

LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 24: Polynomial spectral mapping theorem

- ▶ We recall different versions of the spectral theorem.

Spectral theorem (Version -I)

- **Theorem 20.7 (Spectral Theorem-I):** Let A be a complex matrix. Then there exists a unitary matrix U and a diagonal matrix D such that

$$A = UDU^*$$

if and only if A is normal.

Spectral theorem (Version -I)

- **Theorem 20.7 (Spectral Theorem-I):** Let A be a complex matrix. Then there exists a unitary matrix U and a diagonal matrix D such that

$$A = UDU^*$$

if and only if A is normal.

- The theorem tells us that a matrix is diagonalizable through a unitary iff it is normal. In particular, every normal matrix is diagonalizable.

Spectral theorem (Version -I)

- **Theorem 20.7 (Spectral Theorem-I):** Let A be a complex matrix. Then there exists a unitary matrix U and a diagonal matrix D such that

$$A = UDU^*$$

if and only if A is normal.

- The theorem tells us that a matrix is diagonalizable through a unitary iff it is normal. In particular, every normal matrix is diagonalizable.
- Now we will present this Theorem in a different way.

Spectral theorem (Version -I)

- **Theorem 20.7 (Spectral Theorem-I):** Let A be a complex matrix. Then there exists a unitary matrix U and a diagonal matrix D such that

$$A = UDU^*$$

if and only if A is normal.

- The theorem tells us that a matrix is diagonalizable through a unitary iff it is normal. In particular, every normal matrix is diagonalizable.
- Now we will present this Theorem in a different way.
- Consider the set up as above. Let a_1, a_2, \dots, a_k be the distinct eigenvalues of A .

Spectral theorem (Version -I)

- **Theorem 20.7 (Spectral Theorem-I):** Let A be a complex matrix. Then there exists a unitary matrix U and a diagonal matrix D such that

$$A = UDU^*$$

if and only if A is normal.

- The theorem tells us that a matrix is diagonalizable through a unitary iff it is normal. In particular, every normal matrix is diagonalizable.
- Now we will present this Theorem in a different way.
- Consider the set up as above. Let a_1, a_2, \dots, a_k be the distinct eigenvalues of A .
- Recall that the diagonal entries of D are the eigenvalues of A , as the characteristic polynomial of A and D are same.

Continuation

- ▶ This means that every diagonal entry of D is one of the a_j 's.

Continuation

- ▶ This means that every diagonal entry of D is one of the a_j 's.
- ▶ Suppose that a_j appears n_j times in the diagonal with $1 \leq n_j$ and $n_1 + n_2 + \cdots + n_k = n$.

Continuation

- ▶ This means that every diagonal entry of D is one of the a_j 's.
- ▶ Suppose that a_j appears n_j times in the diagonal with $1 \leq n_j$ and $n_1 + n_2 + \cdots + n_k = n$.
- ▶ Without loss of generality, we may assume that repeated entries are clubbed together, that is, the diagonal entries of D are equal to

$$(a_1, a_1, \dots, a_1, a_2, a_2, \dots, a_2, a_3, a_3, \dots, a_k, a_k)$$

where a_j appears n_j times.

Continuation

- ▶ This means that every diagonal entry of D is one of the a_j 's.
- ▶ Suppose that a_j appears n_j times in the diagonal with $1 \leq n_j$ and $n_1 + n_2 + \dots + n_k = n$.
- ▶ Without loss of generality, we may assume that repeated entries are clubbed together, that is, the diagonal entries of D are equal to

$$(a_1, a_1, \dots, a_1, a_2, a_2, \dots, a_2, a_3, a_3, \dots, a_k, a_k)$$

where a_j appears n_j times.

- ▶ If I_{n_j} denotes the identity matrix of size $n_j \times n_j$, the matrix D can be written as:

$$D = \begin{bmatrix} a_1 I_{n_1} & 0 & 0 & \dots & 0 \\ 0 & a_2 I_{n_2} & 0 & \dots & 0 \\ 0 & 0 & a_3 I_{n_3} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_k I_{n_k} \end{bmatrix}$$

Continuation

- We may then re-write D as $D = a_1 Q_1 + a_2 Q_2 + \cdots + a_k Q_k$

Continuation

- ▶ We may then re-write D as $D = a_1 Q_1 + a_2 Q_2 + \cdots + a_k Q_k$
- ▶ where,

$$Q_1 = \begin{bmatrix} I_{n_1} & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}, Q_2 = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & I_{n_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix},$$

Continuation

- ▶ We may then re-write D as $D = a_1 Q_1 + a_2 Q_2 + \cdots + a_k Q_k$
- ▶ where,

$$Q_1 = \begin{bmatrix} I_{n_1} & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}, Q_2 = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & I_{n_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix},$$

- ▶ and so on up to

$$Q_k = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & I_{n_k} \end{bmatrix}.$$

Continuation

- ▶ We may then re-write D as $D = a_1 Q_1 + a_2 Q_2 + \cdots + a_k Q_k$
- ▶ where,

$$Q_1 = \begin{bmatrix} I_{n_1} & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}, Q_2 = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & I_{n_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix},$$

- ▶ and so on up to

$$Q_k = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & I_{n_k} \end{bmatrix}.$$

- ▶ Clearly Q_1, Q_2, \dots, Q_k are projections, $Q_i Q_j = 0$, for $i \neq j$ (they are mutually orthogonal) and $Q_1 + Q_2 + \cdots + Q_k = I$.

Continuation

- ▶ Now take $P_j = UQ_jU^*$, $1 \leq j \leq k$.

Continuation

- ▶ Now take $P_j = UQ_j U^*$, $1 \leq j \leq k$.
- ▶ Then we have

$$\begin{aligned} A &= UDU^* \\ &= U(a_1 Q_1 + a_2 Q_2 + \cdots + a_k Q_k)U^* \\ &= a_1 UQ_1 U^* + a_2 UQ_2 U^* + \cdots + a_k UQ_k U^* \\ &= a_1 P_1 + a_2 P_2 + \cdots + a_k P_k. \end{aligned}$$

Continuation

- ▶ Now take $P_j = UQ_jU^*$, $1 \leq j \leq k$.
- ▶ Then we have

$$\begin{aligned} A &= UDU^* \\ &= U(a_1Q_1 + a_2Q_2 + \cdots + a_kQ_k)U^* \\ &= a_1UQ_1U^* + a_2UQ_2U^* + \cdots + a_kUQ_kU^* \\ &= a_1P_1 + a_2P_2 + \cdots + a_kP_k. \end{aligned}$$

- ▶ From $P_j = UQ_jU^*$, $1 \leq j \leq k$, it is clear that P_1, P_2, \dots, P_k are projections such that $P_iP_j = 0$ for $i \neq j$ and

$$P_1 + P_2 + \cdots + P_k = I.$$

Spectral Theorem -II

- We have now proved the following Theorem.

Spectral Theorem -II

- ▶ We have now proved the following Theorem.
- ▶ **Theorem 23.1 (Spectral Theorem -II):** Let A be a normal matrix and let a_1, a_2, \dots, a_k be the distinct eigenvalues of A . Then there exist mutually orthogonal projections P_1, P_2, \dots, P_k , such that

$$I = P_1 + P_2 + \dots + P_k;$$

$$A = a_1 P_1 + a_2 P_2 + \dots + a_k P_k.$$

Orthogonal Direct sums

- ▶ **Definition 23.2:** Suppose M_1, M_2, \dots, M_k are mutually orthogonal subspaces of a finite dimensional inner product space V such that every vector x in V decomposes uniquely as

$$x = y_1 + y_2 + \cdots + y_k$$

where $y_j \in M_j$, $1 \leq j \leq k$, then V is said to be an **orthogonal direct sum** of M_1, M_2, \dots, M_k .

Orthogonal Direct sums

- ▶ **Definition 23.2:** Suppose M_1, M_2, \dots, M_k are mutually orthogonal subspaces of a finite dimensional inner product space V such that every vector x in V decomposes uniquely as

$$x = y_1 + y_2 + \cdots + y_k$$

where $y_j \in M_j$, $1 \leq j \leq k$, then V is said to be an **orthogonal direct sum** of M_1, M_2, \dots, M_k .

- ▶ (Notation) Sometimes this is denoted by

$$x = y_1 \oplus y_2 \oplus \cdots \oplus y_k.$$

We may also write $V = M_1 \oplus M_2 \oplus \cdots \oplus M_k$.

Orthogonal Direct sums

- ▶ **Definition 23.2:** Suppose M_1, M_2, \dots, M_k are mutually orthogonal subspaces of a finite dimensional inner product space V such that every vector x in V decomposes uniquely as

$$x = y_1 + y_2 + \cdots + y_k$$

where $y_j \in M_j$, $1 \leq j \leq k$, then V is said to be an **orthogonal direct sum** of M_1, M_2, \dots, M_k .

- ▶ (Notation) Sometimes this is denoted by

$$x = y_1 \oplus y_2 \oplus \cdots \oplus y_k.$$

We may also write $V = M_1 \oplus M_2 \oplus \cdots \oplus M_k$.

- ▶ Note that:

$$\langle y_1 \oplus y_2 \oplus \cdots \oplus y_k, z_1 \oplus z_2 \oplus \cdots \oplus z_k \rangle = \sum_{j=1}^k \langle y_j, z_j \rangle.$$

Continuation

- ▶ Now in Spectral theorem-II, taking $M_j = P(\mathbb{C}^n) = \{P_j x : x \in \mathbb{C}^n\}$, we see that \mathbb{C}^n is a direct sum of M_1, M_2, \dots, M_k .

Continuation

- ▶ Now in Spectral theorem-II, taking $M_j = P(\mathbb{C}^n) = \{P_j x : x \in \mathbb{C}^n\}$, we see that \mathbb{C}^n is a direct sum of M_1, M_2, \dots, M_k .
- ▶ That is, every vector x in \mathbb{C}^n decomposes uniquely as $x = (P_1 + P_2 + \dots + P_k)x = P_1x + P_2x + \dots + P_kx$ with $P_jx \in M_j$.

Continuation

- ▶ Now in Spectral theorem-II, taking $M_j = P(\mathbb{C}^n) = \{P_j x : x \in \mathbb{C}^n\}$, we see that \mathbb{C}^n is a direct sum of M_1, M_2, \dots, M_k .
- ▶ That is, every vector x in \mathbb{C}^n decomposes uniquely as $x = (P_1 + P_2 + \dots + P_k)x = P_1x + P_2x + \dots + P_kx$ with $P_jx \in M_j$.
- ▶ We also note that

$$Ax = (a_1 P_1 + a_2 P_2 + \dots + a_k P_k)x = a_1 P_1 x + a_2 P_2 x + \dots + a_k P_k x$$

is the unique decomposition of Ax .

Continuation

- ▶ Now in Spectral theorem-II, taking $M_j = P_j(\mathbb{C}^n) = \{P_jx : x \in \mathbb{C}^n\}$, we see that \mathbb{C}^n is a direct sum of M_1, M_2, \dots, M_k .
- ▶ That is, every vector x in \mathbb{C}^n decomposes uniquely as $x = (P_1 + P_2 + \dots + P_k)x = P_1x + P_2x + \dots + P_kx$ with $P_jx \in M_j$.
- ▶ We also note that

$$Ax = (a_1P_1 + a_2P_2 + \dots + a_kP_k)x = a_1P_1x + a_2P_2x + \dots + a_kP_kx$$

is the unique decomposition of Ax .

- ▶ What is this subspace $M_j = P_j(\mathbb{C}^n)$?

Continuation

- ▶ Now in Spectral theorem-II, taking $M_j = P_j(\mathbb{C}^n) = \{P_jx : x \in \mathbb{C}^n\}$, we see that \mathbb{C}^n is a direct sum of M_1, M_2, \dots, M_k .
- ▶ That is, every vector x in \mathbb{C}^n decomposes uniquely as $x = (P_1 + P_2 + \dots + P_k)x = P_1x + P_2x + \dots + P_kx$ with $P_jx \in M_j$.
- ▶ We also note that

$$Ax = (a_1P_1 + a_2P_2 + \dots + a_kP_k)x = a_1P_1x + a_2P_2x + \dots + a_kP_kx$$

is the unique decomposition of Ax .

- ▶ What is this subspace $M_j = P_j(\mathbb{C}^n)$?
- ▶ **Exercise 23.3:** Show that

$$M_j = \{y \in \mathbb{C}^n : Ay = a_j y\}.$$

Continuation

- ▶ Now in Spectral theorem-II, taking $M_j = P_j(\mathbb{C}^n) = \{P_jx : x \in \mathbb{C}^n\}$, we see that \mathbb{C}^n is a direct sum of M_1, M_2, \dots, M_k .
- ▶ That is, every vector x in \mathbb{C}^n decomposes uniquely as $x = (P_1 + P_2 + \dots + P_k)x = P_1x + P_2x + \dots + P_kx$ with $P_jx \in M_j$.
- ▶ We also note that

$$Ax = (a_1P_1 + a_2P_2 + \dots + a_kP_k)x = a_1P_1x + a_2P_2x + \dots + a_kP_kx$$

is the unique decomposition of Ax .

- ▶ What is this subspace $M_j = P_j(\mathbb{C}^n)$?
- ▶ **Exercise 23.3:** Show that

$$M_j = \{y \in \mathbb{C}^n : Ay = a_jy\}.$$

- ▶ In other words, M_j is the eigenspace of A with respect to eigenvalue a_j .

Continuation

- ▶ In other words, we have proved the following statement:

Continuation

- ▶ In other words, we have proved the following statement:
- ▶ **Theorem 23.4 (Spectral theorem -III):** Let A be a normal matrix. Then the eigenspaces of distinct eigenvalues of A are mutually orthogonal and \mathbb{C}^n is their direct sum.

Continuation

- ▶ In other words, we have proved the following statement:
- ▶ **Theorem 23.4 (Spectral theorem -III):** Let A be a normal matrix. Then the eigenspaces of distinct eigenvalues of A are mutually orthogonal and \mathbb{C}^n is their direct sum.
- ▶ Clearly given the normal matrix A , the decomposition of \mathbb{C}^n as in this theorem is uniquely determined and so the corresponding projections are also uniquely determined. This also shows that the decomposition of A as in Spectral Theorem -II:

$$A = a_1 P_1 + a_2 P_2 + \cdots + a_k P_k, I = P_1 + P_2 + \cdots + P_k$$

where P_1, P_2, \dots, P_k are mutually orthogonal projections is unique up to permutation.

Non-uniqueness in diagonalization

- ▶ Recall that in Spectral Theorem -I, we had

$$A = UDU^*$$

where U is a unitary and D is diagonal. Here D is unique up to permutation of the diagonal entries.

Non-uniqueness in diagonalization

- ▶ Recall that in Spectral Theorem -I, we had

$$A = UDU^*$$

where U is a unitary and D is diagonal. Here D is unique up to permutation of the diagonal entries.

- ▶ However, U is not unique. We can always replace U by zU where $|z| = 1$. Then zU is also a unitary and $A = (zU)D(zU)^*$.

Non-uniqueness in diagonalization

- ▶ Recall that in Spectral Theorem -I, we had

$$A = UDU^*$$

where U is a unitary and D is diagonal. Here D is unique up to permutation of the diagonal entries.

- ▶ However, U is not unique. We can always replace U by zU where $|z| = 1$. Then zU is also a unitary and $A = (zU)D(zU)^*$.
- ▶ Is U unique up to multiplication by scalar when D is fixed?

Non-uniqueness in diagonalization

- ▶ Recall that in Spectral Theorem -I, we had

$$A = UDU^*$$

where U is a unitary and D is diagonal. Here D is unique up to permutation of the diagonal entries.

- ▶ However, U is not unique. We can always replace U by zU where $|z| = 1$. Then zU is also a unitary and $A = (zU)D(zU)^*$.
- ▶ Is U unique up to multiplication by scalar when D is fixed?
- ▶ Ans: No. If $A = I$, then $A = UIU^*$ for any unitary U . Hence U is not unique even up to scalar.

Polynomial spectral mapping theorem

- **Theorem 24.1:** Let A be an $n \times n$ matrix and let d_1, d_2, \dots, d_n be the eigenvalues of A . Then for any complex polynomial q , the eigenvalues of $q(A)$ are $q(d_1), q(d_2), \dots, q(d_n)$.

Polynomial spectral mapping theorem

- ▶ **Theorem 24.1:** Let A be an $n \times n$ matrix and let d_1, d_2, \dots, d_n be the eigenvalues of A . Then for any complex polynomial q , the eigenvalues of $q(A)$ are $q(d_1), q(d_2), \dots, q(d_n)$.
- ▶ **Proof:** By Schur's upper triangularization theorem there exists a unitary U and an upper triangular matrix T such that

$$A = UTU^*.$$

Polynomial spectral mapping theorem

- ▶ **Theorem 24.1:** Let A be an $n \times n$ matrix and let d_1, d_2, \dots, d_n be the eigenvalues of A . Then for any complex polynomial q , the eigenvalues of $q(A)$ are $q(d_1), q(d_2), \dots, q(d_n)$.
- ▶ **Proof:** By Schur's upper triangularization theorem there exists a unitary U and an upper triangular matrix T such that

$$A = UTU^*.$$

- ▶ Note that the diagonal entries of T are the eigenvalues of A .

Polynomial spectral mapping theorem

- ▶ **Theorem 24.1:** Let A be an $n \times n$ matrix and let d_1, d_2, \dots, d_n be the eigenvalues of A . Then for any complex polynomial q , the eigenvalues of $q(A)$ are $q(d_1), q(d_2), \dots, q(d_n)$.
- ▶ **Proof:** By Schur's upper triangularization theorem there exists a unitary U and an upper triangular matrix T such that

$$A = UTU^*.$$

- ▶ Note that the diagonal entries of T are the eigenvalues of A .
- ▶ Without loss of generality, we may denote the diagonal entries of T as d_1, d_2, \dots, d_n .

Polynomial spectral mapping theorem

- ▶ **Theorem 24.1:** Let A be an $n \times n$ matrix and let d_1, d_2, \dots, d_n be the eigenvalues of A . Then for any complex polynomial q , the eigenvalues of $q(A)$ are $q(d_1), q(d_2), \dots, q(d_n)$.
- ▶ **Proof:** By Schur's upper triangularization theorem there exists a unitary U and an upper triangular matrix T such that

$$A = UTU^*.$$

- ▶ Note that the diagonal entries of T are the eigenvalues of A .
- ▶ Without loss of generality, we may denote the diagonal entries of T as d_1, d_2, \dots, d_n .
- ▶ Now it is easy to see that the diagonal entries of T^2 are $d_1^2, d_2^2, \dots, d_n^2$.

Polynomial spectral mapping theorem

- ▶ **Theorem 24.1:** Let A be an $n \times n$ matrix and let d_1, d_2, \dots, d_n be the eigenvalues of A . Then for any complex polynomial q , the eigenvalues of $q(A)$ are $q(d_1), q(d_2), \dots, q(d_n)$.
- ▶ **Proof:** By Schur's upper triangularization theorem there exists a unitary U and an upper triangular matrix T such that

$$A = UTU^*.$$

- ▶ Note that the diagonal entries of T are the eigenvalues of A .
- ▶ Without loss of generality, we may denote the diagonal entries of T as d_1, d_2, \dots, d_n .
- ▶ Now it is easy to see that the diagonal entries of T^2 are $d_1^2, d_2^2, \dots, d_n^2$.
- ▶ More generally, for any $k \in \mathbb{N}$ the diagonal entries of T^k are $d_1^k, d_2^k, \dots, d_n^k$.

Continuation

- ▶ Now suppose $q(x) = c_0 + c_1x + c_2x^2 + \cdots + c_mx^m$, then the diagonal entries of $q(T)$ are $q(d_1), q(d_2), \dots, q(d_n)$.

Continuation

- ▶ Now suppose $q(x) = c_0 + c_1x + c_2x^2 + \cdots + c_mx^m$, then the diagonal entries of $q(T)$ are $q(d_1), q(d_2), \dots, q(d_n)$.
- ▶ We have

$$q(A) = Uq(T)U^*$$

and $q(T)$ is upper triangular, Therefore $q(A)$ and $q(T)$ have same characteristic polynomial and hence same set of eigenvalues.

Continuation

- ▶ Now suppose $q(x) = c_0 + c_1x + c_2x^2 + \cdots + c_mx^m$, then the diagonal entries of $q(T)$ are $q(d_1), q(d_2), \dots, q(d_n)$.
- ▶ We have

$$q(A) = Uq(T)U^*$$

and $q(T)$ is upper triangular, Therefore $q(A)$ and $q(T)$ have same characteristic polynomial and hence same set of eigenvalues.

- ▶ This proves the theorem.

Continuation

- ▶ Now suppose $q(x) = c_0 + c_1x + c_2x^2 + \cdots + c_mx^m$, then the diagonal entries of $q(T)$ are $q(d_1), q(d_2), \dots, q(d_n)$.
- ▶ We have

$$q(A) = Uq(T)U^*$$

and $q(T)$ is upper triangular, Therefore $q(A)$ and $q(T)$ have same characteristic polynomial and hence same set of eigenvalues.

- ▶ This proves the theorem.
- ▶ **Exercise 24.2:** Find an alternative proof which does not use upper triangularization.

Polynomials of normal matrices first version

- **Theorem 24.3:** Let A be a normal matrix. Suppose U is a unitary and D is a diagonal matrix such that

$$A = UDU^*.$$

Polynomials of normal matrices first version

- **Theorem 24.3:** Let A be a normal matrix. Suppose U is a unitary and D is a diagonal matrix such that

$$A = UDU^*.$$

- Then for any complex polynomial q ,

$$q(A) = Uq(D)U^* = U \begin{bmatrix} q(d_1) & 0 & \dots & 0 \\ 0 & q(d_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q(d_n) \end{bmatrix} U^*.$$

Polynomials of normal matrices first version

- **Theorem 24.3:** Let A be a normal matrix. Suppose U is a unitary and D is a diagonal matrix such that

$$A = UDU^*.$$

- Then for any complex polynomial q ,

$$q(A) = Uq(D)U^* = U \begin{bmatrix} q(d_1) & 0 & \dots & 0 \\ 0 & q(d_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q(d_n) \end{bmatrix} U^*.$$

- **Proof:** This is clear as

$$A^k = U D^k U^* = U \begin{bmatrix} d_1^k & 0 & \dots & 0 \\ 0 & d_2^k & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n^k \end{bmatrix} U^*,$$

for every $k \geq 1$,

Polynomials of normal matrices first version

- **Theorem 24.3:** Let A be a normal matrix. Suppose U is a unitary and D is a diagonal matrix such that

$$A = UDU^*.$$

- Then for any complex polynomial q ,

$$q(A) = Uq(D)U^* = U \begin{bmatrix} q(d_1) & 0 & \dots & 0 \\ 0 & q(d_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q(d_n) \end{bmatrix} U^*.$$

- **Proof:** This is clear as

$$A^k = U D^k U^* = U \begin{bmatrix} d_1^k & 0 & \dots & 0 \\ 0 & d_2^k & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n^k \end{bmatrix} U^*,$$

for every $k \geq 1$,

- and $I = UIU^*$. ■

Polynomials of normal matrices first version

- **Theorem 24.3:** Let A be a normal matrix. Suppose U is a unitary and D is a diagonal matrix such that

$$A = UDU^*.$$

- Then for any complex polynomial q ,

$$q(A) = Uq(D)U^* = U \begin{bmatrix} q(d_1) & 0 & \dots & 0 \\ 0 & q(d_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q(d_n) \end{bmatrix} U^*.$$

- **Proof:** This is clear as

$$A^k = U D^k U^* = U \begin{bmatrix} d_1^k & 0 & \dots & 0 \\ 0 & d_2^k & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n^k \end{bmatrix} U^*,$$

for every $k \geq 1$,

- and $I = UIU^*$. ■

Polynomials of normal matrices -II

- Theorem 24.4: Let A be a normal matrix. Suppose

$$A = a_1 P_1 + a_2 P_2 + \cdots + a_k P_k,$$

is the spectral decomposition of A (This means that a_1, a_2, \dots, a_k are distinct eigenvalues of A and P_1, P_2, \dots, P_k are mutually orthogonal projections such that $P_1 + P_2 + \cdots + P_k = I$.)

Polynomials of normal matrices -II

- Theorem 24.4: Let A be a normal matrix. Suppose

$$A = a_1 P_1 + a_2 P_2 + \cdots + a_k P_k,$$

is the spectral decomposition of A (This means that a_1, a_2, \dots, a_k are distinct eigenvalues of A and P_1, P_2, \dots, P_k are mutually orthogonal projections such that $P_1 + P_2 + \cdots + P_k = I$.)

- Then for any complex polynomial q ,

$$q(A) = q(a_1)P_1 + q(a_2)P_2 + \cdots + q(a_k)P_k.$$

Polynomials of normal matrices -II

- **Theorem 24.4:** Let A be a normal matrix. Suppose

$$A = a_1 P_1 + a_2 P_2 + \cdots + a_k P_k,$$

is the spectral decomposition of A (This means that a_1, a_2, \dots, a_k are distinct eigenvalues of A and P_1, P_2, \dots, P_k are mutually orthogonal projections such that $P_1 + P_2 + \cdots + P_k = I$.)

- Then for any complex polynomial q ,

$$q(A) = q(a_1)P_1 + q(a_2)P_2 + \cdots + q(a_k)P_k.$$

- **Proof:** We have

$$\begin{aligned} A^2 &= (a_1 P_1 + a_2 P_2 + \cdots + a_k P_k)(a_1 P_1 + a_2 P_2 + \cdots + a_k P_k) \\ &= a_1^2 P_1 + a_2^2 P_2 + \cdots + a_k^2 P_k \end{aligned}$$

as $P_i P_j = \delta_{ij} P_j$.

Continuation

- ▶ By induction,

$$A^m = a_1^m P_1 + a_2^m P_2 + \cdots + a_k^m P_k$$

for all $m \geq 1$ and for $m = 0$, $A^0 = I = P_1 + P_2 + \cdots + P_k$.

Continuation

- ▶ By induction,

$$A^m = a_1^m P_1 + a_2^m P_2 + \cdots + a_k^m P_k$$

for all $m \geq 1$ and for $m = 0$, $A^0 = I = P_1 + P_2 + \cdots + P_k$.

- ▶ Now the result follows by taking linear combinations of the powers of A . ■

Continuation

- ▶ By induction,

$$A^m = a_1^m P_1 + a_2^m P_2 + \cdots + a_k^m P_k$$

for all $m \geq 1$ and for $m = 0$, $A^0 = I = P_1 + P_2 + \cdots + P_k$.

- ▶ Now the result follows by taking linear combinations of the powers of A . ■
- ▶ **Remark 24.5:** It is to be noted that

$$q(A) = q(a_1)P_1 + q(a_2)P_2 + \cdots + q(a_k)P_k.$$

may not be the spectral decomposition of $q(A)$ as $q(a_1), \dots, q(a_k)$ may not be distinct.

Functional Calculus

- ▶ The last two theorems suggest that for a normal matrix A , if f is a function defined on $\sigma(A)$ (the spectrum of A) we may define $f(A)$ by taking

$$\begin{aligned} f(A) &:= U \begin{bmatrix} f(d_1) & 0 & \dots & 0 \\ 0 & f(d_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & f(d_n) \end{bmatrix} U^* \\ &= f(a_1)P_1 + f(a_2)P_2 + \dots + f(a_k)P_k. \end{aligned}$$

Functional Calculus

- ▶ The last two theorems suggest that for a normal matrix A , if f is a function defined on $\sigma(A)$ (the spectrum of A) we may define $f(A)$ by taking

$$\begin{aligned} f(A) &:= U \begin{bmatrix} f(d_1) & 0 & \dots & 0 \\ 0 & f(d_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & f(d_n) \end{bmatrix} U^* \\ &= f(a_1)P_1 + f(a_2)P_2 + \dots + f(a_k)P_k. \end{aligned}$$

- ▶ For instance we can define $\sin(A)$, $\cos(A)$, e^A etc by this method.

Functional Calculus

- ▶ The last two theorems suggest that for a normal matrix A , if f is a function defined on $\sigma(A)$ (the spectrum of A) we may define $f(A)$ by taking

$$\begin{aligned} f(A) &:= U \begin{bmatrix} f(d_1) & 0 & \dots & 0 \\ 0 & f(d_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & f(d_n) \end{bmatrix} U^* \\ &= f(a_1)P_1 + f(a_2)P_2 + \dots + f(a_k)P_k. \end{aligned}$$

- ▶ For instance we can define $\sin(A)$, $\cos(A)$, e^A etc by this method.
- ▶ At the moment this is only a definition. But it has many natural properties. Studying this concept not only for matrices but also for operators (infinite dimensional matrices) is the subject of Functional Calculus.

Examples

- ▶ Recall:
- ▶ Example 21.2 and 24.6: Suppose

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.$$

Examples

- ▶ Recall:
- ▶ Example 21.2 and 24.6: Suppose

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.$$

- ▶ Then as A is self-adjoint it is normal.

Examples

- ▶ Recall:
- ▶ Example 21.2 and 24.6: Suppose

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.$$

- ▶ Then as A is self-adjoint it is normal.
- ▶ The characteristic polynomial of A is

$$p(x) = \det(xI - A) = (x-2)^2 - 1 = x^2 - 4x + 3 = (x-3)(x-1).$$

Examples

- ▶ Recall:
- ▶ Example 21.2 and 24.6: Suppose

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.$$

- ▶ Then as A is self-adjoint it is normal.
- ▶ The characteristic polynomial of A is

$$p(x) = \det(xI - A) = (x-2)^2 - 1 = x^2 - 4x + 3 = (x-3)(x-1).$$

- ▶ Hence the eigenvalues of A are 1 and 3.

Examples

- ▶ Recall:
- ▶ Example 21.2 and 24.6: Suppose

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.$$

- ▶ Then as A is self-adjoint it is normal.
- ▶ The characteristic polynomial of A is

$$p(x) = \det(xI - A) = (x-2)^2 - 1 = x^2 - 4x + 3 = (x-3)(x-1).$$

- ▶ Hence the eigenvalues of A are 1 and 3.
- ▶ Solving corresponding eigen equations we see that

$$A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad A \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Continuation

- ▶ Normalizing these eigenvectors, and taking them as columns we get a unitary,

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Continuation

- ▶ Normalizing these eigenvectors, and taking them as columns we get a unitary,

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

- ▶ satisfying,

$$AU = U \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}.$$

Continuation

- ▶ Normalizing these eigenvectors, and taking them as columns we get a unitary,

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

- ▶ satisfying,

$$AU = U \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}.$$

- ▶ Alternatively,

$$A = U \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} U^*.$$

Continuation

- We have the spectral decomposition of A as

$$A = 3P_1 + 1.P_2$$

where

$$P_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Continuation

- We have the spectral decomposition of A as

$$A = 3P_1 + 1.P_2$$

where

$$P_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

- and

$$P_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Continuation

- We have the spectral decomposition of A as

$$A = 3P_1 + 1.P_2$$

where

$$P_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

- and

$$P_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

- Note that P_1, P_2 are mutually orthogonal and $P_1 + P_2 = I$.

Continuation

- ▶ Example 24.7: Consider

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Continuation

- ▶ Example 24.7: Consider

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

- ▶ We have seen that U is a unitary. So it must have eigenvalues on the unit circle.

Continuation

- ▶ Example 24.7: Consider

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

- ▶ We have seen that U is a unitary. So it must have eigenvalues on the unit circle.
- ▶ The characteristic polynomial of U is

$$p_U(x) = \left(x^2 - \frac{1}{2}\right) - \frac{1}{2} = x^2 - 1 = (x - 1)(x + 1)$$

Continuation

- ▶ Example 24.7: Consider

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

- ▶ We have seen that U is a unitary. So it must have eigenvalues on the unit circle.
- ▶ The characteristic polynomial of U is

$$p_U(x) = \left(x^2 - \frac{1}{2}\right) - \frac{1}{2} = x^2 - 1 = (x - 1)(x + 1)$$

- ▶ So the eigenvalues of U are 1 and -1 .

Continuation

- ▶ Example 24.7: Consider

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

- ▶ We have seen that U is a unitary. So it must have eigenvalues on the unit circle.
- ▶ The characteristic polynomial of U is

$$p_U(x) = \left(x^2 - \frac{1}{2}\right) - \frac{1}{2} = x^2 - 1 = (x - 1)(x + 1)$$

- ▶ So the eigenvalues of U are 1 and -1 .
- ▶ Compute the spectral decomposition of U .

Continuation

- ▶ Example 24.7: Consider

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

- ▶ We have seen that U is a unitary. So it must have eigenvalues on the unit circle.
- ▶ The characteristic polynomial of U is

$$p_U(x) = \left(x^2 - \frac{1}{2}\right) - \frac{1}{2} = x^2 - 1 = (x - 1)(x + 1)$$

- ▶ So the eigenvalues of U are 1 and -1 .
- ▶ Compute the spectral decomposition of U .
- ▶ Challenge Question: Every time you diagonalize you get a unitary. Continue diagonalizing these unitaries. Does the process terminate or does it become cyclic?

Another example

- ▶ Example 24.8: Let B be the $n \times n$ matrix defined by

$$b_{ij} = \begin{cases} 0 & \text{if } i = j; \\ 1 & \text{otherwise.} \end{cases}$$

Another example

- ▶ Example 24.8: Let B be the $n \times n$ matrix defined by

$$b_{ij} = \begin{cases} 0 & \text{if } i = j; \\ 1 & \text{otherwise.} \end{cases}$$

- ▶ Compute powers of B .

Another example

- ▶ Example 24.8: Let B be the $n \times n$ matrix defined by

$$b_{ij} = \begin{cases} 0 & \text{if } i = j; \\ 1 & \text{otherwise.} \end{cases}$$

- ▶ Compute powers of B .
- ▶ Note that B is the adjacency matrix of the **complete graph** with n -vertices (usually denoted by K_n), where any two distinct vertex is connected by an edge.

Another example

- ▶ Example 24.8: Let B be the $n \times n$ matrix defined by

$$b_{ij} = \begin{cases} 0 & \text{if } i = j; \\ 1 & \text{otherwise.} \end{cases}$$

- ▶ Compute powers of B .
- ▶ Note that B is the adjacency matrix of the **complete graph** with n -vertices (usually denoted by K_n), where any two distinct vertex is connected by an edge.
- ▶ Draw K_1, K_2, K_3, K_4

Continuation

- We write B as $B = nP - I$ where P is the matrix with

$$p_{ij} = \frac{1}{n}, \quad \forall i, j.$$

Continuation

- We write B as $B = nP - I$ where P is the matrix with

$$p_{ij} = \frac{1}{n}, \quad \forall i, j.$$

- We have seen this P before. It is a projection. It is the projection to the one dimensional space:

$$\left\{ \begin{pmatrix} a \\ a \\ \vdots \\ a \end{pmatrix} : a \in \mathbb{C} \right\}.$$

Continuation

- We write B as $B = nP - I$ where P is the matrix with

$$p_{ij} = \frac{1}{n}, \quad \forall i, j.$$

- We have seen this P before. It is a projection. It is the projection to the one dimensional space:

$$\left\{ \begin{pmatrix} a \\ a \\ \vdots \\ a \end{pmatrix} : a \in \mathbb{C} \right\}.$$

- Take $Q = (I - P)$.

Continuation

- We write B as $B = nP - I$ where P is the matrix with

$$p_{ij} = \frac{1}{n}, \quad \forall i, j.$$

- We have seen this P before. It is a projection. It is the projection to the one dimensional space:

$$\left\{ \begin{pmatrix} a \\ a \\ \vdots \\ a \end{pmatrix} : a \in \mathbb{C} \right\}.$$

- Take $Q = (I - P)$.
- Then $B = nP - (P + Q) = (n - 1)P + (-1)Q$

Continuation

- ▶ Observe that P, Q are mutually orthogonal projections whose sum is I . It follows that

$$B = (n - 1)P + (-1)Q$$

is the spectral decomposition of B .

Continuation

- ▶ Observe that P, Q are mutually orthogonal projections whose sum is I . It follows that

$$B = (n - 1)P + (-1)Q$$

is the spectral decomposition of B .

- ▶ So the eigenvalues of B are $(n - 1)$ with multiplicity 1 and (-1) with multiplicity $(n - 1)$.
- ▶ Moreover, $B^m = (n - 1)^m P + (-1)^m Q$ for all $m \geq 0$.

Continuation

- ▶ Observe that P, Q are mutually orthogonal projections whose sum is I . It follows that

$$B = (n - 1)P + (-1)Q$$

is the spectral decomposition of B .

- ▶ So the eigenvalues of B are $(n - 1)$ with multiplicity 1 and (-1) with multiplicity $(n - 1)$.
- ▶ Moreover, $B^m = (n - 1)^m P + (-1)^m Q$ for all $m \geq 0$.
- ▶ Use this to compute the number of paths in the complete graph and also compute it directly by considering the graph.

Continuation

- ▶ Observe that P, Q are mutually orthogonal projections whose sum is I . It follows that

$$B = (n - 1)P + (-1)Q$$

is the spectral decomposition of B .

- ▶ So the eigenvalues of B are $(n - 1)$ with multiplicity 1 and (-1) with multiplicity $(n - 1)$.
- ▶ Moreover, $B^m = (n - 1)^m P + (-1)^m Q$ for all $m \geq 0$.
- ▶ Use this to compute the number of paths in the complete graph and also compute it directly by considering the graph.
- ▶ **END OF LECTURE 24.**