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Lecture 28: Polar decomposition theorem

I First we recall the notion of positivity and some
characterizations.

I Definition 26.1: An n × n matrix A is said to be a positive
matrix if A = B∗B for some n × n matrix B.

I Some authors may call these as non-negative definite matrices
and invertible matrices of the form B∗B as positive definite
matrices.

I Warning: A positive matrix need not have positive entries. It
can have negative entries and also complex entries.

I Matrices whose entries are positive would be called as
entrywise positive matrices. That is also an important class,
but we will not be studying them now.
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Characterizations of positivity

I Theorem 26.2: Let A = [aij ]1≤i ,j≤n be a complex matrix.
Then the following are equivalent:

I (i) A is positive, that is, A = B∗B for some n × n matrix B.

I (ii) A = C ∗C for some m × n matrix for some m.

I (iii) aij = 〈vi , vj〉, 1 ≤ i , j ≤ n for vectors v1, v2, . . . , vn in some
inner product space V .

I (iv) 〈x ,Ax〉 ≥ 0 for all x ∈ Cn.

I (v) A = A∗ and eigenvalues of A are non-negative.

I (vi) A = S2 for some self-adjoint n × n matrix S .
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Continuation

I Proof: (i) ⇒ (ii). Take m = n and C = B.

I (ii) ⇒ (iii). Let v1, v2, . . . , vn be the columns of C . Then
vj ∈ Cm for every j and A = C ∗C implies aij = 〈vi , vj〉.

I (iii) ⇒ (iv). We have aij = 〈vi , vj〉, ∀i , j .
I Now for any x ∈ Cn:

〈x ,Ax〉 =
n∑

i=1

xi (Ax)i

=
n∑

i=1

xi .
n∑

j=1

aijxj

=
n∑

i=1

xi .
n∑

j=1

〈vi , vj〉.xj
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Continuation

I Therefore,

〈x ,Ax〉 =
n∑

i=1

n∑
j=1

〈xivi , xjvj〉

= 〈
n∑

i=1

xivi ,
n∑

j=1

xjvj〉

= 〈y , y〉

I where y =
∑n

i=1 xivi .

I Hence
〈x ,Ax〉 ≥ 0.
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Continuation

I (iv) ⇒ (v). It is given that 〈x ,Ax〉 ≥ 0 for every x ∈ Cn.

I First we want to show that A = A∗. Here we use the
polarization identity and the fact that if 〈v ,w〉 is real then
〈v ,w〉 = 〈w , v〉. For all x , y ,

〈x ,Ay〉 =
1

4

3∑
j=0

i−j〈(x + i jy),A(x + i jy)〉

=
1

4

3∑
j=0

i−j〈A(x + i jy), (x + i jy)〉

= 〈Ax , y〉
I This proves A∗ = A from the defining condition of the adjoint.
I Now suppose a is an eigenvalue of A. Choose an eigenvector

x with a as the eigenvalue. Then

〈x ,Ax〉 = a〈x , x〉 ≥ 0.

I implies that a ≥ 0 as 〈x , x〉 6= 0.
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Continuation

I (v) ⇒ (vi). We assume A = A∗ and the eigenvalues of A are
non-negative.

I By spectral theorem there exists a unitary U and a diagonal
matrix D, such that

A = UDU∗.

I Since the eigenvalues of A are non-negative, the diagonal
entries of D are non-negative. We denote the diagonal entries
by d1, d2, . . . , dn.

I Take

S = U


√
d1 0 . . . 0
0

√
d2 . . . 0

...
...

. . .
...

0 0 . . .
√
dn

U∗.

I Then clearly S is self-adjoint and A = S2.
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Continuation

I (vi) ⇒ (i). Assume A = S2 where S = S∗.

I In particular, A = S∗S . This proves (i). �
I Example 26.3: Take

R =

[
2 −1
−1 2

]
.

I Clearly R is self-adjoint. We have the characteristic
polynomial of R, as

p(x) = (x − 2)2 − 1 = x2 − 4x + 3 = (x − 1)(x − 3).

I Therefore, the eigenvalues of R are {1, 3}, which are
non-negative. Then by part (v) of the previous Theorem, R is
positive.

I Note that though R is positive as per our definition, some of
its entries are negative.

I Find all self-adjoint operators S such that R = S2. (Exercise)
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Cartesian decomposition

I Theorem 26.3 (Cartesian decomposition): Let A be a complex
square matrix. Then A decomposes uniquely as

A = B + iC

where B,C are self-adjoint.

I Proof: Take B = A+A∗

2 and C = A−A∗

2i .

I Then it is easily verified that B,C are self-adjoint and
A = B + iC .

I Conversely, suppose A = B + iC , with B,C self-adjoint. We
see directly that B = A+A∗

2 and C = A−A∗

2i .

I This proves uniqueness. �

I This is known as Cartesian decomposition.
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Constructing positive matrices out of positive matrices

I Theorem 27.1 Suppose A,B are positive matrices and a, b are
positive real numbers. Then aA + bB is positive.

I Proof: Suppose A,B are n × n matrices. Consider arbitrary
x ∈ Cn.

I Then, 〈x , (aA + bB)x〉 = a〈x ,Ax〉+ b〈x ,Bx〉 ≥ 0

I as the quadratic forms 〈x ,Ax〉, and 〈x ,Bx〉 are positive.

I Then by part (iv) of the characterization theorem, aA + bB is
positive. �

I Note that this theorem does not follow directly from the
definition of positivity or from the eigenvalue criterion.

I This theorem shows that the set of n × n positive matrices
has ‘cone’ structure: It is closed under taking sums and it is
closed under multiplication by positive scalar.
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Products

I Remark 27.2: Suppose A,B are n × n positive matrices. Then
AB need not be positive as it may not be self-adjoint.

I Theorem 27.3: Let A be an n × n positive matrix. Suppose B
is an n ×m matrix. Then B∗AB is positive.

I Proof: As A is positive, A = D∗D for some matrix D.

I Now, B∗AB = B∗D∗DB = (DB)∗(DB). Hence B∗AB is
positive from the definition of positivity. We may also see this
from looking at the quadratic form. �
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Trace and Determinant

I Theorem 27.4: Let A be a positive matrix. Then
trace (A) ≥ 0 and det(A) ≥ 0. Diagonal entries of A are
positive.

I Proof: The first part is clear as the trace and determinant of a
matrix are respectively the sum and the product of its
eigenvalues and a positive matrix has non-negative
eigenvalues. The second claim follows from aii = 〈vi , vi 〉 in
part (iv) of the characterization.
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Gram matrices

I Definition 27.5: Let v1, v2, . . . , vn be vectors in an inner
product space V . Then their Gram matrix is defined as the
matrix

A = [〈vi , vj〉]1≤i ,j≤n.

I We have seen that Gram matrices are positive and conversely
all positive matrices can be written as Gram matrices. In
Probability theory Gram matrices appear as ‘covariance
matrices’.

I Suppose x , y are vectors in an inner product space V .
Consider their Gram matrix:

G =

[
〈x , x〉 〈x , y〉
〈y , x〉 〈y , y〉

]
.

I We know that G is positive. Hence its determinant is positive.
So we get 〈x , x〉.〈y , y〉 − 〈x , y〉.〈y , x〉 ≥ 0.

I In other words, we have the Cauchy-Schwarz inequality:

|〈x , y〉|2 ≤ ‖x‖2.‖y‖2.
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Uniqueness of positive square root

I Theorem 27.5: Let A be a positive matrix. Then there exists
unique positive S such that A = S2.

I Proof: In the proof the main characterization theorem for
positive matrices we have seen that if A is positive then there
exists positive S such that A = S2.

I Now suppose B is positive and A = B2.

I Let b1, b2, . . . , bk the distinct eigenvalues of B and
B = b1Q1 + b2Q2 + · · ·+ bkQk be the spectral decomposition
of B.
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Continuation

I We have,

A = B2 = b21Q1 + b22Q2 + · · ·+ b2kQk .

I Note that as b1, b2, . . . , bk are positive and distinct,
b21, b

2
2, . . . , b

2
k are also positive and distinct.

I Hence A = b21Q1 + b22Q2 + · · ·+ b2kQk is the unique (up to
permutation) spectral decomposition of A.

I In other words, if A = a1P1 + a2P2 + · · ·+ akPk is the
spectral decomposition of A, then
B =

√
a1P1 +

√
a2P2 + · · ·+√akPk .

I This proves uniqueness. �
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Continuation

I Note that if we do not insist on positivity of the square root
there can be many square roots.

I For instance, for A positive, if A = UDU∗ is the
diagonalization of A,

U


±
√
d1 0 · · · 0

0 ±
√
d2 · · · 0

...
...

. . .
...

0 0 · · · ±
√
dn

U∗

with any choice of sign on the diagonal is a square root of A.

I For any projection P, the unitary 2P − I = P −P⊥ is a square
root of I . This shows that I has infinitely many square roots
(in dimension bigger than 1) if we do not insist on positivity.
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Notation

I Notation: For a positive matrix A, A
1
2 denotes the square root

of A. For any matrix B, |B| denotes (B∗B)
1
2 .

I Note that for a positive matrix A, A
1
2 = A if and only if A is a

projection.

I Question: Do we have |A + B| ≤ |A|+ |B|? In other words
can we say that |A|+ |B| − |A + B| is positive?
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Notation

I Notation: For a positive matrix A, A
1
2 denotes the square root

of A. For any matrix B, |B| denotes (B∗B)
1
2 .

I Note that for a positive matrix A, A
1
2 = A if and only if A is a

projection.

I Question: Do we have |A + B| ≤ |A|+ |B|? In other words
can we say that |A|+ |B| − |A + B| is positive?

I END OF REVIEW



Notation

I Notation: For a positive matrix A, A
1
2 denotes the square root

of A. For any matrix B, |B| denotes (B∗B)
1
2 .

I Note that for a positive matrix A, A
1
2 = A if and only if A is a

projection.

I Question: Do we have |A + B| ≤ |A|+ |B|? In other words
can we say that |A|+ |B| − |A + B| is positive?

I END OF REVIEW



Notation

I Notation: For a positive matrix A, A
1
2 denotes the square root

of A. For any matrix B, |B| denotes (B∗B)
1
2 .

I Note that for a positive matrix A, A
1
2 = A if and only if A is a

projection.

I Question: Do we have |A + B| ≤ |A|+ |B|? In other words
can we say that |A|+ |B| − |A + B| is positive?

I END OF REVIEW



Notation

I Notation: For a positive matrix A, A
1
2 denotes the square root

of A. For any matrix B, |B| denotes (B∗B)
1
2 .

I Note that for a positive matrix A, A
1
2 = A if and only if A is a

projection.

I Question: Do we have |A + B| ≤ |A|+ |B|? In other words
can we say that |A|+ |B| − |A + B| is positive?

I END OF REVIEW



Notation

I Notation: For a positive matrix A, A
1
2 denotes the square root

of A. For any matrix B, |B| denotes (B∗B)
1
2 .

I Note that for a positive matrix A, A
1
2 = A if and only if A is a

projection.

I Question: Do we have |A + B| ≤ |A|+ |B|? In other words
can we say that |A|+ |B| − |A + B| is positive?

I END OF REVIEW



Polar decomposition theorem

I Theorem 28.1: Let B be an n × n matrix. Then B factorizes
as

B = UR

where U is a unitary and R is positive. Here R = |B| and U is
uniquely determined if B is invertible.

I Proof: We want to find U,R satisfying

B = UR

as above.

I As suggested by the second line we take R = |B| = (B∗B)
1
2 .

I Let M be the range of |B|, that is,

M = {|B|x : x ∈ Cn}.

I Clearly M is a subspace of Cn.
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Continuation

I Similarly let N be the range of B:

N = {Bx : x ∈ Cn}.

I Define U0 :M→N by

U0|B|x = Bx , x ∈ Cn.

I We claim that U0 is a well-defined unitary from M to N .
I Observe that, for u, v ∈ Cn,

〈Bu,Bv〉 = 〈u,B∗Bv〉
= 〈u, |B|2v〉
= 〈|B|u, |B|v〉

I In particular, if |B|x = |B|y , then |B|(x − y) = 0, Hence,

〈|B|(x − y), |B|(x − y)〉 = 0.
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I Taking u = v = (x − y), in the previous equation we get
〈B(x − y),B(x − y)〉 = 0 or B(x − y) = 0, that is, Bx = By .

I In other words if |B|x = |B|y then Bx = By . This shows that
U0 is well defined.

I Clearly U0 as defined is linear.

I Further,

〈|B|u, |B|v〉 = 〈Bu,Bv〉, ∀u, v ∈ Cn

shows that

〈U0(|B|u),U0(|B|v)〉 = 〈|B|u, |B|v〉, ∀u, v ∈ Cn

I Hence U0 is isometric.

I From the definition of U0 it is clear that U0 maps M onto N .
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Continuation

I We can extend U0 to a unitary from Cn to Cn as the
dimensions of M⊥ and N⊥ are equal. More explicitly we can
take the following steps:

I Let v1, v2, . . . , vk be an ortho-normal basis of M. Then
U0v1,U0v2, . . . ,U0vk is an orthonormal basis of N .

I Extend {v1, v2, . . . , vk} to an orthonormal basis
{v1, v2, . . . , vn} of Cn.

I Similarly, extend {U0v1,U0v2, . . . ,U0vk} to an orthonormal
basis {U0v1,U0v2, . . . ,U0vk ,w1,w2, . . . ,wn−k} of Cn.
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I Now we extend U to a unitary of Cn by defining it on the
orthonormal basis {v1, . . . , vn} (and extending linearly) by
setting

Uvj =

{
U0vj for 1 ≤ j ≤ k ;
wj−k for k + 1 ≤ j ≤ n.

.

I Clearly U is a unitary and Uv = U0v for v ∈M.
I Now for x ∈ Cn,

U|B|x = URx = U0Rx = Bx , ∀x ∈ Cn.

I This proves the existence. Now if B = UR for some unitary U
and positive R, B∗B = R∗U∗UR = R2. Therefore R is the
unique positive square root of B∗B, that is, R = |B|.

I If B is invertible, and B = UR, then as
det(B) = det(U). det(R) 6= 0, R is also invertible and we get

U = BR−1 = B(|B|)−1.
I Therefore, U is uniquely determined. �
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Polar decomposition for normal matrices

I Example 28.2: Suppose A is a normal matrix and let

A = UDU∗

be the diagonalization of A with unitary U and diagonal
matrix D. Let d1, d2, . . . , dn be the diagonal entries of D.

I We can write D as
e iθ1 0 . . . 0

0 e iθ2 . . . 0
...

...
. . .

...
0 0 . . . e iθn

 .


|d1| 0 . . . 0

0 |d2| . . . 0
...

...
. . .

...
0 0 . . . |dn|

 .

using the polar decompositions of d1, d2, . . . , dn.

I Note that if dj = 0, then when we write dj = e iθj |dj |, e iθj is
not unique.
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Continuation

I Now A = V |A| where
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Continuation

I Alternatively, if A = a1P1 + a2P2 + · · ·+ akPk is the spectral
decomposition of A, we can get the polar decomposition as
follows.

I Suppose aj = e iθj |aj |, 1 ≤ j ≤ k is the polar decomposition
of aj .

I Take V = e iθ1P1 + e iθ2P2 + · · ·+ e iθkPk and
|A| = |a1|P1 + |a2|P2 + · · ·+ |ak |Pk .

I Then A = V |A| is the polar decomposition of A.
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Example

I Example 28.3: Consider

B =

 2 2 2
0 0 0
0 0 0

 .

I Then

B∗B =

 4 4 4
4 4 4
4 4 4

 .

I Recall that an n × n matrix with all entries equal to 1
n is a

projection.
I Therefore

B∗B = 12

 1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

+ 0.

 2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3


is the spectral decomposition of B∗B.
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Continuation

I Therefore,

|B| =
√

12

 1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3


=
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 .
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I Take

U =
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I We may now verify that
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