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Lecture 25: Hadamard matrices and circulant matrices

> We recall different versions of the spectral theorem.



Spectral theorem (Version -I)

» Theorem 20.7 (Spectral Theorem-1): Let A be a complex

matrix. Then there exists a unitary matrix U and a diagonal
matrix D such that

A= UDU*

if and only if A is normal.
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Spectral theorem (Version -I)

» Theorem 20.7 (Spectral Theorem-1): Let A be a complex
matrix. Then there exists a unitary matrix U and a diagonal
matrix D such that

A= UDU*

if and only if A is normal.

» The theorem tells us that a matrix is diagonalizable through a
unitary iff it is normal. In particular, every normal matrix is
diagonalizable.

> Now we will present this Theorem in a different way.

» Consider the set up as above. Let a1, as, ..., ax be the
distinct eigenvalues of A.

» Recall that the diagonal entries of D are the eigenvalues of A,
as the characteristic polynomial of A and D are same.
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Continuation

» This means that every diagonal entry of D is one of the a;'s.
» Suppose that a; appears n; times in the diagonal with 1 < n;
and ny +ny+---+ng=n.



Continuation

» This means that every diagonal entry of D is one of the a;'s.
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and ny +ny+---+ng=n.

> Without loss of generality, we may assume that repeated
entries are clubbed together, that is, the diagonal entries of D
are equal to

(a1, a1,...,a1,a,a,...a2,a3,33,...,ak, ak)

where a; appears n; times.



Continuation

This means that every diagonal entry of D is one of the a;’s.
Suppose that aj appears n; times in the diagonal with 1 < n;
and ny +ny+---+ng=n.

Without loss of generality, we may assume that repeated
entries are clubbed together, that is, the diagonal entries of D
are equal to

(a1, a1,...,a1,a,a,...a2,a3,33,...,ak, ak)

where a;j appears n; times.
If I,,J. denotes the identity matrix of size n; x n;, the matrix D
can be written as:

(aly, O 0 ... 0
0 aly O 0
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» We may then re-write D as D = a1Q1 + ax @2 + - - - + ax Qx
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» We may then re-write D as D = a1Q1 + ax @2 + - - - + ax Qx

> where,
In, O 0 0 0 0
Q= ° 0 , Q2 = ° /’.12 ° ;
0 0 0 0 0 0

» and so on up to

Qk =



Continuation

» We may then re-write D as D = a1Q1 + ax @2 + - - - + ax Qx

» where,
In, O 0 0 0 0
Q= ° 0 , Q2 = ° /’.12 ° ;
0 0 0 0 0 0

0 0 0
0 0 0

Q=|. |
00 ... I

» Clearly Q1, @2, ..., Qx are projections, Q;Q; =0, fori#j
(they are mutually orthogonal) and @ + @2 + -+ Qx = /.
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» Now take P; = UQ;U*,1 <j < k.
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» Now take P; = UQ;U*,1 <j < k.

» Then we have

A = UDU*

U(a1@Q1 + a2@2 + - - + ax Q) U*
31UQ1U*+22UQ2U*+"‘+akUQkU*
= a1P1+aPo+ -+ akPx.
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» Now take P; = UQ;U*,1 <j < k.
» Then we have
A = UDU*
= U(a1Qr +a2@2+ -+ ax Q) U*
= g UQU" + aaUQU* 4 - - - 4+ 3, UQ U*
= a1P1+aPo+ -+ akPx.

» From P; = UQ;U*,1 < j < k, it is clear that Py, Py, ..., Pk
are projections such that P;P; = 0 for i # j and

P1+P2—|---~—|—szl.
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» We have now proved the following Theorem.

» Theorem 23.1 (Spectral Theorem -Il): Let A be a normal
matrix and let a1, ap, ..., ax be the distinct eigenvalues of A.
Then there exist mutually orthogonal projections
Pi1,Ps, ..., Py, such that

I = Pi+Po+--+ Py
A = aiP1+aPy+ -+ acPk.



Orthogonal Direct sums

» Definition 23.2: Suppose My, My, ..., My are mutually
orthogonal subspaces of a finite dimensional inner product
space V such that every vector x in V decomposes uniquely as

X=y1+y2+-+ Yk

where y; € M;, 1 < j < k, then V is said to be an orthogonal
direct sum of My, Mo, ... M.
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Orthogonal Direct sums

» Definition 23.2: Suppose My, My, ..., My are mutually
orthogonal subspaces of a finite dimensional inner product
space V such that every vector x in V decomposes uniquely as

X=y1+y2+-+ Yk
where y; € M;, 1 < j < k, then V is said to be an orthogonal

direct sum of My, Mo, ... M.
» (Notation) Sometimes this is denoted by

X=y1Dy2 D"+ D yk.

We may also write V=M & Mo & --- ® M.
» Note that:
k

MOy D Oy, 21D22D - D z) :Z(yj,2j>.
Jj=1
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» Now in Spectral theorem-Il, taking
M; = P(C") = {Pjx : x € C"}, we see that C" is a direct sum
of Ml, Mz, N Mk.

» That is, every vector x in C" decomposes uniquely as
X:(P1+P2+~-+Pk)X: Pix + Pox + - -+ + Pyx with
PJ'X € Mj.

> We also note that

Ax = (a1Pi+axPo+- - -+akPi)x = a1 Pix+axPox+- - -4ay Pix

is the unique decomposition of Ax.
» What is this subspace M; = P;(C")?
» Exercise 23.3: Show that
M; ={y e C": Ay = ajy}.

» In other words, M, is the eigenspace of A with respect to
eigenvalue a;.
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» In other words, we have proved the following statement:

» Theorem 23.4 (Spectral theorem -1l1): Let A be a normal
matrix. Then the eigenspaces of distinct eigenvalues of A are
mutually orthogonal and C” is their direct sum.
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» In other words, we have proved the following statement:

» Theorem 23.4 (Spectral theorem -1l1): Let A be a normal
matrix. Then the eigenspaces of distinct eigenvalues of A are
mutually orthogonal and C” is their direct sum.

» Clearly given the normal matrix A, the decomposition of C”
as in this theorem is uniquely determined and so the
corresponding projections are also uniquely determined. This
also shows that the decomposition of A as in Spectral
Theorem -II:

A=a1Pi1+aPo+ -+ aP, =P+ Po+---+ Py

where Py, P, ..., P, are mutually orthogonal projections is
unique up to permutation.
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A= UDU*
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Non-uniqueness in diagonalization

» Recall that in Spectral Theorem -I, we had
A= UDU*

where U is a unitary and D is diagonal. Here D is unique up
to permutation of the diagonal entries.

» However, U is not unique. We can always replace U by zU
where |z| = 1. Then zU is also a unitary and
A= (zU)D(zU)*.

» Is U unique up to multiplication by scalar when D is fixed?

» Ans: No. If A=, then A= UIU* for any unitary U. Hence
U is not unique even up to scalar.



Polynomial spectral mapping theorem

» Theorem 24.1: Let A be an n X n matrix and let di, db, ..., d,
be the eigenvalues of A. Then for any complex polynomial g,
the eigenvalues of g(A) are q(d1), q(d2), ..., q(dn).



Polynomial spectral mapping theorem

» Theorem 24.1: Let A be an n X n matrix and let di, db, ..., d,
be the eigenvalues of A. Then for any complex polynomial g,
the eigenvalues of g(A) are q(d1), q(d2), ..., q(dn).

» Proof: By Schur's upper triangularization theorem there exists
a unitary U and an upper triangular matrix T such that

A=UTU".



Polynomial spectral mapping theorem

» Theorem 24.1: Let A be an n X n matrix and let di, db, ..., d,
be the eigenvalues of A. Then for any complex polynomial g,
the eigenvalues of g(A) are q(d1), q(d2), ..., q(dn).

» Proof: By Schur's upper triangularization theorem there exists
a unitary U and an upper triangular matrix T such that

A=UTU".

» Note that the diagonal entries of T are the eigenvalues of A.



Polynomial spectral mapping theorem

» Theorem 24.1: Let A be an n X n matrix and let di, db, ..., d,
be the eigenvalues of A. Then for any complex polynomial g,
the eigenvalues of g(A) are q(d1), q(d2), ..., q(dn).

» Proof: By Schur's upper triangularization theorem there exists
a unitary U and an upper triangular matrix T such that

A=UTU".

» Note that the diagonal entries of T are the eigenvalues of A.

» Without loss of generality, we may denote the diagonal entries
of T as di,do,...,d,.



Polynomial spectral mapping theorem

» Theorem 24.1: Let A be an n X n matrix and let di, db, ..., d,
be the eigenvalues of A. Then for any complex polynomial g,
the eigenvalues of g(A) are q(d1), q(d2), ..., q(dn).

» Proof: By Schur's upper triangularization theorem there exists
a unitary U and an upper triangular matrix T such that

A=UTU".

» Note that the diagonal entries of T are the eigenvalues of A.

» Without loss of generality, we may denote the diagonal entries
of T as di,do,...,d,.

> Now it is easy to see that the diagonal entries of T2 are
d?,d3 d?
1’ 2 g0y n.



Polynomial spectral mapping theorem

» Theorem 24.1: Let A be an n X n matrix and let di, db, ..., d,

be the eigenvalues of A. Then for any complex polynomial g,
the eigenvalues of g(A) are q(d1), q(d2), ..., q(dn).

» Proof: By Schur's upper triangularization theorem there exists
a unitary U and an upper triangular matrix T such that

A=UTU".

» Note that the diagonal entries of T are the eigenvalues of A.

» Without loss of generality, we may denote the diagonal entries
of T as di,do,...,d,.

> Now it is easy to see that the diagonal entries of T2 are
d7,dZ,..., d2.

> More generally, for any k € N the diagonal entries of T are
df,dx, ... dk.
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» Now suppose g(x) = cp + c1x + c2x? + - -+ + cmx™, then the
diagonal entries of (T) are g(d1), q(d2), ..., q(dn).
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diagonal entries of (T) are g(d1), q(d2), ..., q(dn).
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9(A) = Uqg(T)U*

and q(T) is upper triangular, Therefore g(A) and g(T) have
same characteristic polynomial and hence same set of
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» Now suppose g(x) = cp + c1x + c2x? + - -+ + cmx™, then the
diagonal entries of (T) are g(d1), q(d2), ..., q(dn).
> We have
9(A) = Ug(T)U*
and q(T) is upper triangular, Therefore g(A) and g(T) have
same characteristic polynomial and hence same set of
eigenvalues.

» This proves the theorem.
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» Now suppose g(x) = cp + c1x + c2x? + - -+ + cmx™, then the
diagonal entries of (T) are g(d1), q(d2), ..., q(dn).
» We have
9(A) = Uqg(T)U*

and q(T) is upper triangular, Therefore g(A) and g(T) have
same characteristic polynomial and hence same set of
eigenvalues.

» This proves the theorem.

> Exercise 24.2: Find an alternative proof which does not use
upper triangularization.
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» Theorem 24.4: Let A be a normal matrix. Suppose
A=a1P1+ aPr + -+ axPy,

is the spectral decomposition of A (This means that

ai, ar,...,ay are distinct eigenvalues of A and Py, Po, ...
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Polynomials of normal matrices -II

» Theorem 24.4: Let A be a normal matrix. Suppose
A=a1P1+ aPr + -+ axPy,

is the spectral decomposition of A (This means that

ai, ar,...,ay are distinct eigenvalues of A and Py, Po, ...

are mutually orthogonal projections such that
Pi+Py+- -+ Pc=1)
» Then for any complex polynomial g,

q(A) = q(a1)P1 + q(a2)P> + - + q(ak) Px.
» Proof: We have

A2 = (a1P1+ aP>+ -+ akPy)(a1P1 + a2Pa +
= AP +a3Py+ -+ aiPy

as P,'PJ' = 6UPJ

7Pk

-+ akPy)



Continuation

» By induction,
AT = al'P1 + a3 P2 + - 4 ag Py

forallm>1landform=0 A=/=P, + P+ -+ Ps.
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» Now the result follows by taking linear combinations of the
powers of A. H
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» By induction,
Am:ai"P1+a§"P2+~~-+aZ’Pk

forallm>1landform=0 A =/=P +Py+--+ Py

» Now the result follows by taking linear combinations of the
powers of A. H

» Remark 24.5: It is to be noted that

q(A) = q(a1)P1 + q(a2) P2 + - - - + q(ak) P«-

may not be the spectral decomposition of g(A) as
q(a1),...,q(ak) may not be distinct.
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» The last two theorems suggest that for a normal matrix A, if
f is a function defined on o(A) (the spectrum of A) we may

define f(A) by taking

fd) 0 ... O
f(A) = U 0 f(fb) O U
0 0 ... f(dy)
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Functional Calculus

» The last two theorems suggest that for a normal matrix A, if
f is a function defined on o(A) (the spectrum of A) we may
define f(A) by taking

fd) 0 ... O
f(A) = U 0 f(fb) O U
0 0 ... f(dy)

= f(al)Pl + f(ag)PQ —+ -+ f(ak)Pk.

» For instance we can define sin(A), cos(A), e etc by this
method.

» At the moment this is only a definition. But it has many
natural properties. Studying this concept not only for matrices
but also for operators (infinite dimensional matrices) is the
subject of Functional Calculus.
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Hadamard matrices

» Definition 25.1: A square matrix is said to be a Hadamard
matrix if every entry of it is =1 and its rows are mutually
orthogonal.

» Example 25.2: The matrices H; = [1] and

1 1
=i 4]
are Hadamard matrices.
» Note that if an n x n matrix H is a Hadamard matrix, clearly

HH® = nl.

Therefore ﬁHt is the inverse of ﬁH. Alternatively, ﬁH is

an orthogonal matrix. Consequently we also have H'H = nl.
Therefore columns of H are also mutually orthogonal.
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H H
=[5 ]

is a 2n x 2n Hadamard matrix.
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A construction

» Proposition 25.3: If H is an n x n Hadamard matrix then the
block matrix
H H
<[k ]
is a 2n x 2n Hadamard matrix.

» Proof By block matrix multiplication,
H H Ht Ht
t_
= ]

_ nl +nl nl—nl
- nl —nl nl+nl

I 0
= 2n[0 l}

» This proves the claim. B



Continuation

» Applying this construction to H, defined above we get a 4 x 4
Hadamard matrix

1 1 1
-1 1 -1
1 -1 -1
-1 -1 1

o



Continuation

» Applying this construction to H, defined above we get a 4 x 4
Hadamard matrix

11 1 1

1 -1 1 -1

11 -1 -1

1 -1 -1 1

» By induction, we can construct a Hadamard matrix of order
2" for every n > 0.
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with n > 2. Then n is a multiple of 4.
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Multiples of 4

» Proposition 25.4: Suppose H is an n x n Hadamard matrix
with n > 2. Then n is a multiple of 4.

» Proof: Note that entries are =1 and with n > 1, any two rows
are orthogonal means that n has to be even.

» If H is a Hadamard matrix, and if we replace a row with its
negative, clearly it stays as Hadamard matrix.

» Therefore we may assume that the first entry of every row is
+1. (That is hj; = +1,V.)

» In other words now the first column has only ‘ + 1's. This

forces that every other column has equal number of positive
and negative entries. In particular n must be even.
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exactly k positive signs and k negative signs.
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» Take n = 2k. So that every column except the first one has
exactly k positive signs and k negative signs.

» If H is a Hadamard matrix and if we permute the rows it
would stay as a Hadamard matrix. So we may assume that
first k entries of second column are positive and the next k
are negative. That is:

po_ [ 1 if1<j<k;
2T -1 if (k+1) <j < 2k



Continuation

>

| 4

Take n = 2k. So that every column except the first one has
exactly k positive signs and k negative signs.

If H is a Hadamard matrix and if we permute the rows it
would stay as a Hadamard matrix. So we may assume that
first k entries of second column are positive and the next k
are negative. That is:

po_ [ 1 if1<j<k;
2T -1 if (k+1) <j < 2k

Since n > 2, and n is even we can consider third and fourth
columns of H.
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» Suppose among the first k entries of the third column r
entries are positive and (k — r) are negative and among the
remaining k entries s are positive and (k — s) are negative.
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» Suppose among the first k entries of the third column r
entries are positive and (k — r) are negative and among the
remaining k entries s are positive and (k — s) are negative.

» Since the total number of positive entries in a column has to
be k, we get r + s = k.
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» Orthogonality of second and third column shows that
hj>.hj3 = +1 at k many j's.

» Counting the positions where both the entry of second and
third column have same sign we get r + (k —s) = k or
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» Orthogonality of second and third column shows that
hj>.hj3 = +1 at k many j's.

» Counting the positions where both the entry of second and
third column have same sign we get r + (k —s) = k or
equivalently r = s.

» Then k =r+ s =2ris even.

» Consequently n = 2k is a multiple of 4.
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Hadamard's Conjecture

» Hadamard's Conjecture: There exists a Hadamard matrix of
order 4k for every natural number k.
> The conjecture is still open.

» As per Wikipedia currently 668 is the smallest number for
which we don't know the existence of a Hadamard matrix.
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Complex Hadamard matrices

» Definition 25.5: A square matrix A = [ajj] is said to be a
complex Hadamard matrix if its rows are orthogonal and
lajj| =1 for all i, ;.

> If Ais a complex Hadamard matrix of order n x n, then
AA* = A*A = nl.

» In the following Example we find it convenient to index the
rows and columns of the matrix from 0 to (n — 1) instead of 1
to n.

» Example 25.6: For n > 1, consider the matrix
W = [ij]Ogj,kS(n—l) defined by

2mijk
Wik =€ n .

Then W is a complex Hadamard matrix (Prove it.)



Finite Fourier transform

» This matrix W of Example 25.6 is known as the Finite Fourier
Transform matrix or Discrete Fourier Transform matrix of
order n and it appears in various contexts.



Finite Fourier transform

» This matrix W of Example 25.6 is known as the Finite Fourier
Transform matrix or Discrete Fourier Transform matrix of
order n and it appears in various contexts.

» It has several practical applications.



Finite Fourier transform

» This matrix W of Example 25.6 is known as the Finite Fourier
Transform matrix or Discrete Fourier Transform matrix of
order n and it appears in various contexts.

» It has several practical applications.

» For instance, for n = 3 we have

1 1 1
W=1|1 w w?|,
1 w? w

2mi

where w = e 3 .
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circulant matrix if
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for some ¢y, c1,...,¢c,-1 € C.



Circulant matrices

» Definition 25.6: Fo n > 2, an n x n matrix C is said to be a
circulant matrix if

(@)) Ch—1 Ch—2 ... (C
C1 [@)) ch—1 ...
C = (o) 5] o ... C3
|l ¢h—1 Cp—2 Cp-3 ... Cp |
for some ¢y, c1,...,¢c,-1 € C.

» Suppose A is as above. Consider the matrix

000 ...1
100 ...
s=1010 ... 0
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C=c+aS+cS?+- - +c,15" L
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Continuation

> Then it is easily seen that
C=c+aS+cS?+- - +c,15" L

» So C is a polynomial in S.

» Note that S is a permutation matrix and in particular it is a
unitary.
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» The characteristic polynomial of S is
p(x) = x" — 1.
» Therefore the eigenvalues of S are the n-th roots of unity:
2mij
o(S)={en :0<j<(n—1)}
» Taking w = e’ o(S) = {1,w,w? w1}

> Let D be the diagonal matrix with diagonal entries
Lw,...,w" 1

> So we have di = §yw’,0 < j, k < (n—1).
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» Note that on indexing the rows and columns of S from 0 to
(n—1), we have

(1 ifk=(+1)
k=1 0 otherwise

» Here 0 is taken as (n — 1) + 1 (The addition is modulo n).
» Let W be the finite Fourier transform matrix of order n.

» Then .
(WS)j/ = ijk.sk/ == wj(IJrl).
k=0
> Also .
(DW); =Y dywh = W ol = o/UF)
k=0
» As W*W = nl, % is a unitary. Therefore %WS = D.% W,

or S = %W*DW is the diagonalization of S.



Continuation

» Recall that the Circulant matrix

C=c+caS+- -+ C,,,lsn_l.



Continuation

» Recall that the Circulant matrix
C=c+acaS+- - +c,_15" L.

> Consequently the circulant matrix C = 2 W*q(D)W. where
q(x) =co+cax+--+cp1x" L



Continuation

» Recall that the Circulant matrix
C=c+acaS+- - +c,_15" L.

> Consequently the circulant matrix C = 2 W*q(D)W. where
q(x) =co+cax+--+cp1x" L
» In particular, the spectrum of C is given by

{0 + aw + ow* + -+ e DR o< k< (n—1)}.



Continuation

» Recall that the Circulant matrix
C=c+caS+- -+ C,,,lsn_l.

> Consequently the circulant matrix C = 2 W*q(D)W. where
q(x) =co+cax+--+cp1x" L

» In particular, the spectrum of C is given by
{0 + aw + ow* + -+ e DR o< k< (n—1)}.

» END OF LECTURE 25.



