Note that the diagonal entries of T are the eigenvalues of A.

I Without loss of generality, we may denote the diagonal entries
of T as d1, d2, . . . , dn.

I Now it is easy to see that the diagonal entries of T 2 are
d2
1 , d

2
2 , . . . , d

2
n .

I More generally, for any k ∈ N the diagonal entries of T k are
dk
1 , d

k
2 , . . . , d

k
n .
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Continuation

I Now suppose q(x) = c0 + c1x + c2x
2 + · · ·+ cmx

m, then the
diagonal entries of q(T ) are q(d1), q(d2), . . . , q(dn).

I We have
q(A) = Uq(T )U∗

and q(T ) is upper triangular, Therefore q(A) and q(T ) have
same characteristic polynomial and hence same set of
eigenvalues.

I This proves the theorem.

I Exercise 24.2: Find an alternative proof which does not use
upper triangularization.
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Polynomials of normal matrices first version

I Theorem 24.3: Let A be a normal matrix. Suppose U is a
unitary and D is a diagonal matrix such that

A = UDU∗.

I Then for any complex polynomial q,

q(A) = Uq(D)U∗ = U


q(d1) 0 . . . 0

0 q(d2) . . . 0
...

...
. . .

...
0 0 . . . q(dn)

U∗.

I Proof: This is clear as

Ak = UDkU∗ = U


dk
1 0 . . . 0
0 dk

2 . . . 0
...

...
. . .

...
0 0 . . . dk

n

U∗,

for every k ≥ 1,
I and I = UIU∗. �
I Here by convention we are taking A0 = I for any matrix A

even if A is 0.
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Polynomials of normal matrices -II

I Theorem 24.4: Let A be a normal matrix. Suppose

A = a1P1 + a2P2 + · · ·+ akPk ,

is the spectral decomposition of A (This means that
a1, a2, . . . , ak are distinct eigenvalues of A and P1,P2, . . . ,Pk

are mutually orthogonal projections such that
P1 + P2 + · · ·+ Pk = I .)

I Then for any complex polynomial q,

q(A) = q(a1)P1 + q(a2)P2 + · · ·+ q(ak)Pk .

I Proof: We have

A2 = (a1P1 + a2P2 + · · ·+ akPk)(a1P1 + a2P2 + · · ·+ akPk)

= a21P1 + a22P2 + · · ·+ a2kPk

as PiPj = δijPj .
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Continuation

I By induction,

Am = am1 P1 + am2 P2 + · · ·+ amk Pk

for all m ≥ 1 and for m = 0, A0 = I = P1 + P2 + · · ·+ Pk .

I Now the result follows by taking linear combinations of the
powers of A. �

I Remark 24.5: It is to be noted that

q(A) = q(a1)P1 + q(a2)P2 + · · ·+ q(ak)Pk .

may not be the spectral decomposition of q(A) as
q(a1), . . . , q(ak) may not be distinct.
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Functional Calculus

I The last two theorems suggest that for a normal matrix A, if
f is a function defined on σ(A) (the spectrum of A) we may
define f (A) by taking

f (A) := U


f (d1) 0 . . . 0

0 f (d2) . . . 0
...

...
. . .

...
0 0 . . . f (dn)

U∗

= f (a1)P1 + f (a2)P2 + · · ·+ f (ak)Pk .

I For instance we can define sin(A), cos(A), eA etc by this
method.

I At the moment this is only a definition. But it has many
natural properties. Studying this concept not only for matrices
but also for operators (infinite dimensional matrices) is the
subject of Functional Calculus.
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Examples

I Recall:

I Example 21.2 and 24.6: Suppose

A =

[
2 1
1 2

]
.

I Then as A is self-adjoint it is normal.

I The characteristic polynomial of A is

p(x) = det(xI−A) = (x−2)2−1 = x2−4x+3 = (x−3)(x−1).

I Hence the eigenvalues of A are 1 and 3.

I Solving corresponding eigen equations we see that

A

(
1
1

)
= 3

(
1
1

)
, A

(
1
−1

)
=

(
1
−1

)
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Continuation

I Normalizing these eigenvectors, and taking them as columns
we get a unitary,

U =
1√
2

[
1 1
1 −1

]

I satisfying,

AU = U

[
3 0
0 1

]
.

I Alternatively,

A = U

[
3 0
0 1

]
U∗.
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Continuation

I We have the spectral decomposition of A as

A = 3P1 + 1.P2

where

P1 =
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I Note that P1,P2 are mutually orthogonal and P1 + P2 = I .
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Continuation

I Example 24.7: Consider

U =
1√
2

[
1 1
1 −1

]

I We have seen that U is a unitary. So it must have eigenvalues
on the unit circle.

I The characteristic polynomial of U is

pU(x) = (x2 − 1

2
)− 1

2
= x2 − 1 = (x − 1)(x + 1)

I So the eigenvalues of U are 1 and −1.

I Compute the spectral decomposition of U.

I Challenge Question: Every time you diagonalize you get a
unitary. Continue diagonalizing these unitaries. Does the
process terminate or does it become cyclic?
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Another example

I Example 24.8: Let B be the n × n matrix defined by

bij =

{
0 if i = j ;
1 otherwise.

I Compute powers of B.

I Note that B is the adjacency matrix of the complete graph
with n-vertices (usually denoted by Kn), where any two
distinct vertex is connected by an edge.

I Draw K1,K2,K3,K4



Another example

I Example 24.8: Let B be the n × n matrix defined by

bij =

{
0 if i = j ;
1 otherwise.

I Compute powers of B.

I Note that B is the adjacency matrix of the complete graph
with n-vertices (usually denoted by Kn), where any two
distinct vertex is connected by an edge.

I Draw K1,K2,K3,K4



Another example

I Example 24.8: Let B be the n × n matrix defined by

bij =

{
0 if i = j ;
1 otherwise.

I Compute powers of B.

I Note that B is the adjacency matrix of the complete graph
with n-vertices (usually denoted by Kn), where any two
distinct vertex is connected by an edge.

I Draw K1,K2,K3,K4



Another example

I Example 24.8: Let B be the n × n matrix defined by

bij =

{
0 if i = j ;
1 otherwise.

I Compute powers of B.

I Note that B is the adjacency matrix of the complete graph
with n-vertices (usually denoted by Kn), where any two
distinct vertex is connected by an edge.

I Draw K1,K2,K3,K4



Continuation

I We write B as B = nP − I where P is the matrix with

pij =
1

n
, ∀i , j .

I We have seen this P before. It is a projection. It is the
projection to the one dimensional space:

{


a
a
...
a

 : a ∈ C}.

I Take Q = (I − P).

I Then B = nP − (P + Q) = (n − 1)P + (−1)Q
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Continuation

I Observe that P,Q are mutually orthogonal projections whose
sum is I . It follows that

B = (n − 1)P + (−1)Q

is the spectral decomposition of B.

I So the eigenvalues of B are (n − 1) with multiplicity 1 and
(−1) with multiplicity (n − 1).

I Moreover, Bm = (n − 1)mP + (−1)mQ for all m ≥ 0.

I Use this to compute the number of paths in the complete
graph and also compute it directly by considering the graph.

I END OF LECTURE 24.
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