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Lecture 29: Balanced incomplete block designs (BIBD)

I Consider an agricultural experiment where we wish to
determine the best combination of fertilizers and other inputs.

I Suppose out of 5 inputs at a time we can try out only 3 at a
time.

I Two different inputs may interact with each other.

I In such situation it becomes helpful to use some combinatorial
structures called balanced incomplete block designs.
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BIBD

I Definition 30.1: An (v , b, r , k , λ) design is an arrangement of
v symbols (called varieties or treatments or factors) into b
blocks as follows:

I (i) Each block has exactly k symbols (with no repetitions).

I (ii) No symbol is repeated in any block.

I (iii) Each symbol appears in exactly r blocks.

I (iv) Each pair of symbols appear in exactly λ blocks.

I Here v , b, r , k, λ are natural numbers. It is also assumed
k < v (No block contains all the treatments). For this reason
they are called incomplete designs.
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Example 1

I Example 30.1:

I Here is a (4, 4, 3, 3, 2) BIBD with symbol set V = {a, b, c , d}.
I Block 1: {a, b, c} Block 2: {b, c , d} Block 3: {c , d , a} Block

4: {d , a, b}.
I Observe: There are 4 (v) symbols and 4 (b) blocks.

I Each symbol appears in 3 (r) blocks and each block has size 3
(k).

I Each pair of symbols appears in 2 (λ) blocks.
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I Example 30.2:

I Here is a (8, 14, 7, 4, 3) BIBD with symbol set
V = {1, 2, . . . , 8}:

I Blocks:

{1, 3, 7, 8}, {1, 2, 4, 8}, {2, 3, 5, 8}, {3, 4, 6, 8}, {4, 5, 7, 8},

{2, 6, 7, 8}, {1, 2, 3, 6}, {1, 2, 5, 7}, {1, 3, 4, 5}, {1, 4, 6, 7},

{2, 4, 5, 6}, {3, 5, 6, 7}, {1, 5, 6, 8}, {2, 3, 4, 7}.
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Basic relations between parameters

I Theorem 30.4: Suppose there exists a (v , b, r , k, λ) BIBD.
Then

vr = bk, r(k − 1) = λ(v − 1).

I (i) vr = bk. This is clear by counting the number of elements
in the whole design in two different ways. There are v
symbols and each one appears r times. So there are vr
elements in the design. Alternatively, there are b blocks with
each of size k and hence the total number of elements is bk.
So we get the equality.

I (ii) Say the symbols are {1, 2, . . . , v}. Consider how many
times (1, 2) appears in a block. It appears λ times. Similarly
(1, 3) appears λ times. So (1, j) appears for some j , a total of
λ(v − 1) times.

I Since 1 has appeared in exactly r blocks, and each block has
(k − 1) other elements, we have (1, j) for some j appearing
r(k − 1) times. This gives r(k − 1) = λ(v − 1).
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Fisher’s inequality

I Theorem (Fisher’s inequality) 30.5: Suppose there exists an
(v , b, k , r , λ) design. Then b ≥ v .

I This is an important inequality and it is non-trivial!
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Incidence matrix

I Consider an (v , b, r , k , λ) BIBD.

I Let the symbols be {1, 2, . . . , v}. Let the blocks be
B1,B2, . . . ,Bb.

I The incidence matrix of the design is a matrix N of order
v × b. Put

nij =

{
1 if i ∈ Bj

0 otherwise

I In other words, nij = 1 if i appears in the block Bj and it is
zero otherwise.
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Example

I Replacing symbols a, b, c, d by 1, 2, 3, 4 respectively in the
first example:

I B1 = {1, 2, 3},B2 = {2, 3, 4},B3 = {1, 3, 4},B4 = {1, 2, 4}.
I The corresponding incidence matrix is given by:

I

N =


1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1

 .
I Note that

Nt =


1 1 1 0
0 1 1 1
1 0 1 1
1 1 0 1

 , NNt =


3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3

 .
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Continuation

I Theorem 30.6: Suppose N is the incidence matrix of a
(v , b, r , k , λ) BIBD. Then

(NNt) = (r − λ)I + λJ

I where J is the matrix of all entries equal to 1 and of order
v × v .

I Proof: The (i , j)th entry of NNt is the inner product between
row i and row j .

I Since every entry is 0 or 1, when i = j , (NNt)ii is just the
number of times the treatment i appears in the design. So

(NNt)ii = r .

I Similarly, when i 6= j , (NNt)ij is the number of times the pair
of treatments {i , j} appears in the design. Hence

(NNt)ij = λ, i 6= j .

I Hence (NNt) = (r − λ)I + λJ �
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Continuation

I Proof of Fisher’s inequality: Let P be the projection 1
v J. Then

NNt = (r − λ)I + λJ

= (r − λ)I + vλP

= (r − λ)(P + P⊥) + vλP

= (r − λ)P⊥ + (r − λ+ vλ)P.

I In particular the eigenvalues of NNt are (r − λ) and
r − λ+ vλ.

I Recall that r is the number of times a particular treatment
appears in the design and λ is the number of times a pair of
treatments appears.

I Further, a block can’t have all the treatments (k < v). So we
clearly have r > λ.

I Consequently (r − λ) > 0 and (r − λ+ vλ) > 0.
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Continuation

I This in particular means that the eigenvalues of NNt are
non-zero.

I Therefore the rank of NNt is v . Hence the rank of N is at
least v .

I Since N is of order v × b, we have rank (N) ≤ min{v , b}.
I This proves b ≥ v . �.

I END OF LECTURE 30.
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