

LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 25: Hadamard matrices and circulant matrices

- ▶ We recall different versions of the spectral theorem.

Spectral theorem (Version -I)

- **Theorem 20.7 (Spectral Theorem-I):** Let A be a complex matrix. Then there exists a unitary matrix U and a diagonal matrix D such that

$$A = UDU^*$$

if and only if A is normal.

Spectral theorem (Version -I)

- **Theorem 20.7 (Spectral Theorem-I):** Let A be a complex matrix. Then there exists a unitary matrix U and a diagonal matrix D such that

$$A = UDU^*$$

if and only if A is normal.

- The theorem tells us that a matrix is diagonalizable through a unitary iff it is normal. In particular, every normal matrix is diagonalizable.

Spectral theorem (Version -I)

- **Theorem 20.7 (Spectral Theorem-I):** Let A be a complex matrix. Then there exists a unitary matrix U and a diagonal matrix D such that

$$A = UDU^*$$

if and only if A is normal.

- The theorem tells us that a matrix is diagonalizable through a unitary iff it is normal. In particular, every normal matrix is diagonalizable.
- Now we will present this Theorem in a different way.

Spectral theorem (Version -I)

- **Theorem 20.7 (Spectral Theorem-I):** Let A be a complex matrix. Then there exists a unitary matrix U and a diagonal matrix D such that

$$A = UDU^*$$

if and only if A is normal.

- The theorem tells us that a matrix is diagonalizable through a unitary iff it is normal. In particular, every normal matrix is diagonalizable.
- Now we will present this Theorem in a different way.
- Consider the set up as above. Let a_1, a_2, \dots, a_k be the distinct eigenvalues of A .

Spectral theorem (Version -I)

- **Theorem 20.7 (Spectral Theorem-I):** Let A be a complex matrix. Then there exists a unitary matrix U and a diagonal matrix D such that

$$A = UDU^*$$

if and only if A is normal.

- The theorem tells us that a matrix is diagonalizable through a unitary iff it is normal. In particular, every normal matrix is diagonalizable.
- Now we will present this Theorem in a different way.
- Consider the set up as above. Let a_1, a_2, \dots, a_k be the distinct eigenvalues of A .
- Recall that the diagonal entries of D are the eigenvalues of A , as the characteristic polynomial of A and D are same.

Continuation

- ▶ This means that every diagonal entry of D is one of the a_j 's.

Continuation

- ▶ This means that every diagonal entry of D is one of the a_j 's.
- ▶ Suppose that a_j appears n_j times in the diagonal with $1 \leq n_j$ and $n_1 + n_2 + \cdots + n_k = n$.

Continuation

- ▶ This means that every diagonal entry of D is one of the a_j 's.
- ▶ Suppose that a_j appears n_j times in the diagonal with $1 \leq n_j$ and $n_1 + n_2 + \cdots + n_k = n$.
- ▶ Without loss of generality, we may assume that repeated entries are clubbed together, that is, the diagonal entries of D are equal to

$$(a_1, a_1, \dots, a_1, a_2, a_2, \dots, a_2, a_3, a_3, \dots, a_k, a_k)$$

where a_j appears n_j times.

Continuation

- ▶ This means that every diagonal entry of D is one of the a_j 's.
- ▶ Suppose that a_j appears n_j times in the diagonal with $1 \leq n_j$ and $n_1 + n_2 + \dots + n_k = n$.
- ▶ Without loss of generality, we may assume that repeated entries are clubbed together, that is, the diagonal entries of D are equal to

$$(a_1, a_1, \dots, a_1, a_2, a_2, \dots, a_2, a_3, a_3, \dots, a_k, a_k)$$

where a_j appears n_j times.

- ▶ If I_{n_j} denotes the identity matrix of size $n_j \times n_j$, the matrix D can be written as:

$$D = \begin{bmatrix} a_1 I_{n_1} & 0 & 0 & \dots & 0 \\ 0 & a_2 I_{n_2} & 0 & \dots & 0 \\ 0 & 0 & a_3 I_{n_3} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_k I_{n_k} \end{bmatrix}$$

Continuation

- We may then re-write D as $D = a_1 Q_1 + a_2 Q_2 + \cdots + a_k Q_k$

Continuation

- ▶ We may then re-write D as $D = a_1 Q_1 + a_2 Q_2 + \cdots + a_k Q_k$
- ▶ where,

$$Q_1 = \begin{bmatrix} I_{n_1} & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}, Q_2 = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & I_{n_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix},$$

Continuation

- ▶ We may then re-write D as $D = a_1 Q_1 + a_2 Q_2 + \cdots + a_k Q_k$
- ▶ where,

$$Q_1 = \begin{bmatrix} I_{n_1} & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}, Q_2 = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & I_{n_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix},$$

- ▶ and so on up to

$$Q_k = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & I_{n_k} \end{bmatrix}.$$

Continuation

- ▶ We may then re-write D as $D = a_1 Q_1 + a_2 Q_2 + \cdots + a_k Q_k$
- ▶ where,

$$Q_1 = \begin{bmatrix} I_{n_1} & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}, Q_2 = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & I_{n_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix},$$

- ▶ and so on up to

$$Q_k = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & I_{n_k} \end{bmatrix}.$$

- ▶ Clearly Q_1, Q_2, \dots, Q_k are projections, $Q_i Q_j = 0$, for $i \neq j$ (they are mutually orthogonal) and $Q_1 + Q_2 + \cdots + Q_k = I$.

Continuation

- ▶ Now take $P_j = UQ_jU^*$, $1 \leq j \leq k$.

Continuation

- ▶ Now take $P_j = UQ_j U^*$, $1 \leq j \leq k$.
- ▶ Then we have

$$\begin{aligned} A &= UDU^* \\ &= U(a_1 Q_1 + a_2 Q_2 + \cdots + a_k Q_k)U^* \\ &= a_1 UQ_1 U^* + a_2 UQ_2 U^* + \cdots + a_k UQ_k U^* \\ &= a_1 P_1 + a_2 P_2 + \cdots + a_k P_k. \end{aligned}$$

Continuation

- ▶ Now take $P_j = UQ_jU^*$, $1 \leq j \leq k$.
- ▶ Then we have

$$\begin{aligned} A &= UDU^* \\ &= U(a_1Q_1 + a_2Q_2 + \cdots + a_kQ_k)U^* \\ &= a_1UQ_1U^* + a_2UQ_2U^* + \cdots + a_kUQ_kU^* \\ &= a_1P_1 + a_2P_2 + \cdots + a_kP_k. \end{aligned}$$

- ▶ From $P_j = UQ_jU^*$, $1 \leq j \leq k$, it is clear that P_1, P_2, \dots, P_k are projections such that $P_iP_j = 0$ for $i \neq j$ and

$$P_1 + P_2 + \cdots + P_k = I.$$

Spectral Theorem -II

- We have now proved the following Theorem.

Spectral Theorem -II

- ▶ We have now proved the following Theorem.
- ▶ **Theorem 23.1 (Spectral Theorem -II):** Let A be a normal matrix and let a_1, a_2, \dots, a_k be the distinct eigenvalues of A . Then there exist mutually orthogonal projections P_1, P_2, \dots, P_k , such that

$$I = P_1 + P_2 + \dots + P_k;$$

$$A = a_1 P_1 + a_2 P_2 + \dots + a_k P_k.$$

Orthogonal Direct sums

- ▶ **Definition 23.2:** Suppose M_1, M_2, \dots, M_k are mutually orthogonal subspaces of a finite dimensional inner product space V such that every vector x in V decomposes uniquely as

$$x = y_1 + y_2 + \cdots + y_k$$

where $y_j \in M_j$, $1 \leq j \leq k$, then V is said to be an **orthogonal direct sum** of M_1, M_2, \dots, M_k .

Orthogonal Direct sums

- ▶ **Definition 23.2:** Suppose M_1, M_2, \dots, M_k are mutually orthogonal subspaces of a finite dimensional inner product space V such that every vector x in V decomposes uniquely as

$$x = y_1 + y_2 + \cdots + y_k$$

where $y_j \in M_j$, $1 \leq j \leq k$, then V is said to be an **orthogonal direct sum** of M_1, M_2, \dots, M_k .

- ▶ (Notation) Sometimes this is denoted by

$$x = y_1 \oplus y_2 \oplus \cdots \oplus y_k.$$

We may also write $V = M_1 \oplus M_2 \oplus \cdots \oplus M_k$.

Orthogonal Direct sums

- ▶ **Definition 23.2:** Suppose M_1, M_2, \dots, M_k are mutually orthogonal subspaces of a finite dimensional inner product space V such that every vector x in V decomposes uniquely as

$$x = y_1 + y_2 + \cdots + y_k$$

where $y_j \in M_j$, $1 \leq j \leq k$, then V is said to be an **orthogonal direct sum** of M_1, M_2, \dots, M_k .

- ▶ (Notation) Sometimes this is denoted by

$$x = y_1 \oplus y_2 \oplus \cdots \oplus y_k.$$

We may also write $V = M_1 \oplus M_2 \oplus \cdots \oplus M_k$.

- ▶ Note that:

$$\langle y_1 \oplus y_2 \oplus \cdots \oplus y_k, z_1 \oplus z_2 \oplus \cdots \oplus z_k \rangle = \sum_{j=1}^k \langle y_j, z_j \rangle.$$

Continuation

- ▶ Now in Spectral theorem-II, taking $M_j = P(\mathbb{C}^n) = \{P_j x : x \in \mathbb{C}^n\}$, we see that \mathbb{C}^n is a direct sum of M_1, M_2, \dots, M_k .

Continuation

- ▶ Now in Spectral theorem-II, taking $M_j = P(\mathbb{C}^n) = \{P_j x : x \in \mathbb{C}^n\}$, we see that \mathbb{C}^n is a direct sum of M_1, M_2, \dots, M_k .
- ▶ That is, every vector x in \mathbb{C}^n decomposes uniquely as $x = (P_1 + P_2 + \dots + P_k)x = P_1x + P_2x + \dots + P_kx$ with $P_jx \in M_j$.

Continuation

- ▶ Now in Spectral theorem-II, taking $M_j = P(\mathbb{C}^n) = \{P_j x : x \in \mathbb{C}^n\}$, we see that \mathbb{C}^n is a direct sum of M_1, M_2, \dots, M_k .
- ▶ That is, every vector x in \mathbb{C}^n decomposes uniquely as $x = (P_1 + P_2 + \dots + P_k)x = P_1x + P_2x + \dots + P_kx$ with $P_jx \in M_j$.
- ▶ We also note that

$$Ax = (a_1 P_1 + a_2 P_2 + \dots + a_k P_k)x = a_1 P_1 x + a_2 P_2 x + \dots + a_k P_k x$$

is the unique decomposition of Ax .

Continuation

- ▶ Now in Spectral theorem-II, taking $M_j = P_j(\mathbb{C}^n) = \{P_jx : x \in \mathbb{C}^n\}$, we see that \mathbb{C}^n is a direct sum of M_1, M_2, \dots, M_k .
- ▶ That is, every vector x in \mathbb{C}^n decomposes uniquely as $x = (P_1 + P_2 + \dots + P_k)x = P_1x + P_2x + \dots + P_kx$ with $P_jx \in M_j$.
- ▶ We also note that

$$Ax = (a_1P_1 + a_2P_2 + \dots + a_kP_k)x = a_1P_1x + a_2P_2x + \dots + a_kP_kx$$

is the unique decomposition of Ax .

- ▶ What is this subspace $M_j = P_j(\mathbb{C}^n)$?

Continuation

- ▶ Now in Spectral theorem-II, taking $M_j = P_j(\mathbb{C}^n) = \{P_jx : x \in \mathbb{C}^n\}$, we see that \mathbb{C}^n is a direct sum of M_1, M_2, \dots, M_k .
- ▶ That is, every vector x in \mathbb{C}^n decomposes uniquely as $x = (P_1 + P_2 + \dots + P_k)x = P_1x + P_2x + \dots + P_kx$ with $P_jx \in M_j$.
- ▶ We also note that

$$Ax = (a_1P_1 + a_2P_2 + \dots + a_kP_k)x = a_1P_1x + a_2P_2x + \dots + a_kP_kx$$

is the unique decomposition of Ax .

- ▶ What is this subspace $M_j = P_j(\mathbb{C}^n)$?
- ▶ **Exercise 23.3:** Show that

$$M_j = \{y \in \mathbb{C}^n : Ay = a_j y\}.$$

Continuation

- ▶ Now in Spectral theorem-II, taking $M_j = P_j(\mathbb{C}^n) = \{P_jx : x \in \mathbb{C}^n\}$, we see that \mathbb{C}^n is a direct sum of M_1, M_2, \dots, M_k .
- ▶ That is, every vector x in \mathbb{C}^n decomposes uniquely as $x = (P_1 + P_2 + \dots + P_k)x = P_1x + P_2x + \dots + P_kx$ with $P_jx \in M_j$.
- ▶ We also note that

$$Ax = (a_1P_1 + a_2P_2 + \dots + a_kP_k)x = a_1P_1x + a_2P_2x + \dots + a_kP_kx$$

is the unique decomposition of Ax .

- ▶ What is this subspace $M_j = P_j(\mathbb{C}^n)$?
- ▶ **Exercise 23.3:** Show that

$$M_j = \{y \in \mathbb{C}^n : Ay = a_jy\}.$$

- ▶ In other words, M_j is the eigenspace of A with respect to eigenvalue a_j .

Continuation

- ▶ In other words, we have proved the following statement:

Continuation

- ▶ In other words, we have proved the following statement:
- ▶ **Theorem 23.4 (Spectral theorem -III):** Let A be a normal matrix. Then the eigenspaces of distinct eigenvalues of A are mutually orthogonal and \mathbb{C}^n is their direct sum.

Continuation

- ▶ In other words, we have proved the following statement:
- ▶ **Theorem 23.4 (Spectral theorem -III):** Let A be a normal matrix. Then the eigenspaces of distinct eigenvalues of A are mutually orthogonal and \mathbb{C}^n is their direct sum.
- ▶ Clearly given the normal matrix A , the decomposition of \mathbb{C}^n as in this theorem is uniquely determined and so the corresponding projections are also uniquely determined. This also shows that the decomposition of A as in Spectral Theorem -II:

$$A = a_1 P_1 + a_2 P_2 + \cdots + a_k P_k, I = P_1 + P_2 + \cdots + P_k$$

where P_1, P_2, \dots, P_k are mutually orthogonal projections is unique up to permutation.

Non-uniqueness in diagonalization

- ▶ Recall that in Spectral Theorem -I, we had

$$A = UDU^*$$

where U is a unitary and D is diagonal. Here D is unique up to permutation of the diagonal entries.

Non-uniqueness in diagonalization

- ▶ Recall that in Spectral Theorem -I, we had

$$A = UDU^*$$

where U is a unitary and D is diagonal. Here D is unique up to permutation of the diagonal entries.

- ▶ However, U is not unique. We can always replace U by zU where $|z| = 1$. Then zU is also a unitary and $A = (zU)D(zU)^*$.

Non-uniqueness in diagonalization

- ▶ Recall that in Spectral Theorem -I, we had

$$A = UDU^*$$

where U is a unitary and D is diagonal. Here D is unique up to permutation of the diagonal entries.

- ▶ However, U is not unique. We can always replace U by zU where $|z| = 1$. Then zU is also a unitary and $A = (zU)D(zU)^*$.
- ▶ Is U unique up to multiplication by scalar when D is fixed?

Non-uniqueness in diagonalization

- ▶ Recall that in Spectral Theorem -I, we had

$$A = UDU^*$$

where U is a unitary and D is diagonal. Here D is unique up to permutation of the diagonal entries.

- ▶ However, U is not unique. We can always replace U by zU where $|z| = 1$. Then zU is also a unitary and $A = (zU)D(zU)^*$.
- ▶ Is U unique up to multiplication by scalar when D is fixed?
- ▶ Ans: No. If $A = I$, then $A = UIU^*$ for any unitary U . Hence U is not unique even up to scalar.

Polynomial spectral mapping theorem

- **Theorem 24.1:** Let A be an $n \times n$ matrix and let d_1, d_2, \dots, d_n be the eigenvalues of A . Then for any complex polynomial q , the eigenvalues of $q(A)$ are $q(d_1), q(d_2), \dots, q(d_n)$.

Polynomial spectral mapping theorem

- ▶ **Theorem 24.1:** Let A be an $n \times n$ matrix and let d_1, d_2, \dots, d_n be the eigenvalues of A . Then for any complex polynomial q , the eigenvalues of $q(A)$ are $q(d_1), q(d_2), \dots, q(d_n)$.
- ▶ **Proof:** By Schur's upper triangularization theorem there exists a unitary U and an upper triangular matrix T such that

$$A = UTU^*.$$

Polynomial spectral mapping theorem

- ▶ **Theorem 24.1:** Let A be an $n \times n$ matrix and let d_1, d_2, \dots, d_n be the eigenvalues of A . Then for any complex polynomial q , the eigenvalues of $q(A)$ are $q(d_1), q(d_2), \dots, q(d_n)$.
- ▶ **Proof:** By Schur's upper triangularization theorem there exists a unitary U and an upper triangular matrix T such that

$$A = UTU^*.$$

- ▶ Note that the diagonal entries of T are the eigenvalues of A .

Polynomial spectral mapping theorem

- ▶ **Theorem 24.1:** Let A be an $n \times n$ matrix and let d_1, d_2, \dots, d_n be the eigenvalues of A . Then for any complex polynomial q , the eigenvalues of $q(A)$ are $q(d_1), q(d_2), \dots, q(d_n)$.
- ▶ **Proof:** By Schur's upper triangularization theorem there exists a unitary U and an upper triangular matrix T such that

$$A = UTU^*.$$

- ▶ Note that the diagonal entries of T are the eigenvalues of A .
- ▶ Without loss of generality, we may denote the diagonal entries of T as d_1, d_2, \dots, d_n .

Polynomial spectral mapping theorem

- ▶ **Theorem 24.1:** Let A be an $n \times n$ matrix and let d_1, d_2, \dots, d_n be the eigenvalues of A . Then for any complex polynomial q , the eigenvalues of $q(A)$ are $q(d_1), q(d_2), \dots, q(d_n)$.
- ▶ **Proof:** By Schur's upper triangularization theorem there exists a unitary U and an upper triangular matrix T such that

$$A = UTU^*.$$

- ▶ Note that the diagonal entries of T are the eigenvalues of A .
- ▶ Without loss of generality, we may denote the diagonal entries of T as d_1, d_2, \dots, d_n .
- ▶ Now it is easy to see that the diagonal entries of T^2 are $d_1^2, d_2^2, \dots, d_n^2$.

Polynomial spectral mapping theorem

- ▶ **Theorem 24.1:** Let A be an $n \times n$ matrix and let d_1, d_2, \dots, d_n be the eigenvalues of A . Then for any complex polynomial q , the eigenvalues of $q(A)$ are $q(d_1), q(d_2), \dots, q(d_n)$.
- ▶ **Proof:** By Schur's upper triangularization theorem there exists a unitary U and an upper triangular matrix T such that

$$A = UTU^*.$$

- ▶ Note that the diagonal entries of T are the eigenvalues of A .
- ▶ Without loss of generality, we may denote the diagonal entries of T as d_1, d_2, \dots, d_n .
- ▶ Now it is easy to see that the diagonal entries of T^2 are $d_1^2, d_2^2, \dots, d_n^2$.
- ▶ More generally, for any $k \in \mathbb{N}$ the diagonal entries of T^k are $d_1^k, d_2^k, \dots, d_n^k$.

Continuation

- ▶ Now suppose $q(x) = c_0 + c_1x + c_2x^2 + \cdots + c_mx^m$, then the diagonal entries of $q(T)$ are $q(d_1), q(d_2), \dots, q(d_n)$.

Continuation

- ▶ Now suppose $q(x) = c_0 + c_1x + c_2x^2 + \cdots + c_mx^m$, then the diagonal entries of $q(T)$ are $q(d_1), q(d_2), \dots, q(d_n)$.
- ▶ We have

$$q(A) = Uq(T)U^*$$

and $q(T)$ is upper triangular, Therefore $q(A)$ and $q(T)$ have same characteristic polynomial and hence same set of eigenvalues.

Continuation

- ▶ Now suppose $q(x) = c_0 + c_1x + c_2x^2 + \cdots + c_mx^m$, then the diagonal entries of $q(T)$ are $q(d_1), q(d_2), \dots, q(d_n)$.
- ▶ We have

$$q(A) = Uq(T)U^*$$

and $q(T)$ is upper triangular, Therefore $q(A)$ and $q(T)$ have same characteristic polynomial and hence same set of eigenvalues.

- ▶ This proves the theorem.

Continuation

- ▶ Now suppose $q(x) = c_0 + c_1x + c_2x^2 + \cdots + c_mx^m$, then the diagonal entries of $q(T)$ are $q(d_1), q(d_2), \dots, q(d_n)$.
- ▶ We have

$$q(A) = Uq(T)U^*$$

and $q(T)$ is upper triangular, Therefore $q(A)$ and $q(T)$ have same characteristic polynomial and hence same set of eigenvalues.

- ▶ This proves the theorem.
- ▶ **Exercise 24.2:** Find an alternative proof which does not use upper triangularization.

Polynomials of normal matrices first version

- ▶ **Theorem 24.3:** Let A be a normal matrix. Suppose U is a unitary and D is a diagonal matrix such that

$$A = UDU^*.$$

Polynomials of normal matrices first version

- **Theorem 24.3:** Let A be a normal matrix. Suppose U is a unitary and D is a diagonal matrix such that

$$A = UDU^*.$$

- Then for any complex polynomial q ,

$$q(A) = Uq(D)U^* = U \begin{bmatrix} q(d_1) & 0 & \dots & 0 \\ 0 & q(d_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q(d_n) \end{bmatrix} U^*.$$

Polynomials of normal matrices first version

- **Theorem 24.3:** Let A be a normal matrix. Suppose U is a unitary and D is a diagonal matrix such that

$$A = UDU^*.$$

- Then for any complex polynomial q ,

$$q(A) = Uq(D)U^* = U \begin{bmatrix} q(d_1) & 0 & \dots & 0 \\ 0 & q(d_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q(d_n) \end{bmatrix} U^*.$$

- **Proof:** This is clear as

$$A^k = U D^k U^* = U \begin{bmatrix} d_1^k & 0 & \dots & 0 \\ 0 & d_2^k & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n^k \end{bmatrix} U^*,$$

for every $k \geq 1$,

Polynomials of normal matrices first version

- **Theorem 24.3:** Let A be a normal matrix. Suppose U is a unitary and D is a diagonal matrix such that

$$A = UDU^*.$$

- Then for any complex polynomial q ,

$$q(A) = Uq(D)U^* = U \begin{bmatrix} q(d_1) & 0 & \dots & 0 \\ 0 & q(d_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q(d_n) \end{bmatrix} U^*.$$

- **Proof:** This is clear as

$$A^k = U D^k U^* = U \begin{bmatrix} d_1^k & 0 & \dots & 0 \\ 0 & d_2^k & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n^k \end{bmatrix} U^*,$$

for every $k \geq 1$,

- and $I = UIU^*$. ■

Polynomials of normal matrices first version

- **Theorem 24.3:** Let A be a normal matrix. Suppose U is a unitary and D is a diagonal matrix such that

$$A = UDU^*.$$

- Then for any complex polynomial q ,

$$q(A) = Uq(D)U^* = U \begin{bmatrix} q(d_1) & 0 & \dots & 0 \\ 0 & q(d_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q(d_n) \end{bmatrix} U^*.$$

- **Proof:** This is clear as

$$A^k = U D^k U^* = U \begin{bmatrix} d_1^k & 0 & \dots & 0 \\ 0 & d_2^k & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n^k \end{bmatrix} U^*,$$

for every $k \geq 1$,

- and $I = UIU^*$. ■

Polynomials of normal matrices -II

- Theorem 24.4: Let A be a normal matrix. Suppose

$$A = a_1 P_1 + a_2 P_2 + \cdots + a_k P_k,$$

is the spectral decomposition of A (This means that a_1, a_2, \dots, a_k are distinct eigenvalues of A and P_1, P_2, \dots, P_k are mutually orthogonal projections such that $P_1 + P_2 + \cdots + P_k = I$.)

Polynomials of normal matrices -II

- Theorem 24.4: Let A be a normal matrix. Suppose

$$A = a_1 P_1 + a_2 P_2 + \cdots + a_k P_k,$$

is the spectral decomposition of A (This means that a_1, a_2, \dots, a_k are distinct eigenvalues of A and P_1, P_2, \dots, P_k are mutually orthogonal projections such that $P_1 + P_2 + \cdots + P_k = I$.)

- Then for any complex polynomial q ,

$$q(A) = q(a_1)P_1 + q(a_2)P_2 + \cdots + q(a_k)P_k.$$

Polynomials of normal matrices -II

- **Theorem 24.4:** Let A be a normal matrix. Suppose

$$A = a_1 P_1 + a_2 P_2 + \cdots + a_k P_k,$$

is the spectral decomposition of A (This means that a_1, a_2, \dots, a_k are distinct eigenvalues of A and P_1, P_2, \dots, P_k are mutually orthogonal projections such that $P_1 + P_2 + \cdots + P_k = I$.)

- Then for any complex polynomial q ,

$$q(A) = q(a_1)P_1 + q(a_2)P_2 + \cdots + q(a_k)P_k.$$

- **Proof:** We have

$$\begin{aligned} A^2 &= (a_1 P_1 + a_2 P_2 + \cdots + a_k P_k)(a_1 P_1 + a_2 P_2 + \cdots + a_k P_k) \\ &= a_1^2 P_1 + a_2^2 P_2 + \cdots + a_k^2 P_k \end{aligned}$$

as $P_i P_j = \delta_{ij} P_j$.

Continuation

- ▶ By induction,

$$A^m = a_1^m P_1 + a_2^m P_2 + \cdots + a_k^m P_k$$

for all $m \geq 1$ and for $m = 0$, $A^0 = I = P_1 + P_2 + \cdots + P_k$.

Continuation

- ▶ By induction,

$$A^m = a_1^m P_1 + a_2^m P_2 + \cdots + a_k^m P_k$$

for all $m \geq 1$ and for $m = 0$, $A^0 = I = P_1 + P_2 + \cdots + P_k$.

- ▶ Now the result follows by taking linear combinations of the powers of A . ■

Continuation

- ▶ By induction,

$$A^m = a_1^m P_1 + a_2^m P_2 + \cdots + a_k^m P_k$$

for all $m \geq 1$ and for $m = 0$, $A^0 = I = P_1 + P_2 + \cdots + P_k$.

- ▶ Now the result follows by taking linear combinations of the powers of A . ■
- ▶ **Remark 24.5:** It is to be noted that

$$q(A) = q(a_1)P_1 + q(a_2)P_2 + \cdots + q(a_k)P_k.$$

may not be the spectral decomposition of $q(A)$ as $q(a_1), \dots, q(a_k)$ may not be distinct.

Functional Calculus

- ▶ The last two theorems suggest that for a normal matrix A , if f is a function defined on $\sigma(A)$ (the spectrum of A) we may define $f(A)$ by taking

$$\begin{aligned} f(A) &:= U \begin{bmatrix} f(d_1) & 0 & \dots & 0 \\ 0 & f(d_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & f(d_n) \end{bmatrix} U^* \\ &= f(a_1)P_1 + f(a_2)P_2 + \dots + f(a_k)P_k. \end{aligned}$$

Functional Calculus

- ▶ The last two theorems suggest that for a normal matrix A , if f is a function defined on $\sigma(A)$ (the spectrum of A) we may define $f(A)$ by taking

$$\begin{aligned} f(A) &:= U \begin{bmatrix} f(d_1) & 0 & \dots & 0 \\ 0 & f(d_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & f(d_n) \end{bmatrix} U^* \\ &= f(a_1)P_1 + f(a_2)P_2 + \dots + f(a_k)P_k. \end{aligned}$$

- ▶ For instance we can define $\sin(A)$, $\cos(A)$, e^A etc by this method.

Functional Calculus

- ▶ The last two theorems suggest that for a normal matrix A , if f is a function defined on $\sigma(A)$ (the spectrum of A) we may define $f(A)$ by taking

$$\begin{aligned} f(A) &:= U \begin{bmatrix} f(d_1) & 0 & \dots & 0 \\ 0 & f(d_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & f(d_n) \end{bmatrix} U^* \\ &= f(a_1)P_1 + f(a_2)P_2 + \dots + f(a_k)P_k. \end{aligned}$$

- ▶ For instance we can define $\sin(A)$, $\cos(A)$, e^A etc by this method.
- ▶ At the moment this is only a definition. But it has many natural properties. Studying this concept not only for matrices but also for operators (infinite dimensional matrices) is the subject of Functional Calculus.

Hadamard matrices

- ▶ **Definition 25.1:** A square matrix is said to be a **Hadamard matrix** if every entry of it is ± 1 and its rows are mutually orthogonal.

Hadamard matrices

- ▶ **Definition 25.1:** A square matrix is said to be a **Hadamard matrix** if every entry of it is ± 1 and its rows are mutually orthogonal.
- ▶ **Example 25.2:** The matrices $H_1 = [1]$ and

$$H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

are Hadamard matrices.

Hadamard matrices

- ▶ **Definition 25.1:** A square matrix is said to be a **Hadamard matrix** if every entry of it is ± 1 and its rows are mutually orthogonal.
- ▶ **Example 25.2:** The matrices $H_1 = [1]$ and

$$H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

are Hadamard matrices.

- ▶ Note that if an $n \times n$ matrix H is a Hadamard matrix, clearly

$$HH^t = nI.$$

Therefore $\frac{1}{\sqrt{n}}H^t$ is the inverse of $\frac{1}{\sqrt{n}}H$. Alternatively, $\frac{1}{\sqrt{n}}H$ is an orthogonal matrix. Consequently we also have $H^tH = nI$. Therefore columns of H are also mutually orthogonal.

A construction

- ▶ **Proposition 25.3:** If H is an $n \times n$ Hadamard matrix then the block matrix

$$K = \begin{bmatrix} H & H \\ H & -H \end{bmatrix}$$

is a $2n \times 2n$ Hadamard matrix.

A construction

- ▶ **Proposition 25.3:** If H is an $n \times n$ Hadamard matrix then the block matrix

$$K = \begin{bmatrix} H & H \\ H & -H \end{bmatrix}$$

is a $2n \times 2n$ Hadamard matrix.

- ▶ **Proof** By block matrix multiplication,

$$\begin{aligned} KK^t &= \begin{bmatrix} H & H \\ H & -H \end{bmatrix} \cdot \begin{bmatrix} H^t & H^t \\ H^t & -H^t \end{bmatrix} \\ &= \begin{bmatrix} nI + nI & nI - nI \\ nI - nI & nI + nI \end{bmatrix} \\ &= 2n \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}. \end{aligned}$$

A construction

- ▶ **Proposition 25.3:** If H is an $n \times n$ Hadamard matrix then the block matrix

$$K = \begin{bmatrix} H & H \\ H & -H \end{bmatrix}$$

is a $2n \times 2n$ Hadamard matrix.

- ▶ **Proof** By block matrix multiplication,

$$\begin{aligned} KK^t &= \begin{bmatrix} H & H \\ H & -H \end{bmatrix} \cdot \begin{bmatrix} H^t & H^t \\ H^t & -H^t \end{bmatrix} \\ &= \begin{bmatrix} nI + nI & nI - nI \\ nI - nI & nI + nI \end{bmatrix} \\ &= 2n \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}. \end{aligned}$$

- ▶ This proves the claim. ■

Continuation

- ▶ Applying this construction to H_2 defined above we get a 4×4 Hadamard matrix

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix}.$$

Continuation

- ▶ Applying this construction to H_2 defined above we get a 4×4 Hadamard matrix

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix}.$$

- ▶ By induction, we can construct a Hadamard matrix of order 2^n for every $n \geq 0$.

Multiples of 4

- ▶ **Proposition 25.4:** Suppose H is an $n \times n$ Hadamard matrix with $n > 2$. Then n is a multiple of 4.

Multiples of 4

- ▶ **Proposition 25.4:** Suppose H is an $n \times n$ Hadamard matrix with $n > 2$. Then n is a multiple of 4.
- ▶ **Proof:** Note that entries are ± 1 and with $n > 1$, any two rows are orthogonal means that n has to be even.

Multiples of 4

- ▶ **Proposition 25.4:** Suppose H is an $n \times n$ Hadamard matrix with $n > 2$. Then n is a multiple of 4.
- ▶ **Proof:** Note that entries are ± 1 and with $n > 1$, any two rows are orthogonal means that n has to be even.
- ▶ If H is a Hadamard matrix, and if we replace a row with its negative, clearly it stays as Hadamard matrix.

Multiples of 4

- ▶ **Proposition 25.4:** Suppose H is an $n \times n$ Hadamard matrix with $n > 2$. Then n is a multiple of 4.
- ▶ **Proof:** Note that entries are ± 1 and with $n > 1$, any two rows are orthogonal means that n has to be even.
- ▶ If H is a Hadamard matrix, and if we replace a row with its negative, clearly it stays as Hadamard matrix.
- ▶ Therefore we may assume that the first entry of every row is $+1$. (That is $h_{j1} = +1, \forall j$.)

Multiples of 4

- ▶ **Proposition 25.4:** Suppose H is an $n \times n$ Hadamard matrix with $n > 2$. Then n is a multiple of 4.
- ▶ **Proof:** Note that entries are ± 1 and with $n > 1$, any two rows are orthogonal means that n has to be even.
- ▶ If H is a Hadamard matrix, and if we replace a row with its negative, clearly it stays as Hadamard matrix.
- ▶ Therefore we may assume that the first entry of every row is $+1$. (That is $h_{j1} = +1, \forall j$.)
- ▶ In other words now the first column has only ' $+ 1$'s. This forces that every other column has equal number of positive and negative entries. In particular n must be even.

Continuation

- ▶ Take $n = 2k$. So that every column except the first one has exactly k positive signs and k negative signs.

Continuation

- ▶ Take $n = 2k$. So that every column except the first one has exactly k positive signs and k negative signs.
- ▶ If H is a Hadamard matrix and if we permute the rows it would stay as a Hadamard matrix. So we may assume that first k entries of second column are positive and the next k are negative. That is:

$$h_{j2} = \begin{cases} +1 & \text{if } 1 \leq j \leq k; \\ -1 & \text{if } (k+1) \leq j \leq 2k. \end{cases}$$

Continuation

- ▶ Take $n = 2k$. So that every column except the first one has exactly k positive signs and k negative signs.
- ▶ If H is a Hadamard matrix and if we permute the rows it would stay as a Hadamard matrix. So we may assume that first k entries of second column are positive and the next k are negative. That is:

$$h_{j2} = \begin{cases} +1 & \text{if } 1 \leq j \leq k; \\ -1 & \text{if } (k+1) \leq j \leq 2k. \end{cases}$$

- ▶ Since $n > 2$, and n is even we can consider third and fourth columns of H .

Continuation

- ▶ Suppose among the first k entries of the third column r entries are positive and $(k - r)$ are negative and among the remaining k entries s are positive and $(k - s)$ are negative.

Continuation

- ▶ Suppose among the first k entries of the third column r entries are positive and $(k - r)$ are negative and among the remaining k entries s are positive and $(k - s)$ are negative.
- ▶ Since the total number of positive entries in a column has to be k , we get $r + s = k$.

Continuation

- ▶ Orthogonality of second and third column shows that $h_{j2} \cdot h_{j3} = +1$ at k many j 's.

Continuation

- ▶ Orthogonality of second and third column shows that $h_{j2} \cdot h_{j3} = +1$ at k many j 's.
- ▶ Counting the positions where both the entry of second and third column have same sign we get $r + (k - s) = k$ or equivalently $r = s$.

Continuation

- ▶ Orthogonality of second and third column shows that $h_{j2} \cdot h_{j3} = +1$ at k many j 's.
- ▶ Counting the positions where both the entry of second and third column have same sign we get $r + (k - s) = k$ or equivalently $r = s$.
- ▶ Then $k = r + s = 2r$ is even.

Continuation

- ▶ Orthogonality of second and third column shows that $h_{j2} \cdot h_{j3} = +1$ at k many j 's.
- ▶ Counting the positions where both the entry of second and third column have same sign we get $r + (k - s) = k$ or equivalently $r = s$.
- ▶ Then $k = r + s = 2r$ is even.
- ▶ Consequently $n = 2k$ is a multiple of 4.

Hadamard's Conjecture

- ▶ **Hadamard's Conjecture:** There exists a Hadamard matrix of order $4k$ for every natural number k .

Hadamard's Conjecture

- ▶ **Hadamard's Conjecture:** There exists a Hadamard matrix of order $4k$ for every natural number k .
- ▶ The conjecture is still open.

Hadamard's Conjecture

- ▶ **Hadamard's Conjecture:** There exists a Hadamard matrix of order $4k$ for every natural number k .
- ▶ The conjecture is still open.
- ▶ As per Wikipedia currently 668 is the smallest number for which we don't know the existence of a Hadamard matrix.

Complex Hadamard matrices

- ▶ **Definition 25.5:** A square matrix $A = [a_{ij}]$ is said to be a **complex Hadamard** matrix if its rows are orthogonal and $|a_{ij}| = 1$ for all i, j .

Complex Hadamard matrices

- ▶ **Definition 25.5:** A square matrix $A = [a_{ij}]$ is said to be a **complex Hadamard** matrix if its rows are orthogonal and $|a_{ij}| = 1$ for all i, j .
- ▶ If A is a complex Hadamard matrix of order $n \times n$, then

$$AA^* = A^*A = nl.$$

Complex Hadamard matrices

- ▶ **Definition 25.5:** A square matrix $A = [a_{ij}]$ is said to be a **complex Hadamard** matrix if its rows are orthogonal and $|a_{ij}| = 1$ for all i, j .
- ▶ If A is a complex Hadamard matrix of order $n \times n$, then

$$AA^* = A^*A = nl.$$

- ▶ In the following Example we find it convenient to index the rows and columns of the matrix from 0 to $(n - 1)$ instead of 1 to n .
- ▶ **Example 25.6:** For $n \geq 1$, consider the matrix $W = [w_{jk}]_{0 \leq j, k \leq (n-1)}$ defined by

$$w_{jk} = e^{\frac{2\pi i jk}{n}}.$$

Then W is a complex Hadamard matrix (Prove it.)

Finite Fourier transform

- ▶ This matrix W of Example 25.6 is known as the **Finite Fourier Transform** matrix or Discrete Fourier Transform matrix of order n and it appears in various contexts.

Finite Fourier transform

- ▶ This matrix W of Example 25.6 is known as the **Finite Fourier Transform** matrix or Discrete Fourier Transform matrix of order n and it appears in various contexts.
- ▶ It has several practical applications.

Finite Fourier transform

- ▶ This matrix W of Example 25.6 is known as the **Finite Fourier Transform** matrix or Discrete Fourier Transform matrix of order n and it appears in various contexts.
- ▶ It has several practical applications.
- ▶ For instance, for $n = 3$ we have

$$W = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{bmatrix},$$

where $\omega = e^{\frac{2\pi i}{3}}$.

Circulant matrices

► **Definition 25.6:** For $n \geq 2$, an $n \times n$ matrix C is said to be a **circulant matrix** if

$$C = \begin{bmatrix} c_0 & c_{n-1} & c_{n-2} & \dots & c_1 \\ c_1 & c_0 & c_{n-1} & \dots & c_2 \\ c_2 & c_1 & c_0 & \dots & c_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_{n-1} & c_{n-2} & c_{n-3} & \dots & c_0 \end{bmatrix}$$

for some $c_0, c_1, \dots, c_{n-1} \in \mathbb{C}$.

Circulant matrices

- ▶ **Definition 25.6:** For $n \geq 2$, an $n \times n$ matrix C is said to be a **circulant matrix** if

$$C = \begin{bmatrix} c_0 & c_{n-1} & c_{n-2} & \dots & c_1 \\ c_1 & c_0 & c_{n-1} & \dots & c_2 \\ c_2 & c_1 & c_0 & \dots & c_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_{n-1} & c_{n-2} & c_{n-3} & \dots & c_0 \end{bmatrix}$$

for some $c_0, c_1, \dots, c_{n-1} \in \mathbb{C}$.

- ▶ Suppose A is as above. Consider the matrix

$$S = \begin{bmatrix} 0 & 0 & 0 & \dots & 1 \\ 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix}.$$

Continuation

- ▶ Then it is easily seen that

$$C = c_0 + c_1 S + c_2 S^2 + \cdots + c_{n-1} S^{n-1}.$$

Continuation

- ▶ Then it is easily seen that

$$C = c_0 + c_1 S + c_2 S^2 + \cdots + c_{n-1} S^{n-1}.$$

- ▶ So C is a polynomial in S .

Continuation

- ▶ Then it is easily seen that

$$C = c_0 + c_1 S + c_2 S^2 + \cdots + c_{n-1} S^{n-1}.$$

- ▶ So C is a polynomial in S .
- ▶ Note that S is a permutation matrix and in particular it is a unitary.

Continuation

- ▶ The characteristic polynomial of S is

$$p(x) = x^n - 1.$$

Continuation

- ▶ The characteristic polynomial of S is

$$p(x) = x^n - 1.$$

- ▶ Therefore the eigenvalues of S are the n -th roots of unity:
$$\sigma(S) = \{e^{\frac{2\pi ij}{n}} : 0 \leq j \leq (n-1)\}.$$

Continuation

- ▶ The characteristic polynomial of S is

$$p(x) = x^n - 1.$$

- ▶ Therefore the eigenvalues of S are the n -th roots of unity:
$$\sigma(S) = \{e^{\frac{2\pi ij}{n}} : 0 \leq j \leq (n-1)\}.$$
- ▶ Taking $\omega = e^{\frac{2\pi i}{n}}$. $\sigma(S) = \{1, \omega, \omega^2, \dots, \omega^{n-1}\}.$

Continuation

- ▶ The characteristic polynomial of S is

$$p(x) = x^n - 1.$$

- ▶ Therefore the eigenvalues of S are the n -th roots of unity:
$$\sigma(S) = \{e^{\frac{2\pi ij}{n}} : 0 \leq j \leq (n-1)\}.$$
- ▶ Taking $\omega = e^{\frac{2\pi i}{n}}$. $\sigma(S) = \{1, \omega, \omega^2, \dots, \omega^{n-1}\}.$
- ▶ Let D be the diagonal matrix with diagonal entries $1, \omega, \dots, \omega^{n-1}.$

Continuation

- ▶ The characteristic polynomial of S is

$$p(x) = x^n - 1.$$

- ▶ Therefore the eigenvalues of S are the n -th roots of unity:
 $\sigma(S) = \{e^{\frac{2\pi ij}{n}} : 0 \leq j \leq (n-1)\}.$
- ▶ Taking $\omega = e^{\frac{2\pi i}{n}}$. $\sigma(S) = \{1, \omega, \omega^2, \dots, \omega^{n-1}\}.$
- ▶ Let D be the diagonal matrix with diagonal entries $1, \omega, \dots, \omega^{n-1}.$
- ▶ So we have $d_{jk} = \delta_{jk}\omega^j, 0 \leq j, k \leq (n-1).$

Continuation

- ▶ Note that on indexing the rows and columns of S from 0 to $(n - 1)$, we have

$$s_{kl} = \begin{cases} 1 & \text{if } k = (l + 1) \\ 0 & \text{otherwise} \end{cases}$$

Continuation

- ▶ Note that on indexing the rows and columns of S from 0 to $(n - 1)$, we have

$$s_{kl} = \begin{cases} 1 & \text{if } k = (l + 1) \\ 0 & \text{otherwise} \end{cases}$$

- ▶ Here 0 is taken as $(n - 1) + 1$ (The addition is modulo n).

Continuation

- ▶ Note that on indexing the rows and columns of S from 0 to $(n - 1)$, we have

$$s_{kl} = \begin{cases} 1 & \text{if } k = (l + 1) \\ 0 & \text{otherwise} \end{cases}$$

- ▶ Here 0 is taken as $(n - 1) + 1$ (The addition is modulo n).
- ▶ Let W be the finite Fourier transform matrix of order n .

Continuation

- ▶ Note that on indexing the rows and columns of S from 0 to $(n - 1)$, we have

$$s_{kl} = \begin{cases} 1 & \text{if } k = (l + 1) \\ 0 & \text{otherwise} \end{cases}$$

- ▶ Here 0 is taken as $(n - 1) + 1$ (The addition is modulo n).
- ▶ Let W be the finite Fourier transform matrix of order n .
- ▶ Then

$$(WS)_{jl} = \sum_{k=0}^{n-1} \omega^{jk} \cdot s_{kl} = \omega^{j(l+1)}.$$

Continuation

- ▶ Note that on indexing the rows and columns of S from 0 to $(n - 1)$, we have

$$s_{kl} = \begin{cases} 1 & \text{if } k = (l + 1) \\ 0 & \text{otherwise} \end{cases}$$

- ▶ Here 0 is taken as $(n - 1) + 1$ (The addition is modulo n).
- ▶ Let W be the finite Fourier transform matrix of order n .
- ▶ Then

$$(WS)_{jl} = \sum_{k=0}^{n-1} \omega^{jk} \cdot s_{kl} = \omega^{j(l+1)}.$$

- ▶ Also

$$(DW)_{jl} = \sum_{k=0}^{n-1} d_{jk} \omega^{kl} = \omega^j \cdot \omega^{jl} = \omega^{j(l+1)}$$

Continuation

- ▶ Note that on indexing the rows and columns of S from 0 to $(n - 1)$, we have

$$s_{kl} = \begin{cases} 1 & \text{if } k = (l + 1) \\ 0 & \text{otherwise} \end{cases}$$

- ▶ Here 0 is taken as $(n - 1) + 1$ (The addition is modulo n).
- ▶ Let W be the finite Fourier transform matrix of order n .
- ▶ Then

$$(WS)_{jl} = \sum_{k=0}^{n-1} \omega^{jk} \cdot s_{kl} = \omega^{j(l+1)}.$$

- ▶ Also

$$(DW)_{jl} = \sum_{k=0}^{n-1} d_{jk} \omega^{kl} = \omega^j \cdot \omega^{jl} = \omega^{j(l+1)}$$

- ▶ As $W^*W = nI$, $\frac{1}{\sqrt{n}}$ is a unitary. Therefore $\frac{1}{\sqrt{n}}WS = D \cdot \frac{1}{\sqrt{n}}W$, or $S = \frac{1}{n}W^*DW$ is the diagonalization of S .

Continuation

- ▶ Recall that the Circulant matrix

$$C = c_0 + c_1 S + \cdots + c_{n-1} S^{n-1}.$$

Continuation

- ▶ Recall that the Circulant matrix

$$C = c_0 + c_1 S + \cdots + c_{n-1} S^{n-1}.$$

- ▶ Consequently the circulant matrix $C = \frac{1}{n} W^* q(D) W$. where $q(x) = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$.

Continuation

- ▶ Recall that the Circulant matrix

$$C = c_0 + c_1 S + \cdots + c_{n-1} S^{n-1}.$$

- ▶ Consequently the circulant matrix $C = \frac{1}{n} W^* q(D) W$. where $q(x) = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$.
- ▶ In particular, the spectrum of C is given by

$$\{c_0 + c_1 \omega^k + c_2 \omega^{2k} + \cdots + c_{n-1} \omega^{(n-1)k} : 0 \leq k \leq (n-1)\}.$$

Continuation

- ▶ Recall that the Circulant matrix

$$C = c_0 + c_1 S + \cdots + c_{n-1} S^{n-1}.$$

- ▶ Consequently the circulant matrix $C = \frac{1}{n} W^* q(D) W$. where $q(x) = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1}$.

- ▶ In particular, the spectrum of C is given by

$$\{c_0 + c_1 \omega^k + c_2 \omega^{2k} + \cdots + c_{n-1} \omega^{(n-1)k} : 0 \leq k \leq (n-1)\}.$$

- ▶ END OF LECTURE 25.