

LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 28: Polar decomposition theorem

- ▶ First we recall the notion of positivity and some characterizations.

Lecture 28: Polar decomposition theorem

- ▶ First we recall the notion of positivity and some characterizations.
- ▶ **Definition 26.1:** An $n \times n$ matrix A is said to be a **positive** matrix if $A = B^*B$ for some $n \times n$ matrix B .

Lecture 28: Polar decomposition theorem

- ▶ First we recall the notion of positivity and some characterizations.
- ▶ **Definition 26.1:** An $n \times n$ matrix A is said to be a **positive** matrix if $A = B^*B$ for some $n \times n$ matrix B .
- ▶ Some authors may call these as non-negative definite matrices and invertible matrices of the form B^*B as positive definite matrices.

Lecture 28: Polar decomposition theorem

- ▶ First we recall the notion of positivity and some characterizations.
- ▶ **Definition 26.1:** An $n \times n$ matrix A is said to be a **positive** matrix if $A = B^*B$ for some $n \times n$ matrix B .
- ▶ Some authors may call these as non-negative definite matrices and invertible matrices of the form B^*B as positive definite matrices.
- ▶ **Warning:** A positive matrix need not have positive entries. It can have negative entries and also complex entries.

Lecture 28: Polar decomposition theorem

- ▶ First we recall the notion of positivity and some characterizations.
- ▶ **Definition 26.1:** An $n \times n$ matrix A is said to be a **positive** matrix if $A = B^*B$ for some $n \times n$ matrix B .
- ▶ Some authors may call these as non-negative definite matrices and invertible matrices of the form B^*B as positive definite matrices.
- ▶ **Warning:** A positive matrix need not have positive entries. It can have negative entries and also complex entries.
- ▶ Matrices whose entries are positive would be called as **entrywise positive** matrices. That is also an important class, but we will not be studying them now.

Characterizations of positivity

- ▶ Theorem 26.2: Let $A = [a_{ij}]_{1 \leq i, j \leq n}$ be a complex matrix. Then the following are equivalent:

Characterizations of positivity

- ▶ **Theorem 26.2:** Let $A = [a_{ij}]_{1 \leq i, j \leq n}$ be a complex matrix. Then the following are equivalent:
 - ▶ (i) A is positive, that is, $A = B^*B$ for some $n \times n$ matrix B .

Characterizations of positivity

- ▶ **Theorem 26.2:** Let $A = [a_{ij}]_{1 \leq i, j \leq n}$ be a complex matrix. Then the following are equivalent:
 - ▶ (i) A is positive, that is, $A = B^*B$ for some $n \times n$ matrix B .
 - ▶ (ii) $A = C^*C$ for some $m \times n$ matrix for some m .

Characterizations of positivity

- ▶ **Theorem 26.2:** Let $A = [a_{ij}]_{1 \leq i,j \leq n}$ be a complex matrix. Then the following are equivalent:
 - ▶ (i) A is positive, that is, $A = B^*B$ for some $n \times n$ matrix B .
 - ▶ (ii) $A = C^*C$ for some $m \times n$ matrix for some m .
 - ▶ (iii) $a_{ij} = \langle v_i, v_j \rangle$, $1 \leq i, j \leq n$ for vectors v_1, v_2, \dots, v_n in some inner product space V .

Characterizations of positivity

- ▶ **Theorem 26.2:** Let $A = [a_{ij}]_{1 \leq i,j \leq n}$ be a complex matrix. Then the following are equivalent:
 - ▶ (i) A is positive, that is, $A = B^*B$ for some $n \times n$ matrix B .
 - ▶ (ii) $A = C^*C$ for some $m \times n$ matrix for some m .
 - ▶ (iii) $a_{ij} = \langle v_i, v_j \rangle$, $1 \leq i, j \leq n$ for vectors v_1, v_2, \dots, v_n in some inner product space V .
 - ▶ (iv) $\langle x, Ax \rangle \geq 0$ for all $x \in \mathbb{C}^n$.

Characterizations of positivity

- ▶ **Theorem 26.2:** Let $A = [a_{ij}]_{1 \leq i,j \leq n}$ be a complex matrix. Then the following are equivalent:
 - ▶ (i) A is positive, that is, $A = B^*B$ for some $n \times n$ matrix B .
 - ▶ (ii) $A = C^*C$ for some $m \times n$ matrix for some m .
 - ▶ (iii) $a_{ij} = \langle v_i, v_j \rangle$, $1 \leq i, j \leq n$ for vectors v_1, v_2, \dots, v_n in some inner product space V .
 - ▶ (iv) $\langle x, Ax \rangle \geq 0$ for all $x \in \mathbb{C}^n$.
 - ▶ (v) $A = A^*$ and eigenvalues of A are non-negative.

Characterizations of positivity

- ▶ **Theorem 26.2:** Let $A = [a_{ij}]_{1 \leq i,j \leq n}$ be a complex matrix. Then the following are equivalent:
 - ▶ (i) A is positive, that is, $A = B^*B$ for some $n \times n$ matrix B .
 - ▶ (ii) $A = C^*C$ for some $m \times n$ matrix for some m .
 - ▶ (iii) $a_{ij} = \langle v_i, v_j \rangle$, $1 \leq i, j \leq n$ for vectors v_1, v_2, \dots, v_n in some inner product space V .
 - ▶ (iv) $\langle x, Ax \rangle \geq 0$ for all $x \in \mathbb{C}^n$.
 - ▶ (v) $A = A^*$ and eigenvalues of A are non-negative.
 - ▶ (vi) $A = S^2$ for some self-adjoint $n \times n$ matrix S .

Continuation

- ▶ **Proof:** (i) \Rightarrow (ii). Take $m = n$ and $C = B$.

Continuation

- ▶ **Proof:** (i) \Rightarrow (ii). Take $m = n$ and $C = B$.
- ▶ (ii) \Rightarrow (iii). Let v_1, v_2, \dots, v_n be the columns of C . Then $v_j \in \mathbb{C}^m$ for every j and $A = C^*C$ implies $a_{jj} = \langle v_i, v_j \rangle$.

Continuation

- ▶ **Proof:** (i) \Rightarrow (ii). Take $m = n$ and $C = B$.
- ▶ (ii) \Rightarrow (iii). Let v_1, v_2, \dots, v_n be the columns of C . Then $v_j \in \mathbb{C}^m$ for every j and $A = C^*C$ implies $a_{ij} = \langle v_i, v_j \rangle$.
- ▶ (iii) \Rightarrow (iv). We have $a_{ij} = \langle v_i, v_j \rangle, \quad \forall i, j$.

Continuation

- ▶ **Proof:** (i) \Rightarrow (ii). Take $m = n$ and $C = B$.
- ▶ (ii) \Rightarrow (iii). Let v_1, v_2, \dots, v_n be the columns of C . Then $v_j \in \mathbb{C}^m$ for every j and $A = C^*C$ implies $a_{ij} = \langle v_i, v_j \rangle$.
- ▶ (iii) \Rightarrow (iv). We have $a_{ij} = \langle v_i, v_j \rangle, \forall i, j$.
- ▶ Now for any $x \in \mathbb{C}^n$:

$$\begin{aligned}\langle x, Ax \rangle &= \sum_{i=1}^n \bar{x}_i (Ax)_i \\ &= \sum_{i=1}^n \bar{x}_i \cdot \sum_{j=1}^n a_{ij} x_j \\ &= \sum_{i=1}^n \bar{x}_i \cdot \sum_{j=1}^n \langle v_i, v_j \rangle \cdot x_j\end{aligned}$$

Continuation

► Therefore,

$$\begin{aligned}\langle x, Ax \rangle &= \sum_{i=1}^n \sum_{j=1}^n \langle x_i v_i, x_j v_j \rangle \\ &= \left\langle \sum_{i=1}^n x_i v_i, \sum_{j=1}^n x_j v_j \right\rangle \\ &= \langle y, y \rangle\end{aligned}$$

Continuation

- ▶ Therefore,

$$\begin{aligned}\langle x, Ax \rangle &= \sum_{i=1}^n \sum_{j=1}^n \langle x_i v_i, x_j v_j \rangle \\ &= \left\langle \sum_{i=1}^n x_i v_i, \sum_{j=1}^n x_j v_j \right\rangle \\ &= \langle y, y \rangle\end{aligned}$$

- ▶ where $y = \sum_{i=1}^n x_i v_i$.

Continuation

► Therefore,

$$\begin{aligned}\langle x, Ax \rangle &= \sum_{i=1}^n \sum_{j=1}^n \langle x_i v_i, x_j v_j \rangle \\ &= \left\langle \sum_{i=1}^n x_i v_i, \sum_{j=1}^n x_j v_j \right\rangle \\ &= \langle y, y \rangle\end{aligned}$$

► where $y = \sum_{i=1}^n x_i v_i$.

► Hence

$$\langle x, Ax \rangle \geq 0.$$

Continuation

- ▶ (iv) \Rightarrow (v). It is given that $\langle x, Ax \rangle \geq 0$ for every $x \in \mathbb{C}^n$.

Continuation

- ▶ (iv) \Rightarrow (v). It is given that $\langle x, Ax \rangle \geq 0$ for every $x \in \mathbb{C}^n$.
- ▶ First we want to show that $A = A^*$. Here we use the polarization identity and the fact that if $\langle v, w \rangle$ is real then $\langle v, w \rangle = \langle w, v \rangle$. For all x, y ,

$$\begin{aligned}\langle x, Ay \rangle &= \frac{1}{4} \sum_{j=0}^3 i^{-j} \langle (x + i^j y), A(x + i^j y) \rangle \\ &= \frac{1}{4} \sum_{j=0}^3 i^{-j} \langle A(x + i^j y), (x + i^j y) \rangle \\ &= \langle Ax, y \rangle\end{aligned}$$

Continuation

- ▶ (iv) \Rightarrow (v). It is given that $\langle x, Ax \rangle \geq 0$ for every $x \in \mathbb{C}^n$.
- ▶ First we want to show that $A = A^*$. Here we use the polarization identity and the fact that if $\langle v, w \rangle$ is real then $\langle v, w \rangle = \langle w, v \rangle$. For all x, y ,

$$\begin{aligned}\langle x, Ay \rangle &= \frac{1}{4} \sum_{j=0}^3 i^{-j} \langle (x + i^j y), A(x + i^j y) \rangle \\ &= \frac{1}{4} \sum_{j=0}^3 i^{-j} \langle A(x + i^j y), (x + i^j y) \rangle \\ &= \langle Ax, y \rangle\end{aligned}$$

- ▶ This proves $A^* = A$ from the defining condition of the adjoint.

Continuation

- ▶ (iv) \Rightarrow (v). It is given that $\langle x, Ax \rangle \geq 0$ for every $x \in \mathbb{C}^n$.
- ▶ First we want to show that $A = A^*$. Here we use the polarization identity and the fact that if $\langle v, w \rangle$ is real then $\langle v, w \rangle = \langle w, v \rangle$. For all x, y ,

$$\begin{aligned}\langle x, Ay \rangle &= \frac{1}{4} \sum_{j=0}^3 i^{-j} \langle (x + i^j y), A(x + i^j y) \rangle \\ &= \frac{1}{4} \sum_{j=0}^3 i^{-j} \langle A(x + i^j y), (x + i^j y) \rangle \\ &= \langle Ax, y \rangle\end{aligned}$$

- ▶ This proves $A^* = A$ from the defining condition of the adjoint.
- ▶ Now suppose a is an eigenvalue of A . Choose an eigenvector x with a as the eigenvalue. Then

$$\langle x, Ax \rangle = a \langle x, x \rangle \geq 0.$$

Continuation

- ▶ (iv) \Rightarrow (v). It is given that $\langle x, Ax \rangle \geq 0$ for every $x \in \mathbb{C}^n$.
- ▶ First we want to show that $A = A^*$. Here we use the polarization identity and the fact that if $\langle v, w \rangle$ is real then $\langle v, w \rangle = \langle w, v \rangle$. For all x, y ,

$$\begin{aligned}\langle x, Ay \rangle &= \frac{1}{4} \sum_{j=0}^3 i^{-j} \langle (x + i^j y), A(x + i^j y) \rangle \\ &= \frac{1}{4} \sum_{j=0}^3 i^{-j} \langle A(x + i^j y), (x + i^j y) \rangle \\ &= \langle Ax, y \rangle\end{aligned}$$

- ▶ This proves $A^* = A$ from the defining condition of the adjoint.
- ▶ Now suppose a is an eigenvalue of A . Choose an eigenvector x with a as the eigenvalue. Then

$$\langle x, Ax \rangle = a \langle x, x \rangle \geq 0.$$

- ▶ implies that $a \geq 0$ as $\langle x, x \rangle \neq 0$.

Continuation

- ▶ (v) \Rightarrow (vi). We assume $A = A^*$ and the eigenvalues of A are non-negative.

Continuation

- ▶ (v) \Rightarrow (vi). We assume $A = A^*$ and the eigenvalues of A are non-negative.
- ▶ By spectral theorem there exists a unitary U and a diagonal matrix D , such that

$$A = UDU^*.$$

Continuation

- ▶ (v) \Rightarrow (vi). We assume $A = A^*$ and the eigenvalues of A are non-negative.
- ▶ By spectral theorem there exists a unitary U and a diagonal matrix D , such that

$$A = UDU^*.$$

- ▶ Since the eigenvalues of A are non-negative, the diagonal entries of D are non-negative. We denote the diagonal entries by d_1, d_2, \dots, d_n .

Continuation

- ▶ (v) \Rightarrow (vi). We assume $A = A^*$ and the eigenvalues of A are non-negative.
- ▶ By spectral theorem there exists a unitary U and a diagonal matrix D , such that

$$A = UDU^*.$$

- ▶ Since the eigenvalues of A are non-negative, the diagonal entries of D are non-negative. We denote the diagonal entries by d_1, d_2, \dots, d_n .
- ▶ Take

$$S = U \begin{bmatrix} \sqrt{d_1} & 0 & \dots & 0 \\ 0 & \sqrt{d_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sqrt{d_n} \end{bmatrix} U^*.$$

Continuation

- ▶ (v) \Rightarrow (vi). We assume $A = A^*$ and the eigenvalues of A are non-negative.
- ▶ By spectral theorem there exists a unitary U and a diagonal matrix D , such that

$$A = UDU^*.$$

- ▶ Since the eigenvalues of A are non-negative, the diagonal entries of D are non-negative. We denote the diagonal entries by d_1, d_2, \dots, d_n .
- ▶ Take

$$S = U \begin{bmatrix} \sqrt{d_1} & 0 & \dots & 0 \\ 0 & \sqrt{d_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sqrt{d_n} \end{bmatrix} U^*.$$

- ▶ Then clearly S is self-adjoint and $A = S^2$.

Continuation

- ▶ (vi) \Rightarrow (i). Assume $A = S^2$ where $S = S^*$.

Continuation

- ▶ (vi) \Rightarrow (i). Assume $A = S^2$ where $S = S^*$.
- ▶ In particular, $A = S^*S$. This proves (i). ■

Continuation

- ▶ (vi) \Rightarrow (i). Assume $A = S^2$ where $S = S^*$.
- ▶ In particular, $A = S^*S$. This proves (i). ■
- ▶ Example 26.3: Take

$$R = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}.$$

Continuation

- ▶ (vi) \Rightarrow (i). Assume $A = S^2$ where $S = S^*$.
- ▶ In particular, $A = S^*S$. This proves (i). ■
- ▶ Example 26.3: Take

$$R = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}.$$

- ▶ Clearly R is self-adjoint. We have the characteristic polynomial of R , as

$$p(x) = (x - 2)^2 - 1 = x^2 - 4x + 3 = (x - 1)(x - 3).$$

Continuation

- ▶ (vi) \Rightarrow (i). Assume $A = S^2$ where $S = S^*$.
- ▶ In particular, $A = S^*S$. This proves (i). ■
- ▶ Example 26.3: Take

$$R = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}.$$

- ▶ Clearly R is self-adjoint. We have the characteristic polynomial of R , as

$$p(x) = (x - 2)^2 - 1 = x^2 - 4x + 3 = (x - 1)(x - 3).$$

- ▶ Therefore, the eigenvalues of R are $\{1, 3\}$, which are non-negative. Then by part (v) of the previous Theorem, R is positive.

Continuation

- ▶ (vi) \Rightarrow (i). Assume $A = S^2$ where $S = S^*$.
- ▶ In particular, $A = S^*S$. This proves (i). ■
- ▶ Example 26.3: Take

$$R = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}.$$

- ▶ Clearly R is self-adjoint. We have the characteristic polynomial of R , as

$$p(x) = (x - 2)^2 - 1 = x^2 - 4x + 3 = (x - 1)(x - 3).$$

- ▶ Therefore, the eigenvalues of R are $\{1, 3\}$, which are non-negative. Then by part (v) of the previous Theorem, R is positive.
- ▶ Note that though R is positive as per our definition, some of its entries are negative.

Continuation

- ▶ (vi) \Rightarrow (i). Assume $A = S^2$ where $S = S^*$.
- ▶ In particular, $A = S^*S$. This proves (i). ■
- ▶ Example 26.3: Take

$$R = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}.$$

- ▶ Clearly R is self-adjoint. We have the characteristic polynomial of R , as

$$p(x) = (x - 2)^2 - 1 = x^2 - 4x + 3 = (x - 1)(x - 3).$$

- ▶ Therefore, the eigenvalues of R are $\{1, 3\}$, which are non-negative. Then by part (v) of the previous Theorem, R is positive.
- ▶ Note that though R is positive as per our definition, some of its entries are negative.
- ▶ Find all self-adjoint operators S such that $R = S^2$. (Exercise)

Cartesian decomposition

- Theorem 26.3 (Cartesian decomposition): Let A be a complex square matrix. Then A decomposes uniquely as

$$A = B + iC$$

where B, C are self-adjoint.

Cartesian decomposition

- Theorem 26.3 (Cartesian decomposition): Let A be a complex square matrix. Then A decomposes uniquely as

$$A = B + iC$$

where B, C are self-adjoint.

- Proof: Take $B = \frac{A+A^*}{2}$ and $C = \frac{A-A^*}{2i}$.

Cartesian decomposition

- Theorem 26.3 (Cartesian decomposition): Let A be a complex square matrix. Then A decomposes uniquely as

$$A = B + iC$$

where B, C are self-adjoint.

- Proof: Take $B = \frac{A+A^*}{2}$ and $C = \frac{A-A^*}{2i}$.
- Then it is easily verified that B, C are self-adjoint and $A = B + iC$.

Cartesian decomposition

- ▶ **Theorem 26.3 (Cartesian decomposition):** Let A be a complex square matrix. Then A decomposes uniquely as

$$A = B + iC$$

where B, C are self-adjoint.

- ▶ **Proof:** Take $B = \frac{A+A^*}{2}$ and $C = \frac{A-A^*}{2i}$.
- ▶ Then it is easily verified that B, C are self-adjoint and $A = B + iC$.
- ▶ Conversely, suppose $A = B + iC$, with B, C self-adjoint. We see directly that $B = \frac{A+A^*}{2}$ and $C = \frac{A-A^*}{2i}$.

Cartesian decomposition

- Theorem 26.3 (Cartesian decomposition): Let A be a complex square matrix. Then A decomposes uniquely as

$$A = B + iC$$

where B, C are self-adjoint.

- Proof: Take $B = \frac{A+A^*}{2}$ and $C = \frac{A-A^*}{2i}$.
- Then it is easily verified that B, C are self-adjoint and $A = B + iC$.
- Conversely, suppose $A = B + iC$, with B, C self-adjoint. We see directly that $B = \frac{A+A^*}{2}$ and $C = \frac{A-A^*}{2i}$.
- This proves uniqueness. ■

Cartesian decomposition

- ▶ Theorem 26.3 (Cartesian decomposition): Let A be a complex square matrix. Then A decomposes uniquely as

$$A = B + iC$$

where B, C are self-adjoint.

- ▶ Proof: Take $B = \frac{A+A^*}{2}$ and $C = \frac{A-A^*}{2i}$.
- ▶ Then it is easily verified that B, C are self-adjoint and $A = B + iC$.
- ▶ Conversely, suppose $A = B + iC$, with B, C self-adjoint. We see directly that $B = \frac{A+A^*}{2}$ and $C = \frac{A-A^*}{2i}$.
- ▶ This proves uniqueness. ■
- ▶ This is known as **Cartesian decomposition**.

Constructing positive matrices out of positive matrices

- **Theorem 27.1** Suppose A, B are positive matrices and a, b are positive real numbers. Then $aA + bB$ is positive.

Constructing positive matrices out of positive matrices

- ▶ **Theorem 27.1** Suppose A, B are positive matrices and a, b are positive real numbers. Then $aA + bB$ is positive.
- ▶ **Proof:** Suppose A, B are $n \times n$ matrices. Consider arbitrary $x \in \mathbb{C}^n$.

Constructing positive matrices out of positive matrices

- ▶ **Theorem 27.1** Suppose A, B are positive matrices and a, b are positive real numbers. Then $aA + bB$ is positive.
- ▶ **Proof:** Suppose A, B are $n \times n$ matrices. Consider arbitrary $x \in \mathbb{C}^n$.
- ▶ Then, $\langle x, (aA + bB)x \rangle = a\langle x, Ax \rangle + b\langle x, Bx \rangle \geq 0$

Constructing positive matrices out of positive matrices

- ▶ **Theorem 27.1** Suppose A, B are positive matrices and a, b are positive real numbers. Then $aA + bB$ is positive.
- ▶ **Proof:** Suppose A, B are $n \times n$ matrices. Consider arbitrary $x \in \mathbb{C}^n$.
- ▶ Then, $\langle x, (aA + bB)x \rangle = a\langle x, Ax \rangle + b\langle x, Bx \rangle \geq 0$
- ▶ as the quadratic forms $\langle x, Ax \rangle$, and $\langle x, Bx \rangle$ are positive.

Constructing positive matrices out of positive matrices

- ▶ **Theorem 27.1** Suppose A, B are positive matrices and a, b are positive real numbers. Then $aA + bB$ is positive.
- ▶ **Proof:** Suppose A, B are $n \times n$ matrices. Consider arbitrary $x \in \mathbb{C}^n$.
- ▶ Then, $\langle x, (aA + bB)x \rangle = a\langle x, Ax \rangle + b\langle x, Bx \rangle \geq 0$
- ▶ as the quadratic forms $\langle x, Ax \rangle$, and $\langle x, Bx \rangle$ are positive.
- ▶ Then by part (iv) of the characterization theorem, $aA + bB$ is positive. ■

Constructing positive matrices out of positive matrices

- ▶ **Theorem 27.1** Suppose A, B are positive matrices and a, b are positive real numbers. Then $aA + bB$ is positive.
- ▶ **Proof:** Suppose A, B are $n \times n$ matrices. Consider arbitrary $x \in \mathbb{C}^n$.
- ▶ Then, $\langle x, (aA + bB)x \rangle = a\langle x, Ax \rangle + b\langle x, Bx \rangle \geq 0$
- ▶ as the quadratic forms $\langle x, Ax \rangle$, and $\langle x, Bx \rangle$ are positive.
- ▶ Then by part (iv) of the characterization theorem, $aA + bB$ is positive. ■
- ▶ Note that this theorem does not follow directly from the definition of positivity or from the eigenvalue criterion.

Constructing positive matrices out of positive matrices

- ▶ **Theorem 27.1** Suppose A, B are positive matrices and a, b are positive real numbers. Then $aA + bB$ is positive.
- ▶ **Proof:** Suppose A, B are $n \times n$ matrices. Consider arbitrary $x \in \mathbb{C}^n$.
- ▶ Then, $\langle x, (aA + bB)x \rangle = a\langle x, Ax \rangle + b\langle x, Bx \rangle \geq 0$
- ▶ as the quadratic forms $\langle x, Ax \rangle$, and $\langle x, Bx \rangle$ are positive.
- ▶ Then by part (iv) of the characterization theorem, $aA + bB$ is positive. ■
- ▶ Note that this theorem does not follow directly from the definition of positivity or from the eigenvalue criterion.
- ▶ This theorem shows that the set of $n \times n$ positive matrices has 'cone' structure: It is closed under taking sums and it is closed under multiplication by positive scalar.

Products

- ▶ **Remark 27.2:** Suppose A, B are $n \times n$ positive matrices. Then AB need not be positive as it may not be self-adjoint.

Products

- ▶ **Remark 27.2:** Suppose A, B are $n \times n$ positive matrices. Then AB need not be positive as it may not be self-adjoint.
- ▶ **Theorem 27.3:** Let A be an $n \times n$ positive matrix. Suppose B is an $n \times m$ matrix. Then B^*AB is positive.

Products

- ▶ **Remark 27.2:** Suppose A, B are $n \times n$ positive matrices. Then AB need not be positive as it may not be self-adjoint.
- ▶ **Theorem 27.3:** Let A be an $n \times n$ positive matrix. Suppose B is an $n \times m$ matrix. Then B^*AB is positive.
- ▶ **Proof:** As A is positive, $A = D^*D$ for some matrix D .

Products

- ▶ **Remark 27.2:** Suppose A, B are $n \times n$ positive matrices. Then AB need not be positive as it may not be self-adjoint.
- ▶ **Theorem 27.3:** Let A be an $n \times n$ positive matrix. Suppose B is an $n \times m$ matrix. Then B^*AB is positive.
- ▶ **Proof:** As A is positive, $A = D^*D$ for some matrix D .
- ▶ Now, $B^*AB = B^*D^*DB = (DB)^*(DB)$. Hence B^*AB is positive from the definition of positivity. We may also see this from looking at the quadratic form. ■

Trace and Determinant

- ▶ **Theorem 27.4:** Let A be a positive matrix. Then $\text{trace}(A) \geq 0$ and $\det(A) \geq 0$. Diagonal entries of A are positive.

Trace and Determinant

- ▶ **Theorem 27.4:** Let A be a positive matrix. Then $\text{trace}(A) \geq 0$ and $\det(A) \geq 0$. Diagonal entries of A are positive.
- ▶ **Proof:** The first part is clear as the trace and determinant of a matrix are respectively the sum and the product of its eigenvalues and a positive matrix has non-negative eigenvalues. The second claim follows from $a_{ii} = \langle v_i, v_i \rangle$ in part (iv) of the characterization.

Gram matrices

► **Definition 27.5:** Let v_1, v_2, \dots, v_n be vectors in an inner product space V . Then their Gram matrix is defined as the matrix

$$A = [\langle v_i, v_j \rangle]_{1 \leq i, j \leq n}.$$

Gram matrices

- ▶ **Definition 27.5:** Let v_1, v_2, \dots, v_n be vectors in an inner product space V . Then their Gram matrix is defined as the matrix

$$A = [\langle v_i, v_j \rangle]_{1 \leq i, j \leq n}.$$

- ▶ We have seen that Gram matrices are positive and conversely all positive matrices can be written as Gram matrices. In Probability theory Gram matrices appear as 'covariance matrices'.

Gram matrices

- ▶ **Definition 27.5:** Let v_1, v_2, \dots, v_n be vectors in an inner product space V . Then their Gram matrix is defined as the matrix

$$A = [\langle v_i, v_j \rangle]_{1 \leq i, j \leq n}.$$

- ▶ We have seen that Gram matrices are positive and conversely all positive matrices can be written as Gram matrices. In Probability theory Gram matrices appear as 'covariance matrices'.
- ▶ Suppose x, y are vectors in an inner product space V . Consider their Gram matrix:

$$G = \begin{bmatrix} \langle x, x \rangle & \langle x, y \rangle \\ \langle y, x \rangle & \langle y, y \rangle \end{bmatrix}.$$

Gram matrices

- ▶ **Definition 27.5:** Let v_1, v_2, \dots, v_n be vectors in an inner product space V . Then their Gram matrix is defined as the matrix

$$A = [\langle v_i, v_j \rangle]_{1 \leq i, j \leq n}.$$

- ▶ We have seen that Gram matrices are positive and conversely all positive matrices can be written as Gram matrices. In Probability theory Gram matrices appear as 'covariance matrices'.
- ▶ Suppose x, y are vectors in an inner product space V . Consider their Gram matrix:

$$G = \begin{bmatrix} \langle x, x \rangle & \langle x, y \rangle \\ \langle y, x \rangle & \langle y, y \rangle \end{bmatrix}.$$

- ▶ We know that G is positive. Hence its determinant is positive. So we get $\langle x, x \rangle \cdot \langle y, y \rangle - \langle x, y \rangle \cdot \langle y, x \rangle \geq 0$.

Gram matrices

- ▶ **Definition 27.5:** Let v_1, v_2, \dots, v_n be vectors in an inner product space V . Then their Gram matrix is defined as the matrix

$$A = [\langle v_i, v_j \rangle]_{1 \leq i, j \leq n}.$$

- ▶ We have seen that Gram matrices are positive and conversely all positive matrices can be written as Gram matrices. In Probability theory Gram matrices appear as 'covariance matrices'.
- ▶ Suppose x, y are vectors in an inner product space V . Consider their Gram matrix:

$$G = \begin{bmatrix} \langle x, x \rangle & \langle x, y \rangle \\ \langle y, x \rangle & \langle y, y \rangle \end{bmatrix}.$$

- ▶ We know that G is positive. Hence its determinant is positive. So we get $\langle x, x \rangle \cdot \langle y, y \rangle - \langle x, y \rangle \cdot \langle y, x \rangle \geq 0$.
- ▶ In other words, we have the Cauchy-Schwarz inequality:

$$|\langle x, y \rangle|^2 \leq \|x\|^2 \cdot \|y\|^2.$$

Uniqueness of positive square root

- **Theorem 27.5:** Let A be a positive matrix. Then there exists unique positive S such that $A = S^2$.

Uniqueness of positive square root

- ▶ **Theorem 27.5:** Let A be a positive matrix. Then there exists unique positive S such that $A = S^2$.
- ▶ **Proof:** In the proof the main characterization theorem for positive matrices we have seen that if A is positive then there exists positive S such that $A = S^2$.

Uniqueness of positive square root

- ▶ **Theorem 27.5:** Let A be a positive matrix. Then there exists unique positive S such that $A = S^2$.
- ▶ **Proof:** In the proof the main characterization theorem for positive matrices we have seen that if A is positive then there exists positive S such that $A = S^2$.
- ▶ Now suppose B is positive and $A = B^2$.

Uniqueness of positive square root

- ▶ **Theorem 27.5:** Let A be a positive matrix. Then there exists unique positive S such that $A = S^2$.
- ▶ **Proof:** In the proof the main characterization theorem for positive matrices we have seen that if A is positive then there exists positive S such that $A = S^2$.
- ▶ Now suppose B is positive and $A = B^2$.
- ▶ Let b_1, b_2, \dots, b_k the distinct eigenvalues of B and $B = b_1 Q_1 + b_2 Q_2 + \dots + b_k Q_k$ be the spectral decomposition of B .

Continuation

- ▶ We have,

$$A = B^2 = b_1^2 Q_1 + b_2^2 Q_2 + \cdots + b_k^2 Q_k.$$

Continuation

- ▶ We have,

$$A = B^2 = b_1^2 Q_1 + b_2^2 Q_2 + \cdots + b_k^2 Q_k.$$

- ▶ Note that as b_1, b_2, \dots, b_k are positive and distinct, $b_1^2, b_2^2, \dots, b_k^2$ are also positive and distinct.

Continuation

- ▶ We have,

$$A = B^2 = b_1^2 Q_1 + b_2^2 Q_2 + \cdots + b_k^2 Q_k.$$

- ▶ Note that as b_1, b_2, \dots, b_k are positive and distinct, $b_1^2, b_2^2, \dots, b_k^2$ are also positive and distinct.
- ▶ Hence $A = b_1^2 Q_1 + b_2^2 Q_2 + \cdots + b_k^2 Q_k$ is the unique (up to permutation) spectral decomposition of A .

Continuation

- ▶ We have,

$$A = B^2 = b_1^2 Q_1 + b_2^2 Q_2 + \cdots + b_k^2 Q_k.$$

- ▶ Note that as b_1, b_2, \dots, b_k are positive and distinct, $b_1^2, b_2^2, \dots, b_k^2$ are also positive and distinct.
- ▶ Hence $A = b_1^2 Q_1 + b_2^2 Q_2 + \cdots + b_k^2 Q_k$ is the unique (up to permutation) spectral decomposition of A .
- ▶ In other words, if $A = a_1 P_1 + a_2 P_2 + \cdots + a_k P_k$ is the spectral decomposition of A , then

$$B = \sqrt{a_1} P_1 + \sqrt{a_2} P_2 + \cdots + \sqrt{a_k} P_k.$$

Continuation

- ▶ We have,

$$A = B^2 = b_1^2 Q_1 + b_2^2 Q_2 + \cdots + b_k^2 Q_k.$$

- ▶ Note that as b_1, b_2, \dots, b_k are positive and distinct, $b_1^2, b_2^2, \dots, b_k^2$ are also positive and distinct.
- ▶ Hence $A = b_1^2 Q_1 + b_2^2 Q_2 + \cdots + b_k^2 Q_k$ is the unique (up to permutation) spectral decomposition of A .
- ▶ In other words, if $A = a_1 P_1 + a_2 P_2 + \cdots + a_k P_k$ is the spectral decomposition of A , then
$$B = \sqrt{a_1} P_1 + \sqrt{a_2} P_2 + \cdots + \sqrt{a_k} P_k.$$
- ▶ This proves uniqueness. ■

Continuation

- ▶ Note that if we do not insist on positivity of the square root there can be many square roots.

Continuation

- ▶ Note that if we do not insist on positivity of the square root there can be many square roots.
- ▶ For instance, for A positive, if $A = UDU^*$ is the diagonalization of A ,

$$U \begin{bmatrix} \pm\sqrt{d_1} & 0 & \cdots & 0 \\ 0 & \pm\sqrt{d_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \pm\sqrt{d_n} \end{bmatrix} U^*$$

with any choice of sign on the diagonal is a square root of A .

Continuation

- ▶ Note that if we do not insist on positivity of the square root there can be many square roots.
- ▶ For instance, for A positive, if $A = UDU^*$ is the diagonalization of A ,

$$U \begin{bmatrix} \pm\sqrt{d_1} & 0 & \cdots & 0 \\ 0 & \pm\sqrt{d_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \pm\sqrt{d_n} \end{bmatrix} U^*$$

with any choice of sign on the diagonal is a square root of A .

- ▶ For any projection P , the unitary $2P - I = P - P^\perp$ is a square root of I . This shows that I has infinitely many square roots (in dimension bigger than 1) if we do not insist on positivity.

Notation

- ▶ **Notation:** For a positive matrix A , $A^{\frac{1}{2}}$ denotes the square root of A . For any matrix B , $|B|$ denotes $(B^*B)^{\frac{1}{2}}$.

Notation

- ▶ **Notation:** For a positive matrix A , $A^{\frac{1}{2}}$ denotes the square root of A . For any matrix B , $|B|$ denotes $(B^*B)^{\frac{1}{2}}$.
- ▶ Note that for a positive matrix A , $A^{\frac{1}{2}} = A$ if and only if A is a projection.

Notation

- ▶ **Notation:** For a positive matrix A , $A^{\frac{1}{2}}$ denotes the square root of A . For any matrix B , $|B|$ denotes $(B^*B)^{\frac{1}{2}}$.
- ▶ Note that for a positive matrix A , $A^{\frac{1}{2}} = A$ if and only if A is a projection.
- ▶ **Question:** Do we have $|A + B| \leq |A| + |B|$? In other words can we say that $|A| + |B| - |A + B|$ is positive?

Notation

- ▶ **Notation:** For a positive matrix A , $A^{\frac{1}{2}}$ denotes the square root of A . For any matrix B , $|B|$ denotes $(B^*B)^{\frac{1}{2}}$.
- ▶ Note that for a positive matrix A , $A^{\frac{1}{2}} = A$ if and only if A is a projection.
- ▶ **Question:** Do we have $|A + B| \leq |A| + |B|$? In other words can we say that $|A| + |B| - |A + B|$ is positive?

Notation

- ▶ **Notation:** For a positive matrix A , $A^{\frac{1}{2}}$ denotes the square root of A . For any matrix B , $|B|$ denotes $(B^*B)^{\frac{1}{2}}$.
- ▶ Note that for a positive matrix A , $A^{\frac{1}{2}} = A$ if and only if A is a projection.
- ▶ **Question:** Do we have $|A + B| \leq |A| + |B|$? In other words can we say that $|A| + |B| - |A + B|$ is positive?

Notation

- ▶ **Notation:** For a positive matrix A , $A^{\frac{1}{2}}$ denotes the square root of A . For any matrix B , $|B|$ denotes $(B^*B)^{\frac{1}{2}}$.
- ▶ Note that for a positive matrix A , $A^{\frac{1}{2}} = A$ if and only if A is a projection.
- ▶ **Question:** Do we have $|A + B| \leq |A| + |B|$? In other words can we say that $|A| + |B| - |A + B|$ is positive?
- ▶ **END OF REVIEW**

Polar decomposition theorem

- **Theorem 28.1:** Let B be an $n \times n$ matrix. Then B factorizes as

$$B = UR$$

where U is a unitary and R is positive. Here $R = |B|$ and U is uniquely determined if B is invertible.

Polar decomposition theorem

- **Theorem 28.1:** Let B be an $n \times n$ matrix. Then B factorizes as

$$B = UR$$

where U is a unitary and R is positive. Here $R = |B|$ and U is uniquely determined if B is invertible.

- **Proof:** We want to find U, R satisfying

$$B = UR$$

as above.

Polar decomposition theorem

- **Theorem 28.1:** Let B be an $n \times n$ matrix. Then B factorizes as

$$B = UR$$

where U is a unitary and R is positive. Here $R = |B|$ and U is uniquely determined if B is invertible.

- **Proof:** We want to find U, R satisfying

$$B = UR$$

as above.

- As suggested by the second line we take $R = |B| = (B^*B)^{\frac{1}{2}}$.

Polar decomposition theorem

- **Theorem 28.1:** Let B be an $n \times n$ matrix. Then B factorizes as

$$B = UR$$

where U is a unitary and R is positive. Here $R = |B|$ and U is uniquely determined if B is invertible.

- **Proof:** We want to find U, R satisfying

$$B = UR$$

as above.

- As suggested by the second line we take $R = |B| = (B^*B)^{\frac{1}{2}}$.
- Let \mathcal{M} be the range of $|B|$, that is,

$$\mathcal{M} = \{|B|x : x \in \mathbb{C}^n\}.$$

Polar decomposition theorem

- **Theorem 28.1:** Let B be an $n \times n$ matrix. Then B factorizes as

$$B = UR$$

where U is a unitary and R is positive. Here $R = |B|$ and U is uniquely determined if B is invertible.

- **Proof:** We want to find U, R satisfying

$$B = UR$$

as above.

- As suggested by the second line we take $R = |B| = (B^*B)^{\frac{1}{2}}$.
- Let \mathcal{M} be the range of $|B|$, that is,

$$\mathcal{M} = \{|B|x : x \in \mathbb{C}^n\}.$$

- Clearly \mathcal{M} is a subspace of \mathbb{C}^n .

Continuation

- ▶ Similarly let \mathcal{N} be the range of B :

$$\mathcal{N} = \{Bx : x \in \mathbb{C}^n\}.$$

Continuation

- ▶ Similarly let \mathcal{N} be the range of B :

$$\mathcal{N} = \{Bx : x \in \mathbb{C}^n\}.$$

- ▶ Define $U_0 : \mathcal{M} \rightarrow \mathcal{N}$ by

$$U_0|B|x = Bx, x \in \mathbb{C}^n.$$

Continuation

- ▶ Similarly let \mathcal{N} be the range of B :

$$\mathcal{N} = \{Bx : x \in \mathbb{C}^n\}.$$

- ▶ Define $U_0 : \mathcal{M} \rightarrow \mathcal{N}$ by

$$U_0|B|x = Bx, x \in \mathbb{C}^n.$$

- ▶ We claim that U_0 is a well-defined unitary from \mathcal{M} to \mathcal{N} .

Continuation

- ▶ Similarly let \mathcal{N} be the range of B :

$$\mathcal{N} = \{Bx : x \in \mathbb{C}^n\}.$$

- ▶ Define $U_0 : \mathcal{M} \rightarrow \mathcal{N}$ by

$$U_0|B|x = Bx, x \in \mathbb{C}^n.$$

- ▶ We claim that U_0 is a well-defined unitary from \mathcal{M} to \mathcal{N} .
- ▶ Observe that, for $u, v \in \mathbb{C}^n$,

$$\begin{aligned}\langle Bu, Bv \rangle &= \langle u, B^* Bv \rangle \\ &= \langle u, |B|^2 v \rangle \\ &= \langle |B|u, |B|v \rangle\end{aligned}$$

Continuation

- ▶ Similarly let \mathcal{N} be the range of B :

$$\mathcal{N} = \{Bx : x \in \mathbb{C}^n\}.$$

- ▶ Define $U_0 : \mathcal{M} \rightarrow \mathcal{N}$ by

$$U_0|B|x = Bx, x \in \mathbb{C}^n.$$

- ▶ We claim that U_0 is a well-defined unitary from \mathcal{M} to \mathcal{N} .
- ▶ Observe that, for $u, v \in \mathbb{C}^n$,

$$\begin{aligned}\langle Bu, Bv \rangle &= \langle u, B^* Bv \rangle \\ &= \langle u, |B|^2 v \rangle \\ &= \langle |B|u, |B|v \rangle\end{aligned}$$

- ▶ In particular, if $|B|x = |B|y$, then $|B|(x - y) = 0$. Hence,

$$\langle |B|(x - y), |B|(x - y) \rangle = 0.$$

Continuation

- ▶ Taking $u = v = (x - y)$, in the previous equation we get $\langle B(x - y), B(x - y) \rangle = 0$ or $B(x - y) = 0$, that is, $Bx = By$.

Continuation

- ▶ Taking $u = v = (x - y)$, in the previous equation we get $\langle B(x - y), B(x - y) \rangle = 0$ or $B(x - y) = 0$, that is, $Bx = By$.
- ▶ In other words if $|B|x = |B|y$ then $Bx = By$. This shows that U_0 is well defined.

Continuation

- ▶ Taking $u = v = (x - y)$, in the previous equation we get $\langle B(x - y), B(x - y) \rangle = 0$ or $B(x - y) = 0$, that is, $Bx = By$.
- ▶ In other words if $|B|x = |B|y$ then $Bx = By$. This shows that U_0 is well defined.
- ▶ Clearly U_0 as defined is linear.

Continuation

- ▶ Taking $u = v = (x - y)$, in the previous equation we get $\langle B(x - y), B(x - y) \rangle = 0$ or $B(x - y) = 0$, that is, $Bx = By$.
- ▶ In other words if $|B|x = |B|y$ then $Bx = By$. This shows that U_0 is well defined.
- ▶ Clearly U_0 as defined is linear.
- ▶ Further,

$$\langle |B|u, |B|v \rangle = \langle Bu, Bv \rangle, \quad \forall u, v \in \mathbb{C}^n$$

shows that

$$\langle U_0(|B|u), U_0(|B|v) \rangle = \langle |B|u, |B|v \rangle, \quad \forall u, v \in \mathbb{C}^n$$

Continuation

- ▶ Taking $u = v = (x - y)$, in the previous equation we get $\langle B(x - y), B(x - y) \rangle = 0$ or $B(x - y) = 0$, that is, $Bx = By$.
- ▶ In other words if $|B|x = |B|y$ then $Bx = By$. This shows that U_0 is well defined.
- ▶ Clearly U_0 as defined is linear.
- ▶ Further,

$$\langle |B|u, |B|v \rangle = \langle Bu, Bv \rangle, \quad \forall u, v \in \mathbb{C}^n$$

shows that

$$\langle U_0(|B|u), U_0(|B|v) \rangle = \langle |B|u, |B|v \rangle, \quad \forall u, v \in \mathbb{C}^n$$

- ▶ Hence U_0 is isometric.

Continuation

- ▶ Taking $u = v = (x - y)$, in the previous equation we get $\langle B(x - y), B(x - y) \rangle = 0$ or $B(x - y) = 0$, that is, $Bx = By$.
- ▶ In other words if $|B|x = |B|y$ then $Bx = By$. This shows that U_0 is well defined.
- ▶ Clearly U_0 as defined is linear.
- ▶ Further,

$$\langle |B|u, |B|v \rangle = \langle Bu, Bv \rangle, \quad \forall u, v \in \mathbb{C}^n$$

shows that

$$\langle U_0(|B|u), U_0(|B|v) \rangle = \langle |B|u, |B|v \rangle, \quad \forall u, v \in \mathbb{C}^n$$

- ▶ Hence U_0 is isometric.
- ▶ From the definition of U_0 it is clear that U_0 maps \mathcal{M} onto \mathcal{N} .

Continuation

- ▶ We can extend U_0 to a unitary from \mathbb{C}^n to \mathbb{C}^n as the dimensions of \mathcal{M}^\perp and \mathcal{N}^\perp are equal. More explicitly we can take the following steps:

Continuation

- ▶ We can extend U_0 to a unitary from \mathbb{C}^n to \mathbb{C}^n as the dimensions of \mathcal{M}^\perp and \mathcal{N}^\perp are equal. More explicitly we can take the following steps:
- ▶ Let v_1, v_2, \dots, v_k be an ortho-normal basis of \mathcal{M} . Then $U_0 v_1, U_0 v_2, \dots, U_0 v_k$ is an orthonormal basis of \mathcal{N} .

Continuation

- ▶ We can extend U_0 to a unitary from \mathbb{C}^n to \mathbb{C}^n as the dimensions of \mathcal{M}^\perp and \mathcal{N}^\perp are equal. More explicitly we can take the following steps:
- ▶ Let v_1, v_2, \dots, v_k be an ortho-normal basis of \mathcal{M} . Then $U_0 v_1, U_0 v_2, \dots, U_0 v_k$ is an orthonormal basis of \mathcal{N} .
- ▶ Extend $\{v_1, v_2, \dots, v_k\}$ to an orthonormal basis $\{v_1, v_2, \dots, v_n\}$ of \mathbb{C}^n .

Continuation

- ▶ We can extend U_0 to a unitary from \mathbb{C}^n to \mathbb{C}^n as the dimensions of \mathcal{M}^\perp and \mathcal{N}^\perp are equal. More explicitly we can take the following steps:
- ▶ Let v_1, v_2, \dots, v_k be an ortho-normal basis of \mathcal{M} . Then $U_0 v_1, U_0 v_2, \dots, U_0 v_k$ is an orthonormal basis of \mathcal{N} .
- ▶ Extend $\{v_1, v_2, \dots, v_k\}$ to an orthonormal basis $\{v_1, v_2, \dots, v_n\}$ of \mathbb{C}^n .
- ▶ Similarly, extend $\{U_0 v_1, U_0 v_2, \dots, U_0 v_k\}$ to an orthonormal basis $\{U_0 v_1, U_0 v_2, \dots, U_0 v_k, w_1, w_2, \dots, w_{n-k}\}$ of \mathbb{C}^n .

Continuation

- Now we extend U to a unitary of \mathbb{C}^n by defining it on the orthonormal basis $\{v_1, \dots, v_n\}$ (and extending linearly) by setting

$$Uv_j = \begin{cases} U_0 v_j & \text{for } 1 \leq j \leq k; \\ w_{j-k} & \text{for } k+1 \leq j \leq n. \end{cases}.$$

Continuation

- Now we extend U to a unitary of \mathbb{C}^n by defining it on the orthonormal basis $\{v_1, \dots, v_n\}$ (and extending linearly) by setting

$$Uv_j = \begin{cases} U_0 v_j & \text{for } 1 \leq j \leq k; \\ w_{j-k} & \text{for } k+1 \leq j \leq n. \end{cases}.$$

- Clearly U is a unitary and $Uv = U_0 v$ for $v \in \mathcal{M}$.

Continuation

- Now we extend U to a unitary of \mathbb{C}^n by defining it on the orthonormal basis $\{v_1, \dots, v_n\}$ (and extending linearly) by setting

$$Uv_j = \begin{cases} U_0 v_j & \text{for } 1 \leq j \leq k; \\ w_{j-k} & \text{for } k+1 \leq j \leq n. \end{cases}.$$

- Clearly U is a unitary and $Uv = U_0 v$ for $v \in \mathcal{M}$.
- Now for $x \in \mathbb{C}^n$,

$$U|B|x = URx = U_0 Rx = Bx, \quad \forall x \in \mathbb{C}^n.$$

Continuation

- Now we extend U to a unitary of \mathbb{C}^n by defining it on the orthonormal basis $\{v_1, \dots, v_n\}$ (and extending linearly) by setting

$$Uv_j = \begin{cases} U_0 v_j & \text{for } 1 \leq j \leq k; \\ w_{j-k} & \text{for } k+1 \leq j \leq n. \end{cases}.$$

- Clearly U is a unitary and $Uv = U_0 v$ for $v \in \mathcal{M}$.
- Now for $x \in \mathbb{C}^n$,

$$U|B|x = URx = U_0 Rx = Bx, \quad \forall x \in \mathbb{C}^n.$$

- This proves the existence. Now if $B = UR$ for some unitary U and positive R , $B^*B = R^*U^*UR = R^2$. Therefore R is the unique positive square root of B^*B , that is, $R = |B|$.

Continuation

- Now we extend U to a unitary of \mathbb{C}^n by defining it on the orthonormal basis $\{v_1, \dots, v_n\}$ (and extending linearly) by setting

$$Uv_j = \begin{cases} U_0 v_j & \text{for } 1 \leq j \leq k; \\ w_{j-k} & \text{for } k+1 \leq j \leq n. \end{cases}.$$

- Clearly U is a unitary and $Uv = U_0 v$ for $v \in \mathcal{M}$.
- Now for $x \in \mathbb{C}^n$,

$$U|B|x = URx = U_0 Rx = Bx, \quad \forall x \in \mathbb{C}^n.$$

- This proves the existence. Now if $B = UR$ for some unitary U and positive R , $B^*B = R^*U^*UR = R^2$. Therefore R is the unique positive square root of B^*B , that is, $R = |B|$.
- If B is invertible, and $B = UR$, then as $\det(B) = \det(U) \cdot \det(R) \neq 0$, R is also invertible and we get

$$U = BR^{-1} = B(|B|)^{-1}.$$

Continuation

- Now we extend U to a unitary of \mathbb{C}^n by defining it on the orthonormal basis $\{v_1, \dots, v_n\}$ (and extending linearly) by setting

$$Uv_j = \begin{cases} U_0 v_j & \text{for } 1 \leq j \leq k; \\ w_{j-k} & \text{for } k+1 \leq j \leq n. \end{cases}.$$

- Clearly U is a unitary and $Uv = U_0 v$ for $v \in \mathcal{M}$.
- Now for $x \in \mathbb{C}^n$,

$$U|B|x = URx = U_0 Rx = Bx, \quad \forall x \in \mathbb{C}^n.$$

- This proves the existence. Now if $B = UR$ for some unitary U and positive R , $B^*B = R^*U^*UR = R^2$. Therefore R is the unique positive square root of B^*B , that is, $R = |B|$.
- If B is invertible, and $B = UR$, then as $\det(B) = \det(U) \cdot \det(R) \neq 0$, R is also invertible and we get

$$U = BR^{-1} = B(|B|)^{-1}.$$

- Therefore, U is uniquely determined. ■

Polar decomposition for normal matrices

- ▶ Example 28.2: Suppose A is a normal matrix and let

$$A = UDU^*$$

be the diagonalization of A with unitary U and diagonal matrix D . Let d_1, d_2, \dots, d_n be the diagonal entries of D .

Polar decomposition for normal matrices

- ▶ Example 28.2: Suppose A is a normal matrix and let

$$A = UDU^*$$

be the diagonalization of A with unitary U and diagonal matrix D . Let d_1, d_2, \dots, d_n be the diagonal entries of D .

- ▶ We can write D as

$$\begin{bmatrix} e^{i\theta_1} & 0 & \dots & 0 \\ 0 & e^{i\theta_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & e^{i\theta_n} \end{bmatrix} \cdot \begin{bmatrix} |d_1| & 0 & \dots & 0 \\ 0 & |d_2| & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & |d_n| \end{bmatrix}.$$

using the polar decompositions of d_1, d_2, \dots, d_n .

Polar decomposition for normal matrices

- ▶ Example 28.2: Suppose A is a normal matrix and let

$$A = UDU^*$$

be the diagonalization of A with unitary U and diagonal matrix D . Let d_1, d_2, \dots, d_n be the diagonal entries of D .

- ▶ We can write D as

$$\begin{bmatrix} e^{i\theta_1} & 0 & \dots & 0 \\ 0 & e^{i\theta_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & e^{i\theta_n} \end{bmatrix} \cdot \begin{bmatrix} |d_1| & 0 & \dots & 0 \\ 0 & |d_2| & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & |d_n| \end{bmatrix}.$$

using the polar decompositions of d_1, d_2, \dots, d_n .

- ▶ Note that if $d_j = 0$, then when we write $d_j = e^{i\theta_j}|d_j|$, $e^{i\theta_j}$ is not unique.

Continuation

- ▶ Now $A = V|A|$ where

$$V = U \begin{bmatrix} e^{i\theta_1} & 0 & \dots & 0 \\ 0 & e^{i\theta_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & e^{i\theta_n} \end{bmatrix} U^*$$

is a unitary and

Continuation

- ▶ Now $A = V|A|$ where

$$V = U \begin{bmatrix} e^{i\theta_1} & 0 & \dots & 0 \\ 0 & e^{i\theta_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & e^{i\theta_n} \end{bmatrix} U^*$$

is a unitary and

- ▶

$$|A| = U \begin{bmatrix} |d_1| & 0 & \dots & 0 \\ 0 & |d_2| & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & |d_n| \end{bmatrix} U^*$$

is positive.

Continuation

- ▶ Alternatively, if $A = a_1 P_1 + a_2 P_2 + \cdots + a_k P_k$ is the spectral decomposition of A , we can get the polar decomposition as follows.

Continuation

- ▶ Alternatively, if $A = a_1P_1 + a_2P_2 + \cdots + a_kP_k$ is the spectral decomposition of A , we can get the polar decomposition as follows.
- ▶ Suppose $a_j = e^{i\theta_j}|a_j|$, $1 \leq j \leq k$ is the polar decomposition of a_j .

Continuation

- ▶ Alternatively, if $A = a_1 P_1 + a_2 P_2 + \cdots + a_k P_k$ is the spectral decomposition of A , we can get the polar decomposition as follows.
- ▶ Suppose $a_j = e^{i\theta_j} |a_j|$, $1 \leq j \leq k$ is the polar decomposition of a_j .
- ▶ Take $V = e^{i\theta_1} P_1 + e^{i\theta_2} P_2 + \cdots + e^{i\theta_k} P_k$ and $|A| = |a_1| P_1 + |a_2| P_2 + \cdots + |a_k| P_k$.

Continuation

- ▶ Alternatively, if $A = a_1 P_1 + a_2 P_2 + \cdots + a_k P_k$ is the spectral decomposition of A , we can get the polar decomposition as follows.
- ▶ Suppose $a_j = e^{i\theta_j} |a_j|$, $1 \leq j \leq k$ is the polar decomposition of a_j .
- ▶ Take $V = e^{i\theta_1} P_1 + e^{i\theta_2} P_2 + \cdots + e^{i\theta_k} P_k$ and $|A| = |a_1| P_1 + |a_2| P_2 + \cdots + |a_k| P_k$.
- ▶ Then $A = V|A|$ is the polar decomposition of A .

Example

- Example 28.3: Consider

$$B = \begin{bmatrix} 2 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Example

- ▶ Example 28.3: Consider

$$B = \begin{bmatrix} 2 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

- ▶ Then

$$B^*B = \begin{bmatrix} 4 & 4 & 4 \\ 4 & 4 & 4 \\ 4 & 4 & 4 \end{bmatrix}.$$

Example

- ▶ Example 28.3: Consider

$$B = \begin{bmatrix} 2 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

- ▶ Then

$$B^*B = \begin{bmatrix} 4 & 4 & 4 \\ 4 & 4 & 4 \\ 4 & 4 & 4 \end{bmatrix}.$$

- ▶ Recall that an $n \times n$ matrix with all entries equal to $\frac{1}{n}$ is a projection.

Example

- ▶ Example 28.3: Consider

$$B = \begin{bmatrix} 2 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

- ▶ Then

$$B^*B = \begin{bmatrix} 4 & 4 & 4 \\ 4 & 4 & 4 \\ 4 & 4 & 4 \end{bmatrix}.$$

- ▶ Recall that an $n \times n$ matrix with all entries equal to $\frac{1}{n}$ is a projection.
- ▶ Therefore

$$B^*B = 12 \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix} + 0 \begin{bmatrix} 2/3 & -1/3 & -1/3 \\ -1/3 & 2/3 & -1/3 \\ -1/3 & -1/3 & 2/3 \end{bmatrix}$$

is the spectral decomposition of B^*B .

Continuation

► Therefore,

$$\begin{aligned}|B| &= \sqrt{12} \begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix} \\ &= \begin{bmatrix} 2/\sqrt{3} & 2/\sqrt{3} & 2/\sqrt{3} \\ 2/\sqrt{3} & 2/\sqrt{3} & 2/\sqrt{3} \\ 2/\sqrt{3} & 2/\sqrt{3} & 2/\sqrt{3} \end{bmatrix}.\end{aligned}$$

Continuation

► Take

$$U = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/\sqrt{6} & 1/\sqrt{6} & -2/\sqrt{6} \end{bmatrix}.$$

Continuation

- ▶ Take

$$U = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/\sqrt{6} & 1/\sqrt{6} & -2/\sqrt{6} \end{bmatrix}.$$

- ▶ We may now verify that

$$B = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/\sqrt{6} & 1/\sqrt{6} & -2/\sqrt{6} \end{bmatrix} \cdot \begin{bmatrix} 2/\sqrt{3} & 2/\sqrt{3} & 2/\sqrt{3} \\ 2/\sqrt{3} & 2/\sqrt{3} & 2/\sqrt{3} \\ 2/\sqrt{3} & 2/\sqrt{3} & 2/\sqrt{3} \end{bmatrix}.$$

is a polar decomposition of B .

Continuation

- ▶ Take

$$U = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/\sqrt{6} & 1/\sqrt{6} & -2/\sqrt{6} \end{bmatrix}.$$

- ▶ We may now verify that

$$B = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/\sqrt{6} & 1/\sqrt{6} & -2/\sqrt{6} \end{bmatrix} \cdot \begin{bmatrix} 2/\sqrt{3} & 2/\sqrt{3} & 2/\sqrt{3} \\ 2/\sqrt{3} & 2/\sqrt{3} & 2/\sqrt{3} \\ 2/\sqrt{3} & 2/\sqrt{3} & 2/\sqrt{3} \end{bmatrix}.$$

is a polar decomposition of B .

- ▶ END OF LECTURE 28.