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Lecture 24: Polynomial spectral mapping theorem

> We recall different versions of the spectral theorem.



Spectral theorem (Version -I)

» Theorem 20.7 (Spectral Theorem-1): Let A be a complex

matrix. Then there exists a unitary matrix U and a diagonal
matrix D such that

A= UDU*

if and only if A is normal.



Spectral theorem (Version -I)

» Theorem 20.7 (Spectral Theorem-1): Let A be a complex
matrix. Then there exists a unitary matrix U and a diagonal
matrix D such that

A= UDU*

if and only if A is normal.
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diagonalizable.



Spectral theorem (Version -I)

» Theorem 20.7 (Spectral Theorem-1): Let A be a complex
matrix. Then there exists a unitary matrix U and a diagonal
matrix D such that

A= UDU*

if and only if A is normal.

» The theorem tells us that a matrix is diagonalizable through a
unitary iff it is normal. In particular, every normal matrix is
diagonalizable.

> Now we will present this Theorem in a different way.



Spectral theorem (Version -I)

» Theorem 20.7 (Spectral Theorem-1): Let A be a complex
matrix. Then there exists a unitary matrix U and a diagonal
matrix D such that

A= UDU*

if and only if A is normal.

» The theorem tells us that a matrix is diagonalizable through a
unitary iff it is normal. In particular, every normal matrix is
diagonalizable.

> Now we will present this Theorem in a different way.

» Consider the set up as above. Let a1, as, ..., ax be the
distinct eigenvalues of A.



Spectral theorem (Version -I)

» Theorem 20.7 (Spectral Theorem-1): Let A be a complex
matrix. Then there exists a unitary matrix U and a diagonal
matrix D such that

A= UDU*

if and only if A is normal.

» The theorem tells us that a matrix is diagonalizable through a
unitary iff it is normal. In particular, every normal matrix is
diagonalizable.

> Now we will present this Theorem in a different way.

» Consider the set up as above. Let a1, as, ..., ax be the
distinct eigenvalues of A.

» Recall that the diagonal entries of D are the eigenvalues of A,
as the characteristic polynomial of A and D are same.
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» This means that every diagonal entry of D is one of the a;'s.
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» This means that every diagonal entry of D is one of the a;'s.

» Suppose that a; appears n; times in the diagonal with 1 < n;
and ny +ny+---+ng=n.

> Without loss of generality, we may assume that repeated
entries are clubbed together, that is, the diagonal entries of D
are equal to

(a1, a1,...,a1,a,a,...a2,a3,33,...,ak, ak)

where a; appears n; times.
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This means that every diagonal entry of D is one of the a;’s.
Suppose that aj appears n; times in the diagonal with 1 < n;
and ny +ny+---+ng=n.

Without loss of generality, we may assume that repeated
entries are clubbed together, that is, the diagonal entries of D
are equal to

(a1, a1,...,a1,a,a,...a2,a3,33,...,ak, ak)

where a;j appears n; times.
If I,,J. denotes the identity matrix of size n; x n;, the matrix D
can be written as:

(aly, O 0 ... 0
0 aly O 0
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» We may then re-write D as D = a1Q1 + ax @2 + - - - + ax Qx
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» We may then re-write D as D = a1Q1 + ax @2 + - - - + ax Qx

> where,
In, O 0 0 0 0
Q= ° 0 , Q2 = ° /’.12 ° ;
0 0 0 0 0 0

» and so on up to

Qk =
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» We may then re-write D as D = a1Q1 + ax @2 + - - - + ax Qx

» where,
In, O 0 0 0 0
Q= ° 0 , Q2 = ° /’.12 ° ;
0 0 0 0 0 0

0 0 0
0 0 0

Q=|. |
00 ... I

» Clearly Q1, @2, ..., Qx are projections, Q;Q; =0, fori#j
(they are mutually orthogonal) and @ + @2 + -+ Qx = /.
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» Now take P; = UQ;U*,1 <j < k.



Continuation

» Now take P; = UQ;U*,1 <j < k.

» Then we have

A = UDU*

U(a1@Q1 + a2@2 + - - + ax Q) U*
31UQ1U*+22UQ2U*+"‘+akUQkU*
= a1P1+aPo+ -+ akPx.
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» Now take P; = UQ;U*,1 <j < k.
» Then we have
A = UDU*
= U(a1Qr +a2@2+ -+ ax Q) U*
= g UQU" + aaUQU* 4 - - - 4+ 3, UQ U*
= a1P1+aPo+ -+ akPx.

» From P; = UQ;U*,1 < j < k, it is clear that Py, Py, ..., Pk
are projections such that P;P; = 0 for i # j and

P1+P2—|---~—|—szl.



Spectral Theorem -I|

» We have now proved the following Theorem.
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» We have now proved the following Theorem.

» Theorem 23.1 (Spectral Theorem -Il): Let A be a normal
matrix and let a1, ap, ..., ax be the distinct eigenvalues of A.
Then there exist mutually orthogonal projections
Pi1,Ps, ..., Py, such that

I = Pi+Po+--+ Py
A = aiP1+aPy+ -+ acPk.



Orthogonal Direct sums

» Definition 23.2: Suppose My, My, ..., My are mutually
orthogonal subspaces of a finite dimensional inner product
space V such that every vector x in V decomposes uniquely as

X=y1+y2+-+ Yk

where y; € M;, 1 < j < k, then V is said to be an orthogonal
direct sum of My, Mo, ... M.
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Orthogonal Direct sums

» Definition 23.2: Suppose My, My, ..., My are mutually
orthogonal subspaces of a finite dimensional inner product
space V such that every vector x in V decomposes uniquely as

X=y1+y2+-+ Yk
where y; € M;, 1 < j < k, then V is said to be an orthogonal

direct sum of My, Mo, ... M.
» (Notation) Sometimes this is denoted by

X=y1Dy2 D"+ D yk.

We may also write V=M & Mo & --- ® M.
» Note that:
k

MOy D Oy, 21D22D - D z) :Z(yj,2j>.
Jj=1
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» Now in Spectral theorem-Il, taking
M; = P(C") = {Pjx : x € C"}, we see that C" is a direct sum
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» Now in Spectral theorem-Il, taking
M; = P(C") = {Pjx : x € C"}, we see that C" is a direct sum
of Ml, Mz, N Mk.

» That is, every vector x in C" decomposes uniquely as
X:(P1+P2+~-+Pk)X: Pix + Pox + - -+ + Pyx with
PJ'X € Mj.

> We also note that

Ax = (a1Pi+axPo+- - -+akPi)x = a1 Pix+axPox+- - -4ay Pix

is the unique decomposition of Ax.
» What is this subspace M; = P;(C")?
» Exercise 23.3: Show that
M; ={y e C": Ay = ajy}.

» In other words, M, is the eigenspace of A with respect to
eigenvalue a;.
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» In other words, we have proved the following statement:
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» In other words, we have proved the following statement:

» Theorem 23.4 (Spectral theorem -1l1): Let A be a normal
matrix. Then the eigenspaces of distinct eigenvalues of A are
mutually orthogonal and C” is their direct sum.
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» In other words, we have proved the following statement:

» Theorem 23.4 (Spectral theorem -1l1): Let A be a normal
matrix. Then the eigenspaces of distinct eigenvalues of A are
mutually orthogonal and C” is their direct sum.

» Clearly given the normal matrix A, the decomposition of C”
as in this theorem is uniquely determined and so the
corresponding projections are also uniquely determined. This
also shows that the decomposition of A as in Spectral
Theorem -II:

A=a1Pi1+aPo+ -+ aP, =P+ Po+---+ Py

where Py, P, ..., P, are mutually orthogonal projections is
unique up to permutation.
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» Recall that in Spectral Theorem -I, we had
A= UDU*

where U is a unitary and D is diagonal. Here D is unique up
to permutation of the diagonal entries.
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Non-uniqueness in diagonalization

» Recall that in Spectral Theorem -I, we had
A= UDU*

where U is a unitary and D is diagonal. Here D is unique up
to permutation of the diagonal entries.

» However, U is not unique. We can always replace U by zU
where |z| = 1. Then zU is also a unitary and
A= (zU)D(zU)*.

» Is U unique up to multiplication by scalar when D is fixed?

» Ans: No. If A=, then A= UIU* for any unitary U. Hence
U is not unique even up to scalar.
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» Theorem 24.1: Let A be an n X n matrix and let di, db, ..., d,
be the eigenvalues of A. Then for any complex polynomial g,
the eigenvalues of g(A) are q(d1), q(d2), ..., q(dn).
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Polynomial spectral mapping theorem

» Theorem 24.1: Let A be an n X n matrix and let di, db, ..., d,

be the eigenvalues of A. Then for any complex polynomial g,
the eigenvalues of g(A) are q(d1), q(d2), ..., q(dn).

» Proof: By Schur's upper triangularization theorem there exists
a unitary U and an upper triangular matrix T such that

A=UTU".

» Note that the diagonal entries of T are the eigenvalues of A.

» Without loss of generality, we may denote the diagonal entries
of T as di,do,...,d,.

> Now it is easy to see that the diagonal entries of T2 are
d7,dZ,..., d2.

> More generally, for any k € N the diagonal entries of T are
df,dx, ... dk.



Continuation

» Now suppose g(x) = cp + c1x + c2x? + - -+ + cmx™, then the
diagonal entries of (T) are g(d1), q(d2), ..., q(dn).
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» Now suppose g(x) = cp + c1x + c2x? + - -+ + cmx™, then the
diagonal entries of (T) are g(d1), q(d2), ..., q(dn).
» We have
9(A) = Uqg(T)U*

and q(T) is upper triangular, Therefore g(A) and g(T) have
same characteristic polynomial and hence same set of
eigenvalues.
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» Now suppose g(x) = cp + c1x + c2x? + - -+ + cmx™, then the
diagonal entries of (T) are g(d1), q(d2), ..., q(dn).
> We have
9(A) = Ug(T)U*
and q(T) is upper triangular, Therefore g(A) and g(T) have
same characteristic polynomial and hence same set of
eigenvalues.

» This proves the theorem.
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» Now suppose g(x) = cp + c1x + c2x? + - -+ + cmx™, then the
diagonal entries of (T) are g(d1), q(d2), ..., q(dn).
» We have
9(A) = Uqg(T)U*

and q(T) is upper triangular, Therefore g(A) and g(T) have
same characteristic polynomial and hence same set of
eigenvalues.

» This proves the theorem.

> Exercise 24.2: Find an alternative proof which does not use
upper triangularization.
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» Theorem 24.3: Let A be a normal matrix. Suppose U is a
unitary and D is a diagonal matrix such that

A= UDU".
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Polynomials of normal matrices first version

» Theorem 24.3: Let A be a normal matrix. Suppose U is a
unitary and D is a diagonal matrix such that

A= UDU".
» Then for any complex polynomial g,
q(dl) 0 e 0
0 q d2 cee 0
=gy =u| By
0 0 q(dn)
» Proof: This is clear as
dc 0 ... 0
0 df ... 0

Ak = UD*Ur =U _ uUr,
0 0 ... dk

for every k > 1,

» and / = UIU*. R
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» Theorem 24.4: Let A be a normal matrix. Suppose
A=a1P1+ aPr + -+ axPy,

is the spectral decomposition of A (This means that

ai, ar,...,ay are distinct eigenvalues of A and Py, Po, ...

are mutually orthogonal projections such that
Pi+Py+- -+ Pc=1)



Polynomials of normal matrices -II

» Theorem 24.4: Let A be a normal matrix. Suppose
A=a1P1+ aPr + -+ axPy,

is the spectral decomposition of A (This means that

ai, ar,...,ay are distinct eigenvalues of A and Py, Po, ...

are mutually orthogonal projections such that
Pi+Py+- -+ Pc=1)
» Then for any complex polynomial g,

q(A) = q(a1)P1 + q(a2) P2 + - - - + q(ak) Px.

7Pk



Polynomials of normal matrices -II

» Theorem 24.4: Let A be a normal matrix. Suppose
A=a1P1+ aPr + -+ axPy,

is the spectral decomposition of A (This means that

ai, ar,...,ay are distinct eigenvalues of A and Py, Po, ...

are mutually orthogonal projections such that
Pi+Py+- -+ Pc=1)
» Then for any complex polynomial g,

q(A) = q(a1)P1 + q(a2)P> + - + q(ak) Px.
» Proof: We have

A2 = (a1P1+ aP>+ -+ akPy)(a1P1 + a2Pa +
= AP +a3Py+ -+ aiPy

as P,'PJ' = 6UPJ

7Pk

-+ akPy)



Continuation

» By induction,
AT = al'P1 + a3 P2 + - 4 ag Py

forallm>1landform=0 A=/=P, + P+ -+ Ps.
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» By induction,
AT = al'P1 + a3 P2 + - 4 ag Py

forallm>1landform=0 A =/=P +Py+--+ Py

» Now the result follows by taking linear combinations of the
powers of A. H



Continuation

» By induction,
Am:ai"P1+a§"P2+~~-+aZ’Pk

forallm>1landform=0 A =/=P +Py+--+ Py

» Now the result follows by taking linear combinations of the
powers of A. H

» Remark 24.5: It is to be noted that

q(A) = q(a1)P1 + q(a2) P2 + - - - + q(ak) P«-

may not be the spectral decomposition of g(A) as
q(a1),...,q(ak) may not be distinct.



Functional Calculus

» The last two theorems suggest that for a normal matrix A, if
f is a function defined on o(A) (the spectrum of A) we may

define f(A) by taking

fd) 0 ... O
f(A) = U 0 f(fb) O U
0 0 ... f(dy)

= f(al)Pl + f(az)PQ —+ -+ f(ak)Pk.
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Functional Calculus

» The last two theorems suggest that for a normal matrix A, if
f is a function defined on o(A) (the spectrum of A) we may
define f(A) by taking

fd) 0 ... O
f(A) = U 0 f(fb) O U
0 0 ... f(dy)

= f(al)Pl + f(ag)PQ —+ -+ f(ak)Pk.

» For instance we can define sin(A), cos(A), e etc by this
method.

» At the moment this is only a definition. But it has many
natural properties. Studying this concept not only for matrices
but also for operators (infinite dimensional matrices) is the
subject of Functional Calculus.
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> Recall:
» Example 21.2 and 24.6: Suppose

2 1
A= [ 2 1 ] |
> Then as A is self-adjoint it is normal.
» The characteristic polynomial of A is
p(x) = det(xI —A) = (x—2)*>—1 = x> —4x+3 = (x—3)(x—1).

» Hence the eigenvalues of A are 1 and 3.



Examples

v

Recall:

v

Example 21.2 and 24.6: Suppose
2 1
as[21]

Then as A is self-adjoint it is normal.

vy

The characteristic polynomial of A is

p(x) = det(xI —A) = (x—2)*>—1 = x> —4x+3 = (x—3)(x—1).

v

Hence the eigenvalues of A are 1 and 3.

v

Solving corresponding eigen equations we see that

A(3)=2(1) A(5)=(4)



Continuation

» Normalizing these eigenvectors, and taking them as columns
we get a unitary,

5[t 4]
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» Normalizing these eigenvectors, and taking them as columns
we get a unitary,

5[t 4]

> satisfying,

> Alternatively,
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» We have the spectral decomposition of A as

A=3P;1 +1.P,
where
% 11
( 73 (3 %)

N[N =

N=N| =



Continuation

» We have the spectral decomposition of A as

A=3P; +1.P,
where
% 11
n-(5) 0 a)-|
> and

N[N =

N[ =

N|—=

N=N| =

N[
N
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» We have the spectral decomposition of A as

A=3P+1.P,
where
A-( %)% #)-[11]
V2 2 2
> and

B ) (a3
P, = —_ = :[ 2 2]
_1 (ﬁ ﬁ) “11

V2

» Note that P;, P> are mutually orthogonal and P; + P> = 1.
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» Example 24.7: Consider

v= 4]
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» We have seen that U is a unitary. So it must have eigenvalues
on the unit circle.
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» Example 24.7: Consider

1 {1 1
v=3sl1 4]
» We have seen that U is a unitary. So it must have eigenvalues
on the unit circle.

» The characteristic polynomial of U is
1 2
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» Example 24.7: Consider

1 {1 1
v=Ja 1 4]
» We have seen that U is a unitary. So it must have eigenvalues
on the unit circle.

» The characteristic polynomial of U is
1 2
5 =X —1=(x-1)(x+1)

» So the eigenvalues of U are 1 and —1.

» Compute the spectral decomposition of U.
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» Example 24.7: Consider

v

1 {1 1
v=3sl1 4]
We have seen that U is a unitary. So it must have eigenvalues

on the unit circle.

The characteristic polynomial of U is
1 2
5 =X —1=(x-1)(x+1)

So the eigenvalues of U are 1 and —1.
Compute the spectral decomposition of U.

Challenge Question: Every time you diagonalize you get a
unitary. Continue diagonalizing these unitaries. Does the
process terminate or does it become cyclic?
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Another example

» Example 24.8: Let B be the n x n matrix defined by

L [0 ifi=]
Y71 1 otherwise.

» Compute powers of B.

» Note that B is the adjacency matrix of the complete graph
with n-vertices (usually denoted by K,), where any two
distinct vertex is connected by an edge.

» Draw Ki, Ko, K3, Ky
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1 ..
pij = —, VI,_].
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Continuation

» We write B as B = nP — | where P is the matrix with

1 ..
pij = —, VI,_].
n

» We have seen this P before. It is a projection. It is the
projection to the one dimensional space:

a
a

{] . |:a€C}L

> Take Q = (/ — P).
» Then B=nP - (P+ Q)= (n—-1)P+(-1)Q



Continuation

» Observe that P, @ are mutually orthogonal projections whose
sum is /. It follows that

B=(n-1)P+(-1)Q

is the spectral decomposition of B.
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is the spectral decomposition of B.

» So the eigenvalues of B are (n — 1) with multiplicity 1 and
(—1) with multiplicity (n — 1).

» Moreover, B™ = (n—1)"P + (—1)™Q for all m > 0.

» Use this to compute the number of paths in the complete
graph and also compute it directly by considering the graph.



Continuation

» Observe that P, @ are mutually orthogonal projections whose
sum is /. It follows that

B=(n-1)P+(-1)Q

is the spectral decomposition of B.

» So the eigenvalues of B are (n — 1) with multiplicity 1 and
(—1) with multiplicity (n — 1).

» Moreover, B™ = (n—1)"P + (—1)"Q for all m > 0.

» Use this to compute the number of paths in the complete
graph and also compute it directly by considering the graph.

» END OF LECTURE 24.



