

LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 29: Balanced incomplete block designs (BIBD)

- ▶ Consider an agricultural experiment where we wish to determine the best combination of fertilizers and other inputs.

Lecture 29: Balanced incomplete block designs (BIBD)

- ▶ Consider an agricultural experiment where we wish to determine the best combination of fertilizers and other inputs.
- ▶ Suppose out of 5 inputs at a time we can try out only 3 at a time.

Lecture 29: Balanced incomplete block designs (BIBD)

- ▶ Consider an agricultural experiment where we wish to determine the best combination of fertilizers and other inputs.
- ▶ Suppose out of 5 inputs at a time we can try out only 3 at a time.
- ▶ Two different inputs may interact with each other.

Lecture 29: Balanced incomplete block designs (BIBD)

- ▶ Consider an agricultural experiment where we wish to determine the best combination of fertilizers and other inputs.
- ▶ Suppose out of 5 inputs at a time we can try out only 3 at a time.
- ▶ Two different inputs may interact with each other.
- ▶ In such situation it becomes helpful to use some combinatorial structures called balanced incomplete block designs.

- ▶ **Definition 30.1:** An (v, b, r, k, λ) design is an arrangement of v symbols (called varieties or treatments or factors) into b blocks as follows:

- ▶ **Definition 30.1:** An (v, b, r, k, λ) design is an arrangement of v symbols (called varieties or treatments or factors) into b blocks as follows:
- ▶ (i) Each block has exactly k symbols (with no repetitions).

- ▶ **Definition 30.1:** An (v, b, r, k, λ) design is an arrangement of v symbols (called varieties or treatments or factors) into b blocks as follows:
 - ▶ (i) Each block has exactly k symbols (with no repetitions).
 - ▶ (ii) No symbol is repeated in any block.
 - ▶ (iii) Each symbol appears in exactly r blocks.

- ▶ **Definition 30.1:** An (v, b, r, k, λ) design is an arrangement of v symbols (called varieties or treatments or factors) into b blocks as follows:
 - ▶ (i) Each block has exactly k symbols (with no repetitions).
 - ▶ (ii) No symbol is repeated in any block.
 - ▶ (iii) Each symbol appears in exactly r blocks.
 - ▶ (iv) Each pair of symbols appear in exactly λ blocks.

- ▶ **Definition 30.1:** An (v, b, r, k, λ) design is an arrangement of v symbols (called varieties or treatments or factors) into b blocks as follows:
 - ▶ (i) Each block has exactly k symbols (with no repetitions).
 - ▶ (ii) No symbol is repeated in any block.
 - ▶ (iii) Each symbol appears in exactly r blocks.
 - ▶ (iv) Each pair of symbols appear in exactly λ blocks.
- ▶ Here v, b, r, k, λ are natural numbers. It is also assumed $k < v$ (No block contains all the treatments). For this reason they are called incomplete designs.

Example 1

- ▶ Example 30.1:

Example 1

- ▶ Example 30.1:
- ▶ Here is a $(4, 4, 3, 3, 2)$ BIBD with symbol set $V = \{a, b, c, d\}$.

Example 1

- ▶ Example 30.1:
- ▶ Here is a $(4, 4, 3, 3, 2)$ BIBD with symbol set $V = \{a, b, c, d\}$.
- ▶ Block 1: $\{a, b, c\}$ Block 2: $\{b, c, d\}$ Block 3: $\{c, d, a\}$ Block 4: $\{d, a, b\}$.

Example 1

- ▶ Example 30.1:
- ▶ Here is a $(4, 4, 3, 3, 2)$ BIBD with symbol set $V = \{a, b, c, d\}$.
- ▶ Block 1: $\{a, b, c\}$ Block 2: $\{b, c, d\}$ Block 3: $\{c, d, a\}$ Block 4: $\{d, a, b\}$.
- ▶ Observe: There are 4 (v) symbols and 4 (b) blocks.

Example 1

- ▶ Example 30.1:
- ▶ Here is a $(4, 4, 3, 3, 2)$ BIBD with symbol set $V = \{a, b, c, d\}$.
- ▶ Block 1: $\{a, b, c\}$ Block 2: $\{b, c, d\}$ Block 3: $\{c, d, a\}$ Block 4: $\{d, a, b\}$.
- ▶ Observe: There are 4 (v) symbols and 4 (b) blocks.
- ▶ Each symbol appears in 3 (r) blocks and each block has size 3 (k).

Example 1

- ▶ Example 30.1:
- ▶ Here is a $(4, 4, 3, 3, 2)$ BIBD with symbol set $V = \{a, b, c, d\}$.
- ▶ Block 1: $\{a, b, c\}$ Block 2: $\{b, c, d\}$ Block 3: $\{c, d, a\}$ Block 4: $\{d, a, b\}$.
- ▶ Observe: There are 4 (v) symbols and 4 (b) blocks.
- ▶ Each symbol appears in 3 (r) blocks and each block has size 3 (k).
- ▶ Each pair of symbols appears in 2 (λ) blocks.

Example 2

- ▶ Example 30.2:

Example 2

- ▶ Example 30.2:
- ▶ Here is a $(8, 14, 7, 4, 3)$ BIBD with symbol set $V = \{1, 2, \dots, 8\}$:

Example 2

- ▶ Example 30.2:
- ▶ Here is a $(8, 14, 7, 4, 3)$ BIBD with symbol set $V = \{1, 2, \dots, 8\}$:
- ▶ Blocks:

$\{1, 3, 7, 8\}, \{1, 2, 4, 8\}, \{2, 3, 5, 8\}, \{3, 4, 6, 8\}, \{4, 5, 7, 8\},$

$\{2, 6, 7, 8\}, \{1, 2, 3, 6\}, \{1, 2, 5, 7\}, \{1, 3, 4, 5\}, \{1, 4, 6, 7\},$

$\{2, 4, 5, 6\}, \{3, 5, 6, 7\}, \{1, 5, 6, 8\}, \{2, 3, 4, 7\}.$

Basic relations between parameters

- **Theorem 30.4:** Suppose there exists a (v, b, r, k, λ) BIBD.
Then

$$vr = bk, \quad r(k - 1) = \lambda(v - 1).$$

Basic relations between parameters

- **Theorem 30.4:** Suppose there exists a (v, b, r, k, λ) BIBD.
Then

$$vr = bk, \quad r(k - 1) = \lambda(v - 1).$$

- (i) $vr = bk$. This is clear by counting the number of elements in the whole design in two different ways. There are v symbols and each one appears r times. So there are vr elements in the design. Alternatively, there are b blocks with each of size k and hence the total number of elements is bk . So we get the equality.

Basic relations between parameters

- **Theorem 30.4:** Suppose there exists a (v, b, r, k, λ) BIBD. Then

$$vr = bk, \quad r(k - 1) = \lambda(v - 1).$$

- (i) $vr = bk$. This is clear by counting the number of elements in the whole design in two different ways. There are v symbols and each one appears r times. So there are vr elements in the design. Alternatively, there are b blocks with each of size k and hence the total number of elements is bk . So we get the equality.
- (ii) Say the symbols are $\{1, 2, \dots, v\}$. Consider how many times $(1, 2)$ appears in a block. It appears λ times. Similarly $(1, 3)$ appears λ times. So $(1, j)$ appears for some j , a total of $\lambda(v - 1)$ times.

Basic relations between parameters

- **Theorem 30.4:** Suppose there exists a (v, b, r, k, λ) BIBD. Then

$$vr = bk, \quad r(k - 1) = \lambda(v - 1).$$

- (i) $vr = bk$. This is clear by counting the number of elements in the whole design in two different ways. There are v symbols and each one appears r times. So there are vr elements in the design. Alternatively, there are b blocks with each of size k and hence the total number of elements is bk . So we get the equality.
- (ii) Say the symbols are $\{1, 2, \dots, v\}$. Consider how many times $(1, 2)$ appears in a block. It appears λ times. Similarly $(1, 3)$ appears λ times. So $(1, j)$ appears for some j , a total of $\lambda(v - 1)$ times.
- Since 1 has appeared in exactly r blocks, and each block has $(k - 1)$ other elements, we have $(1, j)$ for some j appearing $r(k - 1)$ times. This gives $r(k - 1) = \lambda(v - 1)$.

Fisher's inequality

- Theorem (Fisher's inequality) 30.5: Suppose there exists an (v, b, k, r, λ) design. Then $b \geq v$.

Fisher's inequality

- ▶ **Theorem (Fisher's inequality) 30.5:** Suppose there exists an (v, b, k, r, λ) design. Then $b \geq v$.
- ▶ This is an important inequality and it is non-trivial!

Incidence matrix

- ▶ Consider an (v, b, r, k, λ) BIBD.

Incidence matrix

- ▶ Consider an (v, b, r, k, λ) BIBD.
- ▶ Let the symbols be $\{1, 2, \dots, v\}$. Let the blocks be B_1, B_2, \dots, B_b .

Incidence matrix

- ▶ Consider an (v, b, r, k, λ) BIBD.
- ▶ Let the symbols be $\{1, 2, \dots, v\}$. Let the blocks be B_1, B_2, \dots, B_b .
- ▶ The **incidence matrix** of the design is a matrix N of order $v \times b$. Put

$$n_{ij} = \begin{cases} 1 & \text{if } i \in B_j \\ 0 & \text{otherwise} \end{cases}$$

Incidence matrix

- ▶ Consider an (v, b, r, k, λ) BIBD.
- ▶ Let the symbols be $\{1, 2, \dots, v\}$. Let the blocks be B_1, B_2, \dots, B_b .
- ▶ The **incidence matrix** of the design is a matrix N of order $v \times b$. Put

$$n_{ij} = \begin{cases} 1 & \text{if } i \in B_j \\ 0 & \text{otherwise} \end{cases}$$

- ▶ In other words, $n_{ij} = 1$ if i appears in the block B_j and it is zero otherwise.

Example

- ▶ Replacing symbols a, b, c, d by 1, 2, 3, 4 respectively in the first example:

Example

- ▶ Replacing symbols a, b, c, d by 1, 2, 3, 4 respectively in the first example:
- ▶ $B_1 = \{1, 2, 3\}, B_2 = \{2, 3, 4\}, B_3 = \{1, 3, 4\}, B_4 = \{1, 2, 4\}.$

Example

- ▶ Replacing symbols a, b, c, d by 1, 2, 3, 4 respectively in the first example:
- ▶ $B_1 = \{1, 2, 3\}, B_2 = \{2, 3, 4\}, B_3 = \{1, 3, 4\}, B_4 = \{1, 2, 4\}$.
- ▶ The corresponding incidence matrix is given by:

Example

- ▶ Replacing symbols a, b, c, d by 1, 2, 3, 4 respectively in the first example:
- ▶ $B_1 = \{1, 2, 3\}, B_2 = \{2, 3, 4\}, B_3 = \{1, 3, 4\}, B_4 = \{1, 2, 4\}$.
- ▶ The corresponding incidence matrix is given by:
- ▶

$$N = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}.$$

Example

- ▶ Replacing symbols a, b, c, d by 1, 2, 3, 4 respectively in the first example:
- ▶ $B_1 = \{1, 2, 3\}, B_2 = \{2, 3, 4\}, B_3 = \{1, 3, 4\}, B_4 = \{1, 2, 4\}$.
- ▶ The corresponding incidence matrix is given by:
- ▶

$$N = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}.$$

- ▶ Note that

$$N^t = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}, \quad NN^t = \begin{bmatrix} 3 & 2 & 2 & 2 \\ 2 & 3 & 2 & 2 \\ 2 & 2 & 3 & 2 \\ 2 & 2 & 2 & 3 \end{bmatrix}.$$

Continuation

- **Theorem 30.6:** Suppose N is the incidence matrix of a (v, b, r, k, λ) BIBD. Then

$$(NN^t) = (r - \lambda)I + \lambda J$$

Continuation

- **Theorem 30.6:** Suppose N is the incidence matrix of a (v, b, r, k, λ) BIBD. Then

$$(NN^t) = (r - \lambda)I + \lambda J$$

- where J is the matrix of all entries equal to 1 and of order $v \times v$.

Continuation

- **Theorem 30.6:** Suppose N is the incidence matrix of a (v, b, r, k, λ) BIBD. Then

$$(NN^t) = (r - \lambda)I + \lambda J$$

- where J is the matrix of all entries equal to 1 and of order $v \times v$.
- **Proof:** The $(i, j)^{\text{th}}$ entry of NN^t is the inner product between row i and row j .

Continuation

- **Theorem 30.6:** Suppose N is the incidence matrix of a (v, b, r, k, λ) BIBD. Then

$$(NN^t) = (r - \lambda)I + \lambda J$$

- where J is the matrix of all entries equal to 1 and of order $v \times v$.
- **Proof:** The (i, j) th entry of NN^t is the inner product between row i and row j .
- Since every entry is 0 or 1, when $i = j$, $(NN^t)_{ii}$ is just the number of times the treatment i appears in the design. So

$$(NN^t)_{ii} = r.$$

Continuation

- **Theorem 30.6:** Suppose N is the incidence matrix of a (v, b, r, k, λ) BIBD. Then

$$(NN^t) = (r - \lambda)I + \lambda J$$

- where J is the matrix of all entries equal to 1 and of order $v \times v$.
- **Proof:** The (i, j) th entry of NN^t is the inner product between row i and row j .
- Since every entry is 0 or 1, when $i = j$, $(NN^t)_{ii}$ is just the number of times the treatment i appears in the design. So

$$(NN^t)_{ii} = r.$$

- Similarly, when $i \neq j$, $(NN^t)_{ij}$ is the number of times the pair of treatments $\{i, j\}$ appears in the design. Hence

$$(NN^t)_{ij} = \lambda, \quad i \neq j.$$

Continuation

- **Theorem 30.6:** Suppose N is the incidence matrix of a (v, b, r, k, λ) BIBD. Then

$$(NN^t) = (r - \lambda)I + \lambda J$$

- where J is the matrix of all entries equal to 1 and of order $v \times v$.
- **Proof:** The (i, j) th entry of NN^t is the inner product between row i and row j .
- Since every entry is 0 or 1, when $i = j$, $(NN^t)_{ii}$ is just the number of times the treatment i appears in the design. So

$$(NN^t)_{ii} = r.$$

- Similarly, when $i \neq j$, $(NN^t)_{ij}$ is the number of times the pair of treatments $\{i, j\}$ appears in the design. Hence

$$(NN^t)_{ij} = \lambda, \quad i \neq j.$$

- Hence $(NN^t) = (r - \lambda)I + \lambda J$ ■

Continuation

► Proof of Fisher's inequality: Let P be the projection $\frac{1}{v}J$. Then

$$\begin{aligned} NN^t &= (r - \lambda)I + \lambda J \\ &= (r - \lambda)I + v\lambda P \\ &= (r - \lambda)(P + P^\perp) + v\lambda P \\ &= (r - \lambda)P^\perp + (r - \lambda + v\lambda)P. \end{aligned}$$

Continuation

- ▶ Proof of Fisher's inequality: Let P be the projection $\frac{1}{v}J$. Then

$$\begin{aligned} NN^t &= (r - \lambda)I + \lambda J \\ &= (r - \lambda)I + v\lambda P \\ &= (r - \lambda)(P + P^\perp) + v\lambda P \\ &= (r - \lambda)P^\perp + (r - \lambda + v\lambda)P. \end{aligned}$$

- ▶ In particular the eigenvalues of NN^t are $(r - \lambda)$ and $r - \lambda + v\lambda$.

Continuation

- ▶ Proof of Fisher's inequality: Let P be the projection $\frac{1}{\sqrt{v}}J$. Then

$$\begin{aligned} NN^t &= (r - \lambda)I + \lambda J \\ &= (r - \lambda)I + v\lambda P \\ &= (r - \lambda)(P + P^\perp) + v\lambda P \\ &= (r - \lambda)P^\perp + (r - \lambda + v\lambda)P. \end{aligned}$$

- ▶ In particular the eigenvalues of NN^t are $(r - \lambda)$ and $r - \lambda + v\lambda$.
- ▶ Recall that r is the number of times a particular treatment appears in the design and λ is the number of times a pair of treatments appears.

Continuation

- ▶ Proof of Fisher's inequality: Let P be the projection $\frac{1}{v}J$. Then

$$\begin{aligned} NN^t &= (r - \lambda)I + \lambda J \\ &= (r - \lambda)I + v\lambda P \\ &= (r - \lambda)(P + P^\perp) + v\lambda P \\ &= (r - \lambda)P^\perp + (r - \lambda + v\lambda)P. \end{aligned}$$

- ▶ In particular the eigenvalues of NN^t are $(r - \lambda)$ and $r - \lambda + v\lambda$.
- ▶ Recall that r is the number of times a particular treatment appears in the design and λ is the number of times a pair of treatments appears.
- ▶ Further, a block can't have all the treatments ($k < v$). So we clearly have $r > \lambda$.

Continuation

- ▶ Proof of Fisher's inequality: Let P be the projection $\frac{1}{v}J$. Then

$$\begin{aligned} NN^t &= (r - \lambda)I + \lambda J \\ &= (r - \lambda)I + v\lambda P \\ &= (r - \lambda)(P + P^\perp) + v\lambda P \\ &= (r - \lambda)P^\perp + (r - \lambda + v\lambda)P. \end{aligned}$$

- ▶ In particular the eigenvalues of NN^t are $(r - \lambda)$ and $r - \lambda + v\lambda$.
- ▶ Recall that r is the number of times a particular treatment appears in the design and λ is the number of times a pair of treatments appears.
- ▶ Further, a block can't have all the treatments ($k < v$). So we clearly have $r > \lambda$.
- ▶ Consequently $(r - \lambda) > 0$ and $(r - \lambda + v\lambda) > 0$.

Continuation

- ▶ This in particular means that the eigenvalues of NN^t are non-zero.

Continuation

- ▶ This in particular means that the eigenvalues of NN^t are non-zero.
- ▶ Therefore the rank of NN^t is v . Hence the rank of N is at least v .

Continuation

- ▶ This in particular means that the eigenvalues of NN^t are non-zero.
- ▶ Therefore the rank of NN^t is v . Hence the rank of N is at least v .
- ▶ Since N is of order $v \times b$, we have $\text{rank}(N) \leq \min\{v, b\}$.

Continuation

- ▶ This in particular means that the eigenvalues of NN^t are non-zero.
- ▶ Therefore the rank of NN^t is v . Hence the rank of N is at least v .
- ▶ Since N is of order $v \times b$, we have $\text{rank}(N) \leq \min\{v, b\}$.
- ▶ This proves $b \geq v$. ■.

Continuation

- ▶ This in particular means that the eigenvalues of NN^t are non-zero.
- ▶ Therefore the rank of NN^t is v . Hence the rank of N is at least v .
- ▶ Since N is of order $v \times b$, we have $\text{rank}(N) \leq \min\{v, b\}$.
- ▶ This proves $b \geq v$. ■.
- ▶ END OF LECTURE 30.