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Lecture 32: Polynomials of a matrix

> Let A be an n x n complex matrix. For any complex
polynomial f(x) = ap + aix + - - - + amx™, by definition,

f(A) =aol + a1A+ ...+ anA".

» Consider
A ={f(A): f is a polynomial}.

» Clearly this is a subspace of M,(C). Actually, A is a
‘sub-algebra’ of M,(C), that is, it is also closed under taking
products.

> Note that M,(C) is a vector space of dimension n?. Therefore

the dimension of A can't be more than n?.

» In particular, I, A, A%, ... 7A”2 are linearly dependent.
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Continuation

» In other words, there exists a non-zero polynomial
q(x) = by + bix + - - - + bymx™ of degree at most n? such that

q(A) = bol + biA+ b A’ + - + b, A" = 0.

» Assume by, # 0. Then
AT = — i (bol + biA+ - + b 1AM,

» This may help us to compute higher powers of A or to
simplify higher degree polynomials in A.

> So we would look for a non-zero polynomial g of lowest
degree satisfying g(A) = 0.

> We may scale such a polynomial to make the leading
coefficient one, i. e. we may take it to be monic.
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Annihilating polynomials and division algorithm

» Definition 32.1: A polynomial f is said to be annihilating for a
matrix A if f(A) =0.

» Theorem 32.2: Let f, g be non-zero annihilating polynomials
of a matrix A and suppose degree (g) < degree (f). Then

f(x) = g(x)s(x) + r(x)
for some polynomials s, r, where either r = 0 or degree (r) <
degree (g) and r(A) = 0.

» Proof: This is clear from the division algorithm for
polynomials. As f(A) =0 = g(A).s(A), we get r(A) = 0.
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Minimal polynomial

» Theorem 32.3: Let A be an n x n complex matrix. Then there
exists a unique monic polynomial g of lowest degree such that

q(A) =0.
» Proof: Suppose g1, g are two distinct non-zero monic
polynomials of lowest degree such that g1(A) = g2(A) = 0.
» Then clearly g1 — g» is a lower degree polynomial with
(1 — q2)(A) = 0.
> We may scale it suitably to make it monic. This contradicts
minimality of g1, g>. B
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Factorization

» Definition 32.4: Given a matrix A, the unique monic
polynomial of lowest degree g, satisfying g(A) = 0 is defined
as the minimal polynomial of A.

» Theorem 32.5: Let A be an n x n complex matrix. Let g be
the minimal polynomial of A. Suppose f is an annihilating
polynomial of A, then there exists a polynomial s such that
f(x) = g(x)s(x). In other words, the minimal polynomial is a
factor of every annihilating polynomial.

» Proof: This is clear from the minimality of g and the division
algorithm on dividing f by g. B
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» Example 32.6: Consider
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» Then for any polynomial f,

» Therefore, f is an annihilating polynomial for C if and only if
f(2)=f(3)=0.

» In particular, the unique minimal polynomial of C is given by
q(x) = (x = 2)(x —3) = x> = 5x +6.
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» Example 32.7: Consider
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» Now the unique minimal polynomial of D is given by
q(x) = (x = 2)*(x - 3).
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Theorem 32.8: Suppose A is a complex matrix and a is an
eigenvalue of A. If f is an annihilating polynomial of A then
f(a) = 0. In particular, every eigenvalue is a root of the
minimal polynomial.

Proof: Suppose v is an eigenvector of A with eigenvalue a.
Clearly, Akv = akv for every k.

Hence for any polynomial f,

Since v # 0, if f(A)v = 0 then f(a) = 0. Now the result is
immediate. W

Now we may guess the following result.
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Cayley Hamilton theorem

» Theorem 32.9 (Cayley Hamilton theorem): Let A be a
complex n X n matrix and let p be the characteristic
polynomial of A. Then

p(A) =0.

In other words, the characteristic polynomial is an annihilating
polynomial for A.

» Corollary 32.9: For any square matrix, the minimal polynomial
is a factor of the characteristic polynomial.
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