

LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 31: Determining positivity

- ▶ Once again we recall the notion of positivity and some characterizations.

Lecture 31: Determining positivity

- ▶ Once again we recall the notion of positivity and some characterizations.
- ▶ **Definition 26.1:** An $n \times n$ matrix A is said to be a **positive** matrix if $A = B^*B$ for some $n \times n$ matrix B .

Lecture 31: Determining positivity

- ▶ Once again we recall the notion of positivity and some characterizations.
- ▶ **Definition 26.1:** An $n \times n$ matrix A is said to be a **positive** matrix if $A = B^*B$ for some $n \times n$ matrix B .
- ▶ Some authors may call these as non-negative definite matrices and invertible matrices of the form B^*B as positive definite matrices.

Lecture 31: Determining positivity

- ▶ Once again we recall the notion of positivity and some characterizations.
- ▶ **Definition 26.1:** An $n \times n$ matrix A is said to be a **positive** matrix if $A = B^*B$ for some $n \times n$ matrix B .
- ▶ Some authors may call these as non-negative definite matrices and invertible matrices of the form B^*B as positive definite matrices.
- ▶ **Warning:** A positive matrix need not have positive entries. It can have negative entries and also complex entries.

Lecture 31: Determining positivity

- ▶ Once again we recall the notion of positivity and some characterizations.
- ▶ **Definition 26.1:** An $n \times n$ matrix A is said to be a **positive** matrix if $A = B^*B$ for some $n \times n$ matrix B .
- ▶ Some authors may call these as non-negative definite matrices and invertible matrices of the form B^*B as positive definite matrices.
- ▶ **Warning:** A positive matrix need not have positive entries. It can have negative entries and also complex entries.
- ▶ Matrices whose entries are positive would be called as **entrywise positive** matrices. That is also an important class, but we will not be studying them now.

Characterizations of positivity

- ▶ Theorem 26.2: Let $A = [a_{ij}]_{1 \leq i, j \leq n}$ be a complex matrix. Then the following are equivalent:

Characterizations of positivity

- ▶ **Theorem 26.2:** Let $A = [a_{ij}]_{1 \leq i, j \leq n}$ be a complex matrix. Then the following are equivalent:
 - ▶ (i) A is positive, that is, $A = B^*B$ for some $n \times n$ matrix B .

Characterizations of positivity

- ▶ **Theorem 26.2:** Let $A = [a_{ij}]_{1 \leq i, j \leq n}$ be a complex matrix. Then the following are equivalent:
 - ▶ (i) A is positive, that is, $A = B^*B$ for some $n \times n$ matrix B .
 - ▶ (ii) $A = C^*C$ for some $m \times n$ matrix for some m .

Characterizations of positivity

- ▶ **Theorem 26.2:** Let $A = [a_{ij}]_{1 \leq i,j \leq n}$ be a complex matrix. Then the following are equivalent:
 - ▶ (i) A is positive, that is, $A = B^*B$ for some $n \times n$ matrix B .
 - ▶ (ii) $A = C^*C$ for some $m \times n$ matrix for some m .
 - ▶ (iii) $a_{ij} = \langle v_i, v_j \rangle$, $1 \leq i, j \leq n$ for vectors v_1, v_2, \dots, v_n in some inner product space V .

Characterizations of positivity

- ▶ **Theorem 26.2:** Let $A = [a_{ij}]_{1 \leq i,j \leq n}$ be a complex matrix. Then the following are equivalent:
 - ▶ (i) A is positive, that is, $A = B^*B$ for some $n \times n$ matrix B .
 - ▶ (ii) $A = C^*C$ for some $m \times n$ matrix for some m .
 - ▶ (iii) $a_{ij} = \langle v_i, v_j \rangle$, $1 \leq i, j \leq n$ for vectors v_1, v_2, \dots, v_n in some inner product space V .
 - ▶ (iv) $\langle x, Ax \rangle \geq 0$ for all $x \in \mathbb{C}^n$.

Characterizations of positivity

- ▶ **Theorem 26.2:** Let $A = [a_{ij}]_{1 \leq i,j \leq n}$ be a complex matrix. Then the following are equivalent:
 - ▶ (i) A is positive, that is, $A = B^*B$ for some $n \times n$ matrix B .
 - ▶ (ii) $A = C^*C$ for some $m \times n$ matrix for some m .
 - ▶ (iii) $a_{ij} = \langle v_i, v_j \rangle$, $1 \leq i, j \leq n$ for vectors v_1, v_2, \dots, v_n in some inner product space V .
 - ▶ (iv) $\langle x, Ax \rangle \geq 0$ for all $x \in \mathbb{C}^n$.
 - ▶ (v) $A = A^*$ and eigenvalues of A are non-negative.

Characterizations of positivity

- ▶ **Theorem 26.2:** Let $A = [a_{ij}]_{1 \leq i,j \leq n}$ be a complex matrix. Then the following are equivalent:
 - ▶ (i) A is positive, that is, $A = B^*B$ for some $n \times n$ matrix B .
 - ▶ (ii) $A = C^*C$ for some $m \times n$ matrix for some m .
 - ▶ (iii) $a_{ij} = \langle v_i, v_j \rangle$, $1 \leq i, j \leq n$ for vectors v_1, v_2, \dots, v_n in some inner product space V .
 - ▶ (iv) $\langle x, Ax \rangle \geq 0$ for all $x \in \mathbb{C}^n$.
 - ▶ (v) $A = A^*$ and eigenvalues of A are non-negative.
 - ▶ (vi) $A = S^2$ for some self-adjoint $n \times n$ matrix S .

Diagonal entries

- ▶ It is difficult to determine positivity of a matrix using the characterizations given above.

Diagonal entries

- ▶ It is difficult to determine positivity of a matrix using the characterizations given above.
- ▶ Let us first look at some necessary conditions for positivity which can be checked easily.

Diagonal entries

- ▶ It is difficult to determine positivity of a matrix using the characterizations given above.
- ▶ Let us first look at some necessary conditions for positivity which can be checked easily.
- ▶ We have already seen that if A is positive then $A = A^*$. Self-adjointness is a necessity for positivity and it is easy to check.

Diagonal entries

- ▶ It is difficult to determine positivity of a matrix using the characterizations given above.
- ▶ Let us first look at some necessary conditions for positivity which can be checked easily.
- ▶ We have already seen that if A is positive then $A = A^*$. Self-adjointness is a necessity for positivity and it is easy to check.
- ▶ **Theorem 31.1:** Suppose A is a positive matrix and $a_{ii} = 0$ for some i . Then $a_{ij} = 0 = a_{ji}$ for all j , that is, if a diagonal entry is zero then all entries in corresponding row and column are zeros.

Diagonal entries

- ▶ It is difficult to determine positivity of a matrix using the characterizations given above.
- ▶ Let us first look at some necessary conditions for positivity which can be checked easily.
- ▶ We have already seen that if A is positive then $A = A^*$. Self-adjointness is a necessity for positivity and it is easy to check.
- ▶ **Theorem 31.1:** Suppose A is a positive matrix and $a_{ii} = 0$ for some i . Then $a_{ij} = 0 = a_{ji}$ for all j , that is, if a diagonal entry is zero then all entries in corresponding row and column are zeros.
- ▶ **Proof:** We write A as a Gram matrix of some vectors v_1, v_2, \dots, v_n .

Diagonal entries

- ▶ It is difficult to determine positivity of a matrix using the characterizations given above.
- ▶ Let us first look at some necessary conditions for positivity which can be checked easily.
- ▶ We have already seen that if A is positive then $A = A^*$. Self-adjointness is a necessity for positivity and it is easy to check.
- ▶ **Theorem 31.1:** Suppose A is a positive matrix and $a_{ii} = 0$ for some i . Then $a_{ij} = 0 = a_{ji}$ for all j , that is, if a diagonal entry is zero then all entries in corresponding row and column are zeros.
- ▶ **Proof:** We write A as a Gram matrix of some vectors v_1, v_2, \dots, v_n .
- ▶ Now $a_{ii} = 0$ implies $\langle v_i, v_i \rangle = 0$ and hence $v_i = 0$.

Diagonal entries

- ▶ It is difficult to determine positivity of a matrix using the characterizations given above.
- ▶ Let us first look at some necessary conditions for positivity which can be checked easily.
- ▶ We have already seen that if A is positive then $A = A^*$. Self-adjointness is a necessity for positivity and it is easy to check.
- ▶ **Theorem 31.1:** Suppose A is a positive matrix and $a_{ii} = 0$ for some i . Then $a_{ij} = 0 = a_{ji}$ for all j , that is, if a diagonal entry is zero then all entries in corresponding row and column are zeros.
- ▶ **Proof:** We write A as a Gram matrix of some vectors v_1, v_2, \dots, v_n .
- ▶ Now $a_{ii} = 0$ implies $\langle v_i, v_i \rangle = 0$ and hence $v_i = 0$.
- ▶ Consequently, $a_{ij} = \langle v_i, v_j \rangle = 0$ for any j . Similarly $a_{ji} = 0$ for any j .

Strict positivity

- ▶ Recall that a matrix A is said to be **positive definite** or **strictly positive** if A is positive and invertible.

Strict positivity

- ▶ Recall that a matrix A is said to be **positive definite** or **strictly positive** if A is positive and invertible.
- ▶ **Theorem 31.2:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:

Strict positivity

- ▶ Recall that a matrix A is said to be **positive definite** or **strictly positive** if A is positive and invertible.
- ▶ **Theorem 31.2:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
 - ▶ (i) A is positive definite;

Strict positivity

- ▶ Recall that a matrix A is said to be **positive definite** or **strictly positive** if A is positive and invertible.
- ▶ **Theorem 31.2:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
 - ▶ (i) A is positive definite;
 - ▶ (ii) A is positive and $\det(A) \neq 0$;

Strict positivity

- ▶ Recall that a matrix A is said to be **positive definite** or **strictly positive** if A is positive and invertible.
- ▶ **Theorem 31.2:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
 - (i) A is positive definite;
 - (ii) A is positive and $\det(A) \neq 0$;
 - (iii) A is self-adjoint and all its eigenvalues are strictly positive.

Strict positivity

- ▶ Recall that a matrix A is said to be **positive definite** or **strictly positive** if A is positive and invertible.
- ▶ **Theorem 31.2:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
 - (i) A is positive definite;
 - (ii) A is positive and $\det(A) \neq 0$;
 - (iii) A is self-adjoint and all its eigenvalues are strictly positive.

Strict positivity

- ▶ Recall that a matrix A is said to be **positive definite** or **strictly positive** if A is positive and invertible.
- ▶ **Theorem 31.2:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
 - (i) A is positive definite;
 - (ii) A is positive and $\det(A) \neq 0$;
 - (iii) A is self-adjoint and all its eigenvalues are strictly positive.
 - (iv) A is a Gram matrix of linearly independent vectors in some inner product space.

Strict positivity

- ▶ Recall that a matrix A is said to be **positive definite** or **strictly positive** if A is positive and invertible.
- ▶ **Theorem 31.2:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
 - (i) A is positive definite;
 - (ii) A is positive and $\det(A) \neq 0$;
 - (iii) A is self-adjoint and all its eigenvalues are strictly positive.
 - (iv) A is a Gram matrix of linearly independent vectors in some inner product space.
 - (v) $\langle x, Ax \rangle > 0$ for all $x \neq 0$.

Strict positivity

- ▶ Recall that a matrix A is said to be **positive definite** or **strictly positive** if A is positive and invertible.
- ▶ **Theorem 31.2:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
 - ▶ (i) A is positive definite;
 - ▶ (ii) A is positive and $\det(A) \neq 0$;
 - ▶ (iii) A is self-adjoint and all its eigenvalues are strictly positive.
 - ▶ (iv) A is a Gram matrix of linearly independent vectors in some inner product space.
 - ▶ (v) $\langle x, Ax \rangle > 0$ for all $x \neq 0$.
- ▶ **Proof:** Easy.

Principal submatrices and principal minors

- ▶ **Definition 31.3:** Let $A = [a_{ij}]_{1 \leq i,j \leq n}$ be a complex matrix. Then for any non-empty subset S of $\{1, 2, \dots, n\}$, the matrix $A_S := [a_{ij}]_{i,j \in S}$ is called the **principal submatrix** of A corresponding to S . The determinant of A_S is called the **principal minor** of A corresponding to the subset S . The principal minors corresponding to sets of the form $\{1, 2, \dots, k\}$ for $1 \leq k \leq n$ are known as **leading principal minors**.

Principal submatrices and principal minors

- ▶ **Definition 31.3:** Let $A = [a_{ij}]_{1 \leq i,j \leq n}$ be a complex matrix. Then for any non-empty subset S of $\{1, 2, \dots, n\}$, the matrix $A_S := [a_{ij}]_{i,j \in S}$ is called the **principal submatrix** of A corresponding to S . The determinant of A_S is called the **principal minor** of A corresponding to the subset S . The principal minors corresponding to sets of the form $\{1, 2, \dots, k\}$ for $1 \leq k \leq n$ are known as **leading principal minors**.
- ▶ **Theorem 31.4:** Let A be a positive matrix. Then all its principal minors are positive. If A is strictly positive then all its principal minors are strictly positive.

Principal submatrices and principal minors

- ▶ **Definition 31.3:** Let $A = [a_{ij}]_{1 \leq i,j \leq n}$ be a complex matrix. Then for any non-empty subset S of $\{1, 2, \dots, n\}$, the matrix $A_S := [a_{ij}]_{i,j \in S}$ is called the **principal submatrix** of A corresponding to S . The determinant of A_S is called the **principal minor** of A corresponding to the subset S . The principal minors corresponding to sets of the form $\{1, 2, \dots, k\}$ for $1 \leq k \leq n$ are known as **leading principal minors**.
- ▶ **Theorem 31.4:** Let A be a positive matrix. Then all its principal minors are positive. If A is strictly positive then all its principal minors are strictly positive.
- ▶ **Proof:** Exercise. (Hint: Use Gram matrices.)

Leading principal minors

- ▶ **Theorem 31.5:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:

Leading principal minors

- ▶ **Theorem 31.5:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
 - ▶ (i) A is strictly positive;

Leading principal minors

- ▶ **Theorem 31.5:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
 - ▶ (i) A is strictly positive;
 - ▶ (ii) A is self-adjoint and all leading principal minors of A are strictly positive.

Leading principal minors

- ▶ **Theorem 31.5:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
 - ▶ (i) A is strictly positive;
 - ▶ (ii) A is self-adjoint and all leading principal minors of A are strictly positive.
- ▶ **Proof:** We have already seen $(i) \Rightarrow (ii)$.

Leading principal minors

- ▶ **Theorem 31.5:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
 - ▶ (i) A is strictly positive;
 - ▶ (ii) A is self-adjoint and all leading principal minors of A are strictly positive.
- ▶ **Proof:** We have already seen $(i) \Rightarrow (ii)$.
- ▶ To see the converse, we use induction on n .

Continuation

- ▶ There is nothing to verify when $n = 1$.

Continuation

- ▶ There is nothing to verify when $n = 1$.
- ▶ Now for $n \geq 2$, assume the result for $(n - 1)$ and we will prove it for n .

Continuation

- ▶ There is nothing to verify when $n = 1$.
- ▶ Now for $n \geq 2$, assume the result for $(n - 1)$ and we will prove it for n .
- ▶ Let $A = [a_{ij}]_{1 \leq i, j \leq n}$ be a matrix with all its leading principal minors strictly positive.

Continuation

- ▶ There is nothing to verify when $n = 1$.
- ▶ Now for $n \geq 2$, assume the result for $(n - 1)$ and we will prove it for n .
- ▶ Let $A = [a_{ij}]_{1 \leq i, j \leq n}$ be a matrix with all its leading principal minors strictly positive.
- ▶ In particular $a_{11} > 0$.

Continuation

- We consider a block decomposition of A as

$$A = \begin{bmatrix} a_{11} & y^* \\ y & B \end{bmatrix}$$

Continuation

- We consider a block decomposition of A as

$$A = \begin{bmatrix} a_{11} & y^* \\ y & B \end{bmatrix}$$

- where,

$$y = \begin{pmatrix} a_{21} \\ a_{31} \\ \vdots \\ a_{n1} \end{pmatrix}, \quad B = \begin{bmatrix} a_{22} & a_{23} & \dots & a_{2n} \\ a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix}.$$

Continuation

- We consider a block decomposition of A as

$$A = \begin{bmatrix} a_{11} & y^* \\ y & B \end{bmatrix}$$

- where,

$$y = \begin{pmatrix} a_{21} \\ a_{31} \\ \vdots \\ a_{n1} \end{pmatrix}, \quad B = \begin{bmatrix} a_{22} & a_{23} & \dots & a_{2n} \\ a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix}.$$

- Using the fact that $a_{11} > 0$, we have

$$\begin{bmatrix} 1 & 0 \\ -\frac{y}{a_{11}} & I \end{bmatrix} \cdot \begin{bmatrix} a_{11} & y^* \\ y & B \end{bmatrix} \cdot \begin{bmatrix} 1 & -\frac{y^*}{a_{11}} \\ 0 & I \end{bmatrix} = \begin{bmatrix} a_{11} & 0 \\ 0 & C \end{bmatrix},$$

Continuation

- We consider a block decomposition of A as

$$A = \begin{bmatrix} a_{11} & y^* \\ y & B \end{bmatrix}$$

- where,

$$y = \begin{pmatrix} a_{21} \\ a_{31} \\ \vdots \\ a_{n1} \end{pmatrix}, \quad B = \begin{bmatrix} a_{22} & a_{23} & \dots & a_{2n} \\ a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix}.$$

- Using the fact that $a_{11} > 0$, we have

$$\begin{bmatrix} 1 & 0 \\ -\frac{y}{a_{11}} & I \end{bmatrix} \cdot \begin{bmatrix} a_{11} & y^* \\ y & B \end{bmatrix} \cdot \begin{bmatrix} 1 & -\frac{y^*}{a_{11}} \\ 0 & I \end{bmatrix} = \begin{bmatrix} a_{11} & 0 \\ 0 & C \end{bmatrix},$$

- where, $C = B - \frac{1}{a_{11}}yy^*$. (Recall 'Schur-complement').

Continuation

- We consider a block decomposition of A as

$$A = \begin{bmatrix} a_{11} & y^* \\ y & B \end{bmatrix}$$

- where,

$$y = \begin{pmatrix} a_{21} \\ a_{31} \\ \vdots \\ a_{n1} \end{pmatrix}, \quad B = \begin{bmatrix} a_{22} & a_{23} & \dots & a_{2n} \\ a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix}.$$

- Using the fact that $a_{11} > 0$, we have

$$\begin{bmatrix} 1 & 0 \\ -\frac{y}{a_{11}} & I \end{bmatrix} \cdot \begin{bmatrix} a_{11} & y^* \\ y & B \end{bmatrix} \cdot \begin{bmatrix} 1 & -\frac{y^*}{a_{11}} \\ 0 & I \end{bmatrix} = \begin{bmatrix} a_{11} & 0 \\ 0 & C \end{bmatrix},$$

- where, $C = B - \frac{1}{a_{11}}yy^*$. (Recall 'Schur-complement').
- Taking determinant, we get

$$\det(A) = a_{11} \cdot \det(C).$$

Continuation

- ▶ In particular $\det(C) > 0$.
- ▶ Instead of starting with A , if we start with leading principal submatrices of A and do similar computation we see that leading principal minors of C are all strictly positive.

Continuation

- ▶ In particular $\det(C) > 0$.
- ▶ Instead of starting with A , if we start with leading principal submatrices of A and do similar computation we see that leading principal minors of C are all strictly positive.
- ▶ Clearly C is self-adjoint. Hence by induction hypothesis C is strictly positive.

Continuation

- ▶ In particular $\det(C) > 0$.
- ▶ Instead of starting with A , if we start with leading principal submatrices of A and do similar computation we see that leading principal minors of C are all strictly positive.
- ▶ Clearly C is self-adjoint. Hence by induction hypothesis C is strictly positive.
- ▶ Then it is easy to see that,

$$\begin{bmatrix} a_{11} & 0 \\ 0 & C \end{bmatrix}$$

is also strictly positive.

Continuation

- ▶ In particular $\det(C) > 0$.
- ▶ Instead of starting with A , if we start with leading principal submatrices of A and do similar computation we see that leading principal minors of C are all strictly positive.
- ▶ Clearly C is self-adjoint. Hence by induction hypothesis C is strictly positive.
- ▶ Then it is easy to see that,

$$\begin{bmatrix} a_{11} & 0 \\ 0 & C \end{bmatrix}$$

is also strictly positive.

- ▶ Further, as

$$A = \begin{bmatrix} 1 & 0 \\ \frac{y}{a_{11}} & I \end{bmatrix} \cdot \begin{bmatrix} a_{11} & 0 \\ 0 & C \end{bmatrix} \cdot \begin{bmatrix} 1 & \frac{y^*}{a_{11}} \\ 0 & I \end{bmatrix},$$

A is positive. Since its determinant is non-zero it is strictly positive. ■

Continuation

- ▶ Example 31.6: Consider

$$A = \begin{bmatrix} 0 & 0 \\ 0 & -5 \end{bmatrix}$$

Continuation

- ▶ Example 31.6: Consider

$$A = \begin{bmatrix} 0 & 0 \\ 0 & -5 \end{bmatrix}$$

- ▶ Here A is self-adjoint and all its leading principal minors are non-negative.

Continuation

- ▶ Example 31.6: Consider

$$A = \begin{bmatrix} 0 & 0 \\ 0 & -5 \end{bmatrix}$$

- ▶ Here A is self-adjoint and all its leading principal minors are non-negative.
- ▶ However A is not positive as a diagonal entry is negative.

Continuation

- ▶ Example 31.6: Consider

$$A = \begin{bmatrix} 0 & 0 \\ 0 & -5 \end{bmatrix}$$

- ▶ Here A is self-adjoint and all its leading principal minors are non-negative.
- ▶ However A is not positive as a diagonal entry is negative.
- ▶ In other words, the previous theorem does not hold if strict positivity is replaced by positivity.

Continuation

► Example 31.6: Consider

$$A = \begin{bmatrix} 0 & 0 \\ 0 & -5 \end{bmatrix}$$

- Here A is self-adjoint and all its leading principal minors are non-negative.
- However A is not positive as a diagonal entry is negative.
- In other words, the previous theorem does not hold if strict positivity is replaced by positivity.
- To get the correct result for positivity we need to consider all principal minors instead of just leading principal minors.

Principal minor condition for positivity

- **Theorem 31.7:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:

Principal minor condition for positivity

- ▶ **Theorem 31.7:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
 - ▶ (i) A is positive;

Principal minor condition for positivity

- ▶ **Theorem 31.7:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
 - ▶ (i) A is positive;
 - ▶ (ii) A is self-adjoint and all principal minors of A are positive.

Principal minor condition for positivity

- ▶ **Theorem 31.7:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
 - ▶ (i) A is positive;
 - ▶ (ii) A is self-adjoint and all principal minors of A are positive.
- ▶ **Proof:** We have already seen $(i) \Rightarrow (ii)$.

Principal minor condition for positivity

- ▶ **Theorem 31.7:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
 - ▶ (i) A is positive;
 - ▶ (ii) A is self-adjoint and all principal minors of A are positive.
- ▶ **Proof:** We have already seen $(i) \Rightarrow (ii)$.
- ▶ Like before to show $(ii) \Rightarrow (i)$, we use induction.

Principal minor condition for positivity

- ▶ **Theorem 31.7:** Let A be an $n \times n$ complex matrix. Then the following are equivalent:
 - ▶ (i) A is positive;
 - ▶ (ii) A is self-adjoint and all principal minors of A are positive.
- ▶ **Proof:** We have already seen $(i) \Rightarrow (ii)$.
- ▶ Like before to show $(ii) \Rightarrow (i)$, we use induction.
- ▶ There is nothing to show for $n = 1$.

Continuation

- ▶ Now consider a self-adjoint $A = [a_{ij}]_{1 \leq i,j \leq n}$ with all its principal minors positive.

Continuation

- ▶ Now consider a self-adjoint $A = [a_{ij}]_{1 \leq i,j \leq n}$ with all its principal minors positive.
- ▶ If $a_{11} > 0$, we can essentially repeat the argument of previous theorem to deduce that A is positive.

Continuation

- ▶ Now consider a self-adjoint $A = [a_{ij}]_{1 \leq i,j \leq n}$ with all its principal minors positive.
- ▶ If $a_{11} > 0$, we can essentially repeat the argument of previous theorem to deduce that A is positive.
- ▶ If $a_{11} = 0$, but $a_{jj} > 0$ for some $j > 1$, we can interchange first row and column with j -th row and column by pre and post multiplying by a permutation matrix and repeat the argument.

Continuation

- ▶ Now consider a self-adjoint $A = [a_{ij}]_{1 \leq i,j \leq n}$ with all its principal minors positive.
- ▶ If $a_{11} > 0$, we can essentially repeat the argument of previous theorem to deduce that A is positive.
- ▶ If $a_{11} = 0$, but $a_{jj} > 0$ for some $j > 1$, we can interchange first row and column with j -th row and column by pre and post multiplying by a permutation matrix and repeat the argument.
- ▶ If $a_{jj} = 0$ for every j , then by considering positivity of 2×2 principal minors we see that $a_{ij} = 0$ for all i, j . In other words, in such a case A is the zero matrix and hence it is positive. ■

Continuation

- ▶ Now consider a self-adjoint $A = [a_{ij}]_{1 \leq i,j \leq n}$ with all its principal minors positive.
- ▶ If $a_{11} > 0$, we can essentially repeat the argument of previous theorem to deduce that A is positive.
- ▶ If $a_{11} = 0$, but $a_{jj} > 0$ for some $j > 1$, we can interchange first row and column with j -th row and column by pre and post multiplying by a permutation matrix and repeat the argument.
- ▶ If $a_{jj} = 0$ for every j , then by considering positivity of 2×2 principal minors we see that $a_{ij} = 0$ for all i, j . In other words, in such a case A is the zero matrix and hence it is positive. ■
- ▶ These criteria are very useful to check positivity as in general it is difficult to compute eigenvalues.

Continuation

- ▶ Now consider a self-adjoint $A = [a_{ij}]_{1 \leq i,j \leq n}$ with all its principal minors positive.
- ▶ If $a_{11} > 0$, we can essentially repeat the argument of previous theorem to deduce that A is positive.
- ▶ If $a_{11} = 0$, but $a_{jj} > 0$ for some $j > 1$, we can interchange first row and column with j -th row and column by pre and post multiplying by a permutation matrix and repeat the argument.
- ▶ If $a_{jj} = 0$ for every j , then by considering positivity of 2×2 principal minors we see that $a_{ij} = 0$ for all i, j . In other words, in such a case A is the zero matrix and hence it is positive. ■
- ▶ These criteria are very useful to check positivity as in general it is difficult to compute eigenvalues.
- ▶ **END OF LECTURE 31.**