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> Now we study a very important class of matrices. The
significance of this class can't be over emphasized.

» Definition 26.1: An n x n matrix A is said to be a positive
matrix if A = B*B for some n x n matrix B.

» Some authors may call these as non-negative definite matrices
and invertible matrices of the form B*B as positive definite
matrices.

> Warning: A positive matrix need not have positive entries. It
can have negative entries and also complex entries.

> Matrices whose entries are positive would be called as
entrywise positive matrices. That is also an important class,
but we will not be studying them now.
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Characterizations of positivity

» Theorem 26.2: Let A = [ajj]i<ij<n be a complex matrix.
Then the following are equivalent:

» (i) A is positive, that is, A = B*B for some n x n matrix B.

» (ii) A= C*C for some m x n matrix for some m.

> (iii) aj = (vi, vj),1 < i,j < n for vectors vy, vo, ..., v, in some
inner product space V.

> (iv) (x,Ax) >0 for all x € C".

v

(v) A= A* and eigenvalues of A are non-negative.

» (vi) A= S? for some self-adjoint n x n matrix S.
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» (ii) = (iii). Let v1,vo,..., v, be the columns of C. Then
vj € C™ for every j and A= C*C implies aj; = (vj, vj).

> (iii) = (iv). We have a;; = (vj,vj), Vi,j.

» Now for any x € C™

n

(% AX) = > X(Ax);
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» Therefore,

n n

(x,Ax) = ZZ<X/'V:‘,XJVJ>
i—1 j=1
= <ZXiViszjVj>
i—1 =1
= (y,y)

> where y = > xv;.
» Hence
(x,Ax) > 0.
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» (iv) = (v). It is given that (x, Ax) > 0 for every x € C".

» First we want to show that A = A*. Here we use the
polarization identity and the fact that if (v, w) is real then
(v,w) = (w,v). Forall x,y,

(. Ay) = > iF{(x+Py), Alx+iy))

= (Axy)
» This proves A* = A from the defining condition of the adjoint.
» Now suppose a is an eigenvalue of A. Choose an eigenvector
x with a as the eigenvalue. Then

(x,Ax) = a(x,x) > 0.
» implies that a > 0 as (x,x) # 0.
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(v) = (vi). We assume A = A* and the eigenvalues of A are
non-negative.

By spectral theorem there exists a unitary U and a diagonal
matrix D, such that
A= UDU".

Since the eigenvalues of A are non-negative, the diagonal
entries of D are non-negative. We denote the diagonal entries
by dl,dg, .. .,dn.

Take
Vdi 0 ... 0
0 d ... 0
S=U . \G , . U*.
0 0 ... Vd,

Then clearly S is self-adjoint and A = S2.
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(vi) = (i). Assume A = S? where S = S*.
In particular, A= S*S. This proves (i). B
Example 26.3: Take
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2]

Clearly R is self-adjoint. We have the characteristic
polynomial of R, as

p(x)=(x—2)?—1=x>—4x+3=(x—1)(x - 3).

Therefore, the eigenvalues of R are {1, 3}, which are
non-negative. Then by part (v) of the previous Theorem, R is
positive.

Note that though R is positive as per our definition, some of
its entries are negative.

Find all self-adjoint operators S such that R = S2. (Exercise)



Cartesian decomposition

» Theorem 26.3 (Cartesian decomposition): Let A be a complex
square matrix. Then A decomposes uniquely as

A=B+iC

where B, C are self-adjoint.



Cartesian decomposition

» Theorem 26.3 (Cartesian decomposition): Let A be a complex
square matrix. Then A decomposes uniquely as

A=B+iC

where B, C are self—adjoint
> Proof: Take B = 4tA% and C =

A*




Cartesian decomposition

» Theorem 26.3 (Cartesian decomposition): Let A be a complex
square matrix. Then A decomposes uniquely as

A=B+iC

where B, C are self—adjoint
> Proof: Take B = 4tA% and C =

» Then it is easily verlfled that B, C are self—adjoint and
A=B+iC.

A*




Cartesian decomposition

» Theorem 26.3 (Cartesian decomposition): Let A be a complex
square matrix. Then A decomposes uniquely as

A=B+iC

where B, C are self—adjoint

A*

» Proof: Take B = A2A~ and C =
» Then it is easily verlfled that B, C are self—adjoint and
A=B+iC.

» Conversely, suppose A= B+ iC, W|th B C self-adjoint. We
see directly that B = 4424~ and C =




Cartesian decomposition

» Theorem 26.3 (Cartesian decomposition): Let A be a complex
square matrix. Then A decomposes uniquely as

A=B+iC

where B, C are self—adjoint

A*

» Proof: Take B = A2A~ and C =
» Then it is easily verlfled that B, C are self—adjoint and
A=B+iC.

» Conversely, suppose A= B+ iC, W|th B C self-adjoint. We
see directly that B = 4424~ and C =

» This proves uniqueness. I




Cartesian decomposition

» Theorem 26.3 (Cartesian decomposition): Let A be a complex
square matrix. Then A decomposes uniquely as

A=B+iC

where B, C are self—adjoint

A*

» Proof: Take B = A2A~ and C =
» Then it is easily verlfled that B, C are self—adjoint and
A=B+iC.

» Conversely, suppose A= B+ iC, W|th B C self-adjoint. We
see directly that B = 4424~ and C =

» This proves uniqueness. I

» This is known as Cartesian decomposition.



Cartesian decomposition

» Theorem 26.3 (Cartesian decomposition): Let A be a complex
square matrix. Then A decomposes uniquely as

A=B+iC

where B, C are self—adjoint

A*

» Proof: Take B = A2A~ and C =
» Then it is easily verlfled that B, C are self—adjoint and
A=B+iC.

» Conversely, suppose A= B+ iC, W|th B C self-adjoint. We
see directly that B = 4424~ and C =

» This proves uniqueness. I

» This is known as Cartesian decomposition.



Cartesian decomposition

» Theorem 26.3 (Cartesian decomposition): Let A be a complex
square matrix. Then A decomposes uniquely as

A=B+iC

where B, C are self—adjoint

A*

» Proof: Take B = A2A~ and C =
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This is known as Cartesian decomposition.
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