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» Once again we recall the notion of positivity and some
characterizations.

» Definition 26.1: An n x n matrix A is said to be a positive
matrix if A= B*B for some n x n matrix B.

» Some authors may call these as non-negative definite matrices
and invertible matrices of the form B*B as positive definite
matrices.

» Warning: A positive matrix need not have positive entries. It
can have negative entries and also complex entries.
> Matrices whose entries are positive would be called as

entrywise positive matrices. That is also an important class,
but we will not be studying them now.
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Characterizations of positivity

» Theorem 26.2: Let A = [ajj]i<ij<n be a complex matrix.
Then the following are equivalent:

» (i) A is positive, that is, A = B*B for some n x n matrix B.

» (ii) A= C*C for some m x n matrix for some m.

> (iii) aj = (vi, vj),1 < i,j < n for vectors vy, vo, ..., v, in some
inner product space V.

> (iv) (x,Ax) >0 for all x € C".

v

(v) A= A* and eigenvalues of A are non-negative.

» (vi) A= S? for some self-adjoint n x n matrix S.
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Diagonal entries
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It is difficult to determine positivity of a matrix using the
characterizations given above.

Let us first look at some necessary conditions for positivity
which can be checked easily.

We have already seen that if A is positive then A = A*.
Self-adjointness is a necessity for positivity and it is easy to
check.

Theorem 31.1: Suppose A is a positive matrix and a;; = 0 for
some /. Then a; = 0 = aj; for all j, that is, if a diagonal entry
is zero then all entries in corresponding row and column are
Zeros.

Proof: We write A as a Gram matrix of some vectors

Vi, Vo,..., Vp.

Now a;; = 0 implies (v;, v;) =0 and hence v; = 0.
Consequently, ajj = (v;, vj) = 0 for any j. Similarly aj = 0 for
any j.
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Strict positivity

vvyyy v
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Recall that a matrix A is said to be positive definite or strictly
positive if A is positive and invertible.

Theorem 31.2: Let A be an n x n complex matrix. Then the
following are equivalent:

(i) A is positive definite;
(ii) A is positive and det(A) # 0;
(iii) A is self-adjoint and all its eigenvalues are strictly positive.

(iv) Ais a Gram matrix of linearly independent vectors in
some inner product space.

(v) (x,Ax) > 0 for all x # 0.
Proof: Easy.
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» Definition 31.3: Let A = [aji]1<ij<n be a complex matrix.
Then for any non-empty subset S of {1,2,..., n}, the matrix
As = [ajj]i jes is called the principal submatrix of A
corresponding to S. The determinant of Ag is called the
principal minor of A corresponding to the subset S. The
principal minors corresponding to sets of the form
{1,2,...,k} for 1 < k < n are known as leading principal
minors.

> Theorem 31.4: Let A be a positive matrix. Then all its
principal minors are positive. If A is strictly positive then all
its principal minors are strictly positive.

» Proof: Exercise. (Hint: Use Gram matrices.)



Leading principal minors

» Theorem 31.5: Let A be an n X n complex matrix. Then the
following are equivalent:



Leading principal minors

» Theorem 31.5: Let A be an n X n complex matrix. Then the
following are equivalent:

» (i) A is strictly positive;



Leading principal minors

» Theorem 31.5: Let A be an n X n complex matrix. Then the
following are equivalent:

» (i) A is strictly positive;

» (ii) A is self-adjoint and all leading principal minors of A are
strictly positive.



Leading principal minors

» Theorem 31.5: Let A be an n X n complex matrix. Then the
following are equivalent:

» (i) A is strictly positive;

» (ii) A is self-adjoint and all leading principal minors of A are
strictly positive.

» Proof: We have already seen (i) = (ii).



Leading principal minors

» Theorem 31.5: Let A be an n X n complex matrix. Then the
following are equivalent:

v

(i) Ais strictly positive;

v

(ii) A is self-adjoint and all leading principal minors of A are
strictly positive.

» Proof: We have already seen (i) = (ii).

v

To see the converse, we use induction on n.
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» Now for n > 2, assume the result for (n — 1) and we will prove
it for n.

> Let A= [ajj]i<ij<n be a matrix with all its leading principal
minors strictly positive.

» In particular a;; > 0.
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» We consider a block decomposition of A as

| au y*
A_[y B}

» where,
azi az» a3 ... an
a3l 432 433 ... 4d3p
y=1| . |, B=| .
danl dn2 dn3 ... dnn

» Using the fact that a;; > 0, we have

1 0 a Yt 1 - _[an 0
-2 Ly B0 0 C |’
» where, C = B — a—}lyy*. (Recall 'Schur-complement’.)

P> Taking determinant, we get
det(A) = ag1.det(C).
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» In particular det(C) > 0.

» Instead of starting with A, if we start with leading principal
submatrices of A and do similar computation we see that
leading principal minors of C are all strictly positive.

» Clearly C is self-adjoint. Hence by induction hypothesis C is
strictly positive.

» Then it is easy to see that,

dalil 0
0 C
is also strictly positive.
» Further, as

1 0 a1 0 1 L
a=[p VLT e o T
e 0 C 0 |/

A is positive. Since its determinant is non-zero it is strictly
positive. B
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» Example 31.6: Consider

0 0
A=
o 55
» Here A is self-adjoint and all its leading principal minors are
non-negative.

> However A is not positive as a diagonal entry is negative.

» In other words, the previous theorem does not hold if strict
positivity is replaced by positivity.

> To get the correct result for positivity we need to consider all
principal minors instead of just leading principal minors.
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There is nothing to show for n = 1.
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» If a;7 > 0, we can essentially repeat the argument of previous
theorem to deduce that A is positive.

» If a11 = 0, but a; > 0 for some j > 1, we can interchange first
row and column with j-th row and column by pre and post
multiplying by a permutation matrix and repeat the argument.

» If a;; = 0 for every j, then by considering positivity of 2 x 2
principal minors we see that a;; = 0 for all /,;. In other words,
in such a case A is the zero matrix and hence it is positive. l

» These criteria are very useful to check positivity as in general
it is difficult to compute eigenvalues.

» END OF LECTURE 31.



