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» First we recall the notion of positivity and some
characterizations.

» Definition 26.1: An n x n matrix A is said to be a positive
matrix if A= B*B for some n x n matrix B.

» Some authors may call these as non-negative definite matrices
and invertible matrices of the form B*B as positive definite
matrices.

» Warning: A positive matrix need not have positive entries. It
can have negative entries and also complex entries.

> Matrices whose entries are positive would be called as
entrywise positive matrices. That is also an important class,
but we will not be studying them now.
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Characterizations of positivity

» Theorem 26.2: Let A = [ajj]i<ij<n be a complex matrix.
Then the following are equivalent:

» (i) A is positive, that is, A = B*B for some n x n matrix B.

» (ii) A= C*C for some m x n matrix for some m.

> (iii) aj = (vi, vj),1 < i,j < n for vectors vy, vo, ..., v, in some
inner product space V.

> (iv) (x,Ax) >0 for all x € C".

v

(v) A= A* and eigenvalues of A are non-negative.

» (vi) A= S? for some self-adjoint n x n matrix S.
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» Proof: (i) = (ii). Take m=nand C = B.

» (ii) = (iii). Let v1,vo,..., v, be the columns of C. Then
vj € C™ for every j and A= C*C implies aj; = (vj, vj).

> (iii) = (iv). We have a;; = (vj,vj), Vi,j.

» Now for any x € C™

n

(% AX) = > X(Ax);
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» Therefore,

n n

(x,Ax) = ZZ<X/'V:‘,XJVJ>
i—1 j=1
= <ZXiViszjVj>
i—1 =1
= (y,y)

> where y = > xv;.
» Hence
(x,Ax) > 0.
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» First we want to show that A = A*. Here we use the
polarization identity and the fact that if (v, w) is real then
(v,w) = (w,v). Forall x,y,
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» (iv) = (v). It is given that (x, Ax) > 0 for every x € C".

» First we want to show that A = A*. Here we use the
polarization identity and the fact that if (v, w) is real then
(v,w) = (w,v). Forall x,y,

(. Ay) = > iF{(x+Py), Alx+iy))

= (Axy)
» This proves A* = A from the defining condition of the adjoint.
» Now suppose a is an eigenvalue of A. Choose an eigenvector
x with a as the eigenvalue. Then

(x,Ax) = a(x,x) > 0.
» implies that a > 0 as (x,x) # 0.
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(v) = (vi). We assume A = A* and the eigenvalues of A are
non-negative.

By spectral theorem there exists a unitary U and a diagonal
matrix D, such that
A= UDU".

Since the eigenvalues of A are non-negative, the diagonal
entries of D are non-negative. We denote the diagonal entries
by dl,dg, .. .,dn.

Take
Vdi 0 ... 0
0 d ... 0
S=U . \G , . U*.
0 0 ... Vd,

Then clearly S is self-adjoint and A = S2.
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(vi) = (i). Assume A = S? where S = S*.
In particular, A= S*S. This proves (i). B
Example 26.3: Take
2 -1
2]

Clearly R is self-adjoint. We have the characteristic
polynomial of R, as

p(x)=(x—2)?—1=x>—4x+3=(x—1)(x - 3).

Therefore, the eigenvalues of R are {1, 3}, which are
non-negative. Then by part (v) of the previous Theorem, R is
positive.

Note that though R is positive as per our definition, some of
its entries are negative.

Find all self-adjoint operators S such that R = S2. (Exercise)
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» Theorem 26.3 (Cartesian decomposition): Let A be a complex
square matrix. Then A decomposes uniquely as

A=B+iC

where B, C are self—adjoint

A*

» Proof: Take B = AZA~ and C =
» Then it is easily verlfled that B, C are self—adjoint and
A=B+iC.

» Conversely, suppose A= B+ iC, W|th B C self-adjoint. We
see directly that B = A4~ and C =

» This proves uniqueness. I

» This is known as Cartesian decomposition.
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Theorem 27.1 Suppose A, B are positive matrices and a, b are
positive real numbers. Then aA + bB is positive.

Proof: Suppose A, B are n x n matrices. Consider arbitrary
x e C".

Then, (x, (aA+ bB)x) = a(x, Ax) + b(x, Bx) > 0

as the quadratic forms (x, Ax), and (x, Bx) are positive.

Then by part (iv) of the characterization theorem, aA + bB is
positive. B

Note that this theorem does not follow directly from the
definition of positivity or from the eigenvalue criterion.

This theorem shows that the set of n x n positive matrices
has ‘cone’ structure: It is closed under taking sums and it is
closed under multiplication by positive scalar.
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Products

» Remark 27.2: Suppose A, B are n X n positive matrices. Then
AB need not be positive as it may not be self-adjoint.

» Theorem 27.3: Let A be an n X n positive matrix. Suppose B
is an n x m matrix. Then B*AB is positive.

» Proof: As A is positive, A= D*D for some matrix D.

» Now, B*AB = B*D*DB = (DB)*(DB). Hence B*AB is
positive from the definition of positivity. We may also see this
from looking at the quadratic form. W
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Trace and Determinant

» Theorem 27.4: Let A be a positive matrix. Then
trace (A) > 0 and det(A) > 0. Diagonal entries of A are
positive.

» Proof: The first part is clear as the trace and determinant of a
matrix are respectively the sum and the product of its
eigenvalues and a positive matrix has non-negative
eigenvalues. The second claim follows from a;; = (v, v;) in
part (iv) of the characterization.
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Gram matrices

» Definition 27.5: Let v1, v»,..., v, be vectors in an inner
product space V. Then their Gram matrix is defined as the
matrix

A = [{vi, vi)li<ij<n-

» We have seen that Gram matrices are positive and conversely
all positive matrices can be written as Gram matrices. In
Probability theory Gram matrices appear as ‘covariance
matrices’.

» Suppose x, y are vectors in an inner product space V.
Consider their Gram matrix:

. [ (%) (x,y) } |
y,x) vsy)
» We know that G is positive. Hence its determinant is positive.

So we get <X7X>'<.y7y> - <X7y>'<y7X> > 0.
» In other words, we have the Cauchy-Schwarz inequality:

|6 )12 < X2y 12
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Uniqueness of positive square root

> Theorem 27.5: Let A be a positive matrix. Then there exists
unique positive S such that A = S2.

» Proof: In the proof the main characterization theorem for
positive matrices we have seen that if A is positive then there
exists positive S such that A = S2.

» Now suppose B is positive and A = B?.

> Let by, by, ..., by the distinct eigenvalues of B and

B=bQ1+byQ@+ -+ b Qx be the spectral decomposition
of B.
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» Note that if we do not insist on positivity of the square root
there can be many square roots.

» For instance, for A positive, if A= UDU* is the
diagonalization of A,

:t\/ch 0 0
0 i\/dj 0

) . . ] . U*
0 0 oo /d,

with any choice of sign on the diagonal is a square root of A.

» For any projection P, the unitary 2P — | = P — P+ is a square
root of /. This shows that / has infinitely many square roots
(in dimension bigger than 1) if we do not insist on positivity.
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Notation

» Notation: For a positive matrix A, A2 denotes the square root
of A. For any matrix B, |B| denotes (B*B)%.

» Note that for a positive matrix A, A> = A if and only if Ais a
projection.

» Question: Do we have |A+ B| < |A| + |B]|? In other words
can we say that |A| + |B| — |A + B| is positive?

» END OF REVIEW
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Polar decomposition theorem

» Theorem 28.1: Let B be an n X n matrix. Then B factorizes
as
B = UR

where U is a unitary and R is positive. Here R = |B| and U is
uniquely determined if B is invertible.

» Proof: We want to find U, R satisfying
B=UR

as above.
> As suggested by the second line we take R = |B| = (B*B)%.
» Let M be the range of |B|, that is,

M ={|B|x: x € C"}.

» Clearly M is a subspace of C".
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» Similarly let N be the range of B:

N ={Bx:xeC"}.
» Define Uy : M — N by

Uo|Blx = Bx,x € C".

» We claim that Up is a well-defined unitary from M to N.
» Observe that, for u,v € C",

(Bu,Bv) = (u,B*Bv)
= (u[Bv)
= ([Blu,|B|v)
» In particular, if |B|x = |Bly, then |B|(x — y) = 0, Hence,
(181~ ), 1BI(x — y)) = 0.



Continuation

» Taking u = v = (x — y), in the previous equation we get
(B(x—y),B(x—y))=00r B(x—y) =0, that is, Bx = By.
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» Taking u = v = (x — y), in the previous equation we get
(B(x—y),B(x—y))=00r B(x—y) =0, that is, Bx = By.

» In other words if |B|x = |B|y then Bx = By. This shows that
Up is well defined.

» Clearly Up as defined is linear.
» Further,

(|Blu,|B|v) = (Bu, Bv), VYu,veC"
shows that
(Uo(IB|u), Uo(|B|v)) = (|B|u,|B|v), Vu,veC"

» Hence Uy is isometric.
» From the definition of Uj it is clear that Uy maps M onto V.



Continuation

» We can extend Up to a unitary from C” to C” as the
dimensions of M" and N are equal. More explicitly we can
take the following steps:



Continuation

» We can extend Up to a unitary from C” to C” as the

dimensions of M" and N are equal. More explicitly we can
take the following steps:

> Let vi,vo,..., Vv, be an ortho-normal basis of M. Then
Ugvi, Ugva, . .., Ugvi is an orthonormal basis of A.



Continuation

» We can extend Up to a unitary from C” to C” as the
dimensions of M" and N are equal. More explicitly we can
take the following steps:

> Let vi,vo,..., Vv, be an ortho-normal basis of M. Then
Ugvi, Ugva, . .., Ugvi is an orthonormal basis of A.
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Continuation

» We can extend Up to a unitary from C” to C” as the
dimensions of M" and N are equal. More explicitly we can
take the following steps:

» Let vi,vo,..., vk be an ortho-normal basis of M. Then
Ugvi, Ugva, . .., Ugvi is an orthonormal basis of A.

» Extend {vi, va,..., vk} to an orthonormal basis
{vi,va,...,vp} of C".

» Similarly, extend {Upvi, Upva, ..., Upvk} to an orthonormal
basis {U(]Vl, U()V27 ceey UoVk7 Wi, Wo, ..., ank} of C".
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» Now we extend U to a unitary of C" by defining it on the
orthonormal basis {v1, ..., v,} (and extending linearly) by
setting

Uv-:{ Uovj forl <)< k;
J wji—k  fork+1<j<n.
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» Now we extend U to a unitary of C" by defining it on the
orthonormal basis {v1, ..., v,} (and extending linearly) by

setting
Uvi — Uovj forl <)< k;
Tl wjek fork+1<j<n.

» Clearly U is a unitary and Uv = Upv for v € M.
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» Now we extend U to a unitary of C" by defining it on the
orthonormal basis {v1, ..., v,} (and extending linearly) by
setting

wi_, for k+1<j<n.

» Clearly U is a unitary and Uv = Upv for v € M.
» Now for x € C",

U|B|x = URx = UpRx = Bx, Vx € C".

U\/j:{ Uovj forl <)< k;

» This proves the existence. Now if B = UR for some unitary U
and positive R, B*B = R*U*UR = R?. Therefore R is the
unique positive square root of B*B, that is, R = |B].

» If B is invertible, and B = UR, then as
det(B) = det(U).det(R) # 0, R is also invertible and we get

U=BR'=8B(B)"
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» Now we extend U to a unitary of C" by defining it on the
orthonormal basis {v1, ..., v,} (and extending linearly) by
setting

wi_, for k+1<j<n.

» Clearly U is a unitary and Uv = Upv for v € M.
» Now for x € C",

U|B|x = URx = UpRx = Bx, Vx € C".

; < j<k:
U\/j:{ Uovj forl <)< k;

» This proves the existence. Now if B = UR for some unitary U
and positive R, B*B = R*U*UR = R?. Therefore R is the
unique positive square root of B*B, that is, R = |B].

» If B is invertible, and B = UR, then as
det(B) = det(U).det(R) # 0, R is also invertible and we get

U=BR'=8B(B)"

» Therefore, U is uniquely determined. B
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Polar decomposition for normal matrices

» Example 28.2: Suppose A is a normal matrix and let
A= UDU*

be the diagonalization of A with unitary U and diagonal
matrix D. Let di, d>, ..., d, be the diagonal entries of D.

» We can write D as

e 0 ... 0 ldi] 0 ... 0

0 €% ... 0 0 J|dof ... O

0 0 ... e 0 0 ... |dn
using the polar decompositions of di, db, ..., d.

> Note that if d; = 0, then when we write d; = e/ |dj|, €% is
not unique.



Continuation

» Now A = V|A| where

is a unitary and

ei91

ei@,,

U*



Continuation

» Now A = V/|A| where

e 0
0 et
V=U
0 0
is a unitary and
>
il 0
0 |dof
Al=U .
0 0

is positive.
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> Alternatively, if A= a1P; + a2P> + - - - + ax Py is the spectral
decomposition of A, we can get the polar decomposition as
follows.

» Suppose aj = ei91|aj|, 1 <j < k is the polar decomposition
of aj.

> Take V = 1P +e%2P) ... 4 %P, and
|Al = |a1|Py + |a2| P2 + - - - + [ak| Px.



Continuation

> Alternatively, if A= a1P; + a2P> + - - - + ax Py is the spectral
decomposition of A, we can get the polar decomposition as
follows.

» Suppose aj = ei91|aj|, 1 <j < k is the polar decomposition
of aj.

> Take V = 1P +e%2P) ... 4 %P, and
‘A‘ = ‘31“31 + ’82|P2 +---+ \ak|Pk.

» Then A = V/|A] is the polar decomposition of A.
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B =

O ON

O ON
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Example

» Example 28.3: Consider

2 2 2
B=|1000
0 0O
» Then
4 4 4
B*B=| 4 4 4
4 4 4

» Recall that an n x n matrix with all entries equal to % is a
projection.
» Therefore

1/3 1/3 1/3 2/3 -1/3 —-1/3
B*B=12|1/3 1/3 1/3 | +0.| -1/3 2/3 -1/3
1/3 1/3 1/3 ~1/3 —1/3 2/3

is the spectral decomposition of B*B.



Continuation

» Therefore,

1/3 1/3 1/3
B| = @{1/3 1/3 1/3]

1/3 1/3 1/3
2/V3 2/V3 2/V/3
{z/ﬁ 2//3 2/\/51.
2/V/3 2/V/3 2/V3



Continuation

> Take
1/vV/3 1/vV3 1/V/3
U=1|1/v2 -1/v/2 0 :
1/vV6 1/vV6 —2/V6
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» Take

1/vV2 —1/vV2 0
1/vV6 1/vV6 —2/V6

» We may now verify that

[1/\@ 1/V3 1/\@] [2/\/5 2//3 2/\/§]
B = : .

{1/\@ 1/V3 1/\/§]
U= :

1/vV2 -1/v2 0 2/V3 2/V3 2/V3
1/vV6 1/vV6 —2/V6 2/V/3 2/V/3 2/V/3

is a polar decomposition of B.
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» Take

1/vV2 —1/vV2 0
1/vV6 1/vV6 —2/V6

» We may now verify that

[1/\@ 1/V3 1/\@] [2/\/5 2//3 2/\/§]
B = : .

{1/\@ 1/V3 1/\/§]
U= :

1/vV2 -1/v2 0 2/V3 2/V3 2/V3
1/vV6 1/vV6 —2/V6 2/V/3 2/V/3 2/V/3

is a polar decomposition of B.
» END OF LECTURE 28.



