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Lecture 25: Hadamard matrices and circulant matrices

I We recall different versions of the spectral theorem.



Spectral theorem (Version -I)

I Theorem 20.7 (Spectral Theorem-I): Let A be a complex
matrix. Then there exists a unitary matrix U and a diagonal
matrix D such that

A = UDU∗

if and only if A is normal.

I The theorem tells us that a matrix is diagonalizable through a
unitary iff it is normal. In particular, every normal matrix is
diagonalizable.

I Now we will present this Theorem in a different way.

I Consider the set up as above. Let a1, a2, . . . , ak be the
distinct eigenvalues of A.

I Recall that the diagonal entries of D are the eigenvalues of A,
as the characteristic polynomial of A and D are same.
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Continuation

I This means that every diagonal entry of D is one of the aj ’s.

I Suppose that aj appears nj times in the diagonal with 1 ≤ nj
and n1 + n2 + · · ·+ nk = n.

I Without loss of generality, we may assume that repeated
entries are clubbed together, that is, the diagonal entries of D
are equal to

(a1, a1, . . . , a1, a2, a2, . . . a2, a3, a3, . . . , ak , ak)

where aj appears nj times.
I If Inj denotes the identity matrix of size nj × nj , the matrix D

can be written as:

D =


a1In1 0 0 . . . 0

0 a2In2 0 . . . 0
0 0 a3In3 . . . 0
...

...
...

. . .
...

0 0 0 . . . ak Ink


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Continuation

I We may then re-write D as D = a1Q1 + a2Q2 + · · ·+ akQk

I where,

Q1 =


In1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ,Q2 =


0 0 . . . 0
0 In2 . . . 0
...

...
. . .

...
0 0 . . . 0

 ,
I and so on up to

Qk =


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . Ink

 .
I Clearly Q1,Q2, . . . ,Qk are projections, QiQj = 0, for i 6= j

(they are mutually orthogonal) and Q1 + Q2 + · · ·+ Qk = I .
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Continuation

I Now take Pj = UQjU
∗, 1 ≤ j ≤ k.

I Then we have

A = UDU∗

= U(a1Q1 + a2Q2 + · · ·+ akQk)U∗

= a1UQ1U
∗ + a2UQ2U

∗ + · · ·+ akUQkU
∗

= a1P1 + a2P2 + · · ·+ akPk .

I From Pj = UQjU
∗, 1 ≤ j ≤ k , it is clear that P1,P2, . . . ,Pk

are projections such that PiPj = 0 for i 6= j and

P1 + P2 + · · ·+ Pk = I .
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Spectral Theorem -II

I We have now proved the following Theorem.

I Theorem 23.1 (Spectral Theorem -II): Let A be a normal
matrix and let a1, a2, . . . , ak be the distinct eigenvalues of A.
Then there exist mutually orthogonal projections
P1,P2, . . . ,Pk , such that

I = P1 + P2 + · · ·+ Pk ;

A = a1P1 + a2P2 + · · ·+ akPk .
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Orthogonal Direct sums

I Definition 23.2: Suppose M1,M2, . . . ,Mk are mutually
orthogonal subspaces of a finite dimensional inner product
space V such that every vector x in V decomposes uniquely as

x = y1 + y2 + · · ·+ yk

where yj ∈ Mj , 1 ≤ j ≤ k , then V is said to be an orthogonal
direct sum of M1,M2, . . . ,Mk .

I (Notation) Sometimes this is denoted by

x = y1 ⊕ y2 ⊕ · · · ⊕ yk .

We may also write V = M1 ⊕M2 ⊕ · · · ⊕Mk .

I Note that:

〈y1 ⊕ y2 ⊕ · · · ⊕ yk , z1 ⊕ z2 ⊕ · · · ⊕ zk〉 =
k∑

j=1

〈yj , zj〉.
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Continuation

I Now in Spectral theorem-II, taking
Mj = P(Cn) = {Pjx : x ∈ Cn}, we see that Cn is a direct sum
of M1,M2, . . . ,Mk .

I That is, every vector x in Cn decomposes uniquely as
x = (P1 + P2 + · · ·+ Pk)x = P1x + P2x + · · ·+ Pkx with
Pjx ∈ Mj .

I We also note that

Ax = (a1P1+a2P2+· · ·+akPk)x = a1P1x+a2P2x+· · ·+akPkx

is the unique decomposition of Ax .
I What is this subspace Mj = Pj(Cn)?
I Exercise 23.3: Show that

Mj = {y ∈ Cn : Ay = ajy}.

I In other words, Mj is the eigenspace of A with respect to
eigenvalue aj .
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Continuation

I In other words, we have proved the following statement:

I Theorem 23.4 (Spectral theorem -III): Let A be a normal
matrix. Then the eigenspaces of distinct eigenvalues of A are
mutually orthogonal and Cn is their direct sum.

I Clearly given the normal matrix A, the decomposition of Cn

as in this theorem is uniquely determined and so the
corresponding projections are also uniquely determined. This
also shows that the decomposition of A as in Spectral
Theorem -II:

A = a1P1 + a2P2 + · · ·+ akPk , I = P1 + P2 + · · ·+ Pk

where P1,P2, . . . ,Pk are mutually orthogonal projections is
unique up to permutation.
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Non-uniqueness in diagonalization

I Recall that in Spectral Theorem -I, we had

A = UDU∗

where U is a unitary and D is diagonal. Here D is unique up
to permutation of the diagonal entries.

I However, U is not unique. We can always replace U by zU
where |z | = 1. Then zU is also a unitary and
A = (zU)D(zU)∗.

I Is U unique up to multiplication by scalar when D is fixed?

I Ans: No. If A = I , then A = UIU∗ for any unitary U. Hence
U is not unique even up to scalar.
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Polynomial spectral mapping theorem

I Theorem 24.1: Let A be an n× n matrix and let d1, d2, . . . , dn
be the eigenvalues of A. Then for any complex polynomial q,
the eigenvalues of q(A) are q(d1), q(d2), . . . , q(dn).

I Proof: By Schur’s upper triangularization theorem there exists
a unitary U and an upper triangular matrix T such that

A = UTU∗.

I Note that the diagonal entries of T are the eigenvalues of A.

I Without loss of generality, we may denote the diagonal entries
of T as d1, d2, . . . , dn.

I Now it is easy to see that the diagonal entries of T 2 are
d2
1 , d

2
2 , . . . , d

2
n .

I More generally, for any k ∈ N the diagonal entries of T k are
dk
1 , d

k
2 , . . . , d

k
n .
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Continuation

I Now suppose q(x) = c0 + c1x + c2x
2 + · · ·+ cmx

m, then the
diagonal entries of q(T ) are q(d1), q(d2), . . . , q(dn).

I We have
q(A) = Uq(T )U∗

and q(T ) is upper triangular, Therefore q(A) and q(T ) have
same characteristic polynomial and hence same set of
eigenvalues.

I This proves the theorem.

I Exercise 24.2: Find an alternative proof which does not use
upper triangularization.
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Polynomials of normal matrices first version

I Theorem 24.3: Let A be a normal matrix. Suppose U is a
unitary and D is a diagonal matrix such that

A = UDU∗.

I Then for any complex polynomial q,

q(A) = Uq(D)U∗ = U


q(d1) 0 . . . 0

0 q(d2) . . . 0
...

...
. . .

...
0 0 . . . q(dn)

U∗.

I Proof: This is clear as

Ak = UDkU∗ = U


dk
1 0 . . . 0
0 dk

2 . . . 0
...

...
. . .

...
0 0 . . . dk

n

U∗,

for every k ≥ 1,
I and I = UIU∗. �
I Here by convention we are taking A0 = I for any matrix A

even if A is 0.
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Polynomials of normal matrices -II

I Theorem 24.4: Let A be a normal matrix. Suppose

A = a1P1 + a2P2 + · · ·+ akPk ,

is the spectral decomposition of A (This means that
a1, a2, . . . , ak are distinct eigenvalues of A and P1,P2, . . . ,Pk

are mutually orthogonal projections such that
P1 + P2 + · · ·+ Pk = I .)

I Then for any complex polynomial q,

q(A) = q(a1)P1 + q(a2)P2 + · · ·+ q(ak)Pk .

I Proof: We have

A2 = (a1P1 + a2P2 + · · ·+ akPk)(a1P1 + a2P2 + · · ·+ akPk)

= a21P1 + a22P2 + · · ·+ a2kPk

as PiPj = δijPj .
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Continuation

I By induction,

Am = am1 P1 + am2 P2 + · · ·+ amk Pk

for all m ≥ 1 and for m = 0, A0 = I = P1 + P2 + · · ·+ Pk .

I Now the result follows by taking linear combinations of the
powers of A. �

I Remark 24.5: It is to be noted that

q(A) = q(a1)P1 + q(a2)P2 + · · ·+ q(ak)Pk .

may not be the spectral decomposition of q(A) as
q(a1), . . . , q(ak) may not be distinct.
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Functional Calculus

I The last two theorems suggest that for a normal matrix A, if
f is a function defined on σ(A) (the spectrum of A) we may
define f (A) by taking

f (A) := U


f (d1) 0 . . . 0

0 f (d2) . . . 0
...

...
. . .

...
0 0 . . . f (dn)

U∗

= f (a1)P1 + f (a2)P2 + · · ·+ f (ak)Pk .

I For instance we can define sin(A), cos(A), eA etc by this
method.

I At the moment this is only a definition. But it has many
natural properties. Studying this concept not only for matrices
but also for operators (infinite dimensional matrices) is the
subject of Functional Calculus.
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Hadamard matrices

I Definition 25.1: A square matrix is said to be a Hadamard
matrix if every entry of it is ±1 and its rows are mutually
orthogonal.

I Example 25.2: The matrices H1 = [1] and

H2 =

[
1 1
1 −1

]
are Hadamard matrices.

I Note that if an n × n matrix H is a Hadamard matrix, clearly

HHt = nI .

Therefore 1√
n
Ht is the inverse of 1√

n
H. Alternatively, 1√

n
H is

an orthogonal matrix. Consequently we also have HtH = nI .
Therefore columns of H are also mutually orthogonal.
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A construction

I Proposition 25.3: If H is an n × n Hadamard matrix then the
block matrix

K =

[
H H
H −H

]
is a 2n × 2n Hadamard matrix.

I Proof By block matrix multiplication,

KK t =

[
H H
H −H

]
.

[
Ht Ht

Ht −Ht

]
=

[
nI + nI nI − nI
nI − nI nI + nI

]
= 2n

[
I 0
0 I

]
.

I This proves the claim. �



A construction

I Proposition 25.3: If H is an n × n Hadamard matrix then the
block matrix

K =

[
H H
H −H

]
is a 2n × 2n Hadamard matrix.

I Proof By block matrix multiplication,

KK t =

[
H H
H −H

]
.

[
Ht Ht

Ht −Ht

]
=

[
nI + nI nI − nI
nI − nI nI + nI

]
= 2n

[
I 0
0 I

]
.

I This proves the claim. �



A construction

I Proposition 25.3: If H is an n × n Hadamard matrix then the
block matrix

K =

[
H H
H −H

]
is a 2n × 2n Hadamard matrix.

I Proof By block matrix multiplication,

KK t =

[
H H
H −H

]
.

[
Ht Ht

Ht −Ht

]
=

[
nI + nI nI − nI
nI − nI nI + nI

]
= 2n

[
I 0
0 I

]
.

I This proves the claim. �



Continuation

I Applying this construction to H2 defined above we get a 4× 4
Hadamard matrix 

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

I By induction, we can construct a Hadamard matrix of order
2n for every n ≥ 0.
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Multiples of 4

I Proposition 25.4: Suppose H is an n × n Hadamard matrix
with n > 2. Then n is a multiple of 4.

I Proof: Note that entries are ±1 and with n > 1, any two rows
are orthogonal means that n has to be even.

I If H is a Hadamard matrix, and if we replace a row with its
negative, clearly it stays as Hadamard matrix.

I Therefore we may assume that the first entry of every row is
+1. (That is hj1 = +1,∀j .)

I In other words now the first column has only ‘ + 1’s. This
forces that every other column has equal number of positive
and negative entries. In particular n must be even.



Multiples of 4

I Proposition 25.4: Suppose H is an n × n Hadamard matrix
with n > 2. Then n is a multiple of 4.

I Proof: Note that entries are ±1 and with n > 1, any two rows
are orthogonal means that n has to be even.

I If H is a Hadamard matrix, and if we replace a row with its
negative, clearly it stays as Hadamard matrix.

I Therefore we may assume that the first entry of every row is
+1. (That is hj1 = +1,∀j .)

I In other words now the first column has only ‘ + 1’s. This
forces that every other column has equal number of positive
and negative entries. In particular n must be even.



Multiples of 4

I Proposition 25.4: Suppose H is an n × n Hadamard matrix
with n > 2. Then n is a multiple of 4.

I Proof: Note that entries are ±1 and with n > 1, any two rows
are orthogonal means that n has to be even.

I If H is a Hadamard matrix, and if we replace a row with its
negative, clearly it stays as Hadamard matrix.

I Therefore we may assume that the first entry of every row is
+1. (That is hj1 = +1,∀j .)

I In other words now the first column has only ‘ + 1’s. This
forces that every other column has equal number of positive
and negative entries. In particular n must be even.



Multiples of 4

I Proposition 25.4: Suppose H is an n × n Hadamard matrix
with n > 2. Then n is a multiple of 4.

I Proof: Note that entries are ±1 and with n > 1, any two rows
are orthogonal means that n has to be even.

I If H is a Hadamard matrix, and if we replace a row with its
negative, clearly it stays as Hadamard matrix.

I Therefore we may assume that the first entry of every row is
+1. (That is hj1 = +1, ∀j .)

I In other words now the first column has only ‘ + 1’s. This
forces that every other column has equal number of positive
and negative entries. In particular n must be even.



Multiples of 4

I Proposition 25.4: Suppose H is an n × n Hadamard matrix
with n > 2. Then n is a multiple of 4.

I Proof: Note that entries are ±1 and with n > 1, any two rows
are orthogonal means that n has to be even.

I If H is a Hadamard matrix, and if we replace a row with its
negative, clearly it stays as Hadamard matrix.

I Therefore we may assume that the first entry of every row is
+1. (That is hj1 = +1, ∀j .)

I In other words now the first column has only ‘ + 1’s. This
forces that every other column has equal number of positive
and negative entries. In particular n must be even.



Continuation

I Take n = 2k. So that every column except the first one has
exactly k positive signs and k negative signs.

I If H is a Hadamard matrix and if we permute the rows it
would stay as a Hadamard matrix. So we may assume that
first k entries of second column are positive and the next k
are negative. That is:

hj2 =

{
+1 if 1 ≤ j ≤ k ;
−1 if (k + 1) ≤ j ≤ 2k.

I Since n > 2, and n is even we can consider third and fourth
columns of H.
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Continuation

I Suppose among the first k entries of the third column r
entries are positive and (k − r) are negative and among the
remaining k entries s are positive and (k − s) are negative.

I Since the total number of positive entries in a column has to
be k , we get r + s = k .
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Continuation

I Orthogonality of second and third column shows that
hj2.hj3 = +1 at k many j ’s.

I Counting the positions where both the entry of second and
third column have same sign we get r + (k − s) = k or
equivalently r = s.

I Then k = r + s = 2r is even.

I Consequently n = 2k is a multiple of 4.
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Hadamard’s Conjecture

I Hadamard’s Conjecture: There exists a Hadamard matrix of
order 4k for every natural number k .

I The conjecture is still open.

I As per Wikipedia currently 668 is the smallest number for
which we don’t know the existence of a Hadamard matrix.
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Complex Hadamard matrices

I Definition 25.5: A square matrix A = [aij ] is said to be a
complex Hadamard matrix if its rows are orthogonal and
|aij | = 1 for all i , j .

I If A is a complex Hadamard matrix of order n × n, then

AA∗ = A∗A = nI .

I In the following Example we find it convenient to index the
rows and columns of the matrix from 0 to (n− 1) instead of 1
to n.

I Example 25.6: For n ≥ 1, consider the matrix
W = [wjk ]0≤j ,k≤(n−1) defined by

wjk = e
2πijk
n .

Then W is a complex Hadamard matrix (Prove it.)
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Finite Fourier transform

I This matrix W of Example 25.6 is known as the Finite Fourier
Transform matrix or Discrete Fourier Transform matrix of
order n and it appears in various contexts.

I It has several practical applications.

I For instance, for n = 3 we have

W =

 1 1 1
1 ω ω2

1 ω2 ω

 ,
where ω = e

2πi
3 .
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Circulant matrices

I Definition 25.6: Fo n ≥ 2, an n × n matrix C is said to be a
circulant matrix if

C =


c0 cn−1 cn−2 . . . c1
c1 c0 cn−1 . . . c2
c2 c1 c0 . . . c3
...

...
...

. . .
...

cn−1 cn−2 cn−3 . . . c0


for some c0, c1, . . . , cn−1 ∈ C.

I Suppose A is as above. Consider the matrix

S =


0 0 0 . . . 1
1 0 0 . . . 0
0 1 0 . . . 0
...
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...

. . .
...

0 0 0 . . . 0

 .
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Continuation

I Then it is easily seen that

C = c0 + c1S + c2S
2 + · · ·+ cn−1S

n−1.

I So C is a polynomial in S .

I Note that S is a permutation matrix and in particular it is a
unitary.
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Continuation

I The characteristic polynomial of S is

p(x) = xn − 1.

I Therefore the eigenvalues of S are the n-th roots of unity:

σ(S) = {e
2πij
n : 0 ≤ j ≤ (n − 1)}.

I Taking ω = e
2πi
n . σ(S) = {1, ω, ω2, ωn−1}.

I Let D be the diagonal matrix with diagonal entries
1, ω, . . . ,wn−1.

I So we have djk = δjkω
j , 0 ≤ j , k ≤ (n − 1).
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Continuation

I Note that on indexing the rows and columns of S from 0 to
(n − 1), we have

skl =

{
1 if k = (l + 1)
0 otherwise

I Here 0 is taken as (n − 1) + 1 (The addition is modulo n).
I Let W be the finite Fourier transform matrix of order n.
I Then

(WS)jl =
n−1∑
k=0

ωjk .skl = ωj(l+1).

I Also

(DW )jl =
n−1∑
k=0

djkω
kl = ωj .ωjl = ωj(l+1)

I As W ∗W = nI , 1√
n

is a unitary. Therefore 1√
n
WS = D. 1√

n
W ,

or S = 1
nW

∗DW is the diagonalization of S .
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Continuation

I Recall that the Circulant matrix

C = c0 + c1S + · · ·+ cn−1S
n−1.

I Consequently the circulant matrix C = 1
nW

∗q(D)W . where
q(x) = c0 + c1x + · · ·+ cn−1x

n−1.

I In particular, the spectrum of C is given by

{c0 + c1ω
k + c2ω

2k + · · ·+ cn−1ω
(n−1)k : 0 ≤ k ≤ (n − 1)}.

I END OF LECTURE 25.
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