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Lecture 31: Determining positivity

I Once again we recall the notion of positivity and some
characterizations.

I Definition 26.1: An n × n matrix A is said to be a positive
matrix if A = B∗B for some n × n matrix B.

I Some authors may call these as non-negative definite matrices
and invertible matrices of the form B∗B as positive definite
matrices.

I Warning: A positive matrix need not have positive entries. It
can have negative entries and also complex entries.

I Matrices whose entries are positive would be called as
entrywise positive matrices. That is also an important class,
but we will not be studying them now.
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Characterizations of positivity

I Theorem 26.2: Let A = [aij ]1≤i ,j≤n be a complex matrix.
Then the following are equivalent:

I (i) A is positive, that is, A = B∗B for some n × n matrix B.

I (ii) A = C ∗C for some m × n matrix for some m.

I (iii) aij = 〈vi , vj〉, 1 ≤ i , j ≤ n for vectors v1, v2, . . . , vn in some
inner product space V .

I (iv) 〈x ,Ax〉 ≥ 0 for all x ∈ Cn.

I (v) A = A∗ and eigenvalues of A are non-negative.

I (vi) A = S2 for some self-adjoint n × n matrix S .
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Diagonal entries

I It is difficult to determine positivity of a matrix using the
characterizations given above.

I Let us first look at some necessary conditions for positivity
which can be checked easily.

I We have already seen that if A is positive then A = A∗.
Self-adjointness is a necessity for positivity and it is easy to
check.

I Theorem 31.1: Suppose A is a positive matrix and aii = 0 for
some i . Then aij = 0 = aji for all j , that is, if a diagonal entry
is zero then all entries in corresponding row and column are
zeros.

I Proof: We write A as a Gram matrix of some vectors
v1, v2, . . . , vn.

I Now aii = 0 implies 〈vi , vi 〉 = 0 and hence vi = 0.

I Consequently, aij = 〈vi , vj〉 = 0 for any j . Similarly aji = 0 for
any j .
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Strict positivity

I Recall that a matrix A is said to be positive definite or strictly
positive if A is positive and invertible.

I Theorem 31.2: Let A be an n × n complex matrix. Then the
following are equivalent:

I (i) A is positive definite;

I (ii) A is positive and det(A) 6= 0;

I (iii) A is self-adjoint and all its eigenvalues are strictly positive.

I (iv) A is a Gram matrix of linearly independent vectors in
some inner product space.

I (v) 〈x ,Ax〉 > 0 for all x 6= 0.

I Proof: Easy.
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Principal submatrices and principal minors

I Definition 31.3: Let A = [aij ]1≤i ,j≤n be a complex matrix.
Then for any non-empty subset S of {1, 2, . . . , n}, the matrix
AS := [aij ]i ,j∈S is called the principal submatrix of A
corresponding to S . The determinant of AS is called the
principal minor of A corresponding to the subset S . The
principal minors corresponding to sets of the form
{1, 2, . . . , k} for 1 ≤ k ≤ n are known as leading principal
minors.

I Theorem 31.4: Let A be a positive matrix. Then all its
principal minors are positive. If A is strictly positive then all
its principal minors are strictly positive.

I Proof: Exercise. (Hint: Use Gram matrices.)
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Leading principal minors

I Theorem 31.5: Let A be an n × n complex matrix. Then the
following are equivalent:

I (i) A is strictly positive;

I (ii) A is self-adjoint and all leading principal minors of A are
strictly positive.

I Proof: We have already seen (i)⇒ (ii).

I To see the converse, we use induction on n.
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Continuation

I There is nothing to verify when n = 1.

I Now for n ≥ 2, assume the result for (n− 1) and we will prove
it for n.

I Let A = [aij ]1≤i ,j≤n be a matrix with all its leading principal
minors strictly positive.

I In particular a11 > 0.
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Continuation

I We consider a block decomposition of A as

A =

[
a11 y∗

y B

]

I where,

y =


a21
a31

...
an1

 , B =


a22 a23 . . . a2n
a32 a33 . . . a3n

...
...

. . .
...

an2 an3 . . . ann

 .

I Using the fact that a11 > 0, we have[
1 0
− y

a11
I

]
.

[
a11 y∗

y B

]
.

[
1 − y∗

a11
0 I

]
=

[
a11 0
0 C

]
,

I where, C = B − 1
a11

yy∗. (Recall ‘Schur-complement’.)
I Taking determinant, we get

det(A) = a11. det(C ).
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det(A) = a11. det(C ).



Continuation

I In particular det(C ) > 0.
I Instead of starting with A, if we start with leading principal

submatrices of A and do similar computation we see that
leading principal minors of C are all strictly positive.

I Clearly C is self-adjoint. Hence by induction hypothesis C is
strictly positive.

I Then it is easy to see that,[
a11 0
0 C

]
is also strictly positive.

I Further, as

A =

[
1 0
y
a11

I

]
.

[
a11 0
0 C

]
.

[
1 y∗

a11
0 I

]
,

A is positive. Since its determinant is non-zero it is strictly
positive. �
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Continuation

I Example 31.6: Consider

A =

[
0 0
0 −5

]

I Here A is self-adjoint and all its leading principal minors are
non-negative.

I However A is not positive as a diagonal entry is negative.

I In other words, the previous theorem does not hold if strict
positivity is replaced by positivity.

I To get the correct result for positivity we need to consider all
principal minors instead of just leading principal minors.
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Principal minor condition for positivity

I Theorem 31.7: Let A be an n × n complex matrix. Then the
following are equivalent:

I (i) A is positive;

I (ii) A is self-adjoint and all principal minors of A are positive.

I Proof: We have already seen (i)⇒ (ii).

I Like before to show (ii)⇒ (i), we use induction.

I There is nothing to show for n = 1.
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Continuation

I Now consider a self-adjoint A = [aij ]1≤i ,j≤n with all its
principal minors positive.

I If a11 > 0, we can essentially repeat the argument of previous
theorem to deduce that A is positive.

I If a11 = 0, but ajj > 0 for some j > 1, we can interchange first
row and column with j-th row and column by pre and post
multiplying by a permutation matrix and repeat the argument.

I If ajj = 0 for every j , then by considering positivity of 2× 2
principal minors we see that aij = 0 for all i , j . In other words,
in such a case A is the zero matrix and hence it is positive. �

I These criteria are very useful to check positivity as in general
it is difficult to compute eigenvalues.

I END OF LECTURE 31.
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