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Lecture 32: Polynomials of a matrix

I Let A be an n × n complex matrix. For any complex
polynomial f (x) = a0 + a1x + · · ·+ amx

m, by definition,

f (A) = a0I + a1A + . . . + amA
m.

I Consider
A = {f (A) : f is a polynomial}.

I Clearly this is a subspace of Mn(C). Actually, A is a
‘sub-algebra’ of Mn(C), that is, it is also closed under taking
products.

I Note that Mn(C) is a vector space of dimension n2. Therefore
the dimension of A can’t be more than n2.

I In particular, I ,A,A2, . . . ,An2 are linearly dependent.
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Continuation

I In other words, there exists a non-zero polynomial
q(x) = b0 + b1x + · · ·+ bmx

m of degree at most n2 such that

q(A) = b0I + b1A + b2A
2 + · · ·+ bmA

m = 0.

I Assume bm 6= 0. Then
Am = − 1

bm
(b0I + b1A + · · ·+ bm−1A

(m−1)).

I This may help us to compute higher powers of A or to
simplify higher degree polynomials in A.

I So we would look for a non-zero polynomial q of lowest
degree satisfying q(A) = 0.

I We may scale such a polynomial to make the leading
coefficient one, i. e. we may take it to be monic.
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Annihilating polynomials and division algorithm

I Definition 32.1: A polynomial f is said to be annihilating for a
matrix A if f (A) = 0.

I Theorem 32.2: Let f , g be non-zero annihilating polynomials
of a matrix A and suppose degree (g) ≤ degree (f ). Then

f (x) = g(x)s(x) + r(x)

for some polynomials s, r , where either r = 0 or degree (r) <
degree (g) and r(A) = 0.

I Proof: This is clear from the division algorithm for
polynomials. As f (A) = 0 = g(A).s(A), we get r(A) = 0.
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Minimal polynomial

I Theorem 32.3: Let A be an n× n complex matrix. Then there
exists a unique monic polynomial q of lowest degree such that
q(A) = 0.

I Proof: Suppose q1, q2 are two distinct non-zero monic
polynomials of lowest degree such that q1(A) = q2(A) = 0.

I Then clearly q1 − q2 is a lower degree polynomial with
(q1 − q2)(A) = 0.

I We may scale it suitably to make it monic. This contradicts
minimality of q1, q2. �
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Factorization

I Definition 32.4: Given a matrix A, the unique monic
polynomial of lowest degree q, satisfying q(A) = 0 is defined
as the minimal polynomial of A.

I Theorem 32.5: Let A be an n × n complex matrix. Let q be
the minimal polynomial of A. Suppose f is an annihilating
polynomial of A, then there exists a polynomial s such that
f (x) = q(x)s(x). In other words, the minimal polynomial is a
factor of every annihilating polynomial.

I Proof: This is clear from the minimality of q and the division
algorithm on dividing f by q. �
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Example-I

I Example 32.6: Consider

C =

 2 0 0
0 2 0
0 0 3

 .

I Then for any polynomial f ,

f (C ) =

 f (2) 0 0
0 f (2) 0
0 0 f (3)

 .

I Therefore, f is an annihilating polynomial for C if and only if
f (2) = f (3) = 0.

I In particular, the unique minimal polynomial of C is given by
q(x) = (x − 2)(x − 3) = x2 − 5x + 6.
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Example -II

I Example 32.7: Consider

D =

 2 1 0
0 2 0
0 0 3

 .

I Now the unique minimal polynomial of D is given by
q(x) = (x − 2)2(x − 3).



Example -II

I Example 32.7: Consider

D =

 2 1 0
0 2 0
0 0 3

 .

I Now the unique minimal polynomial of D is given by
q(x) = (x − 2)2(x − 3).



Eigenvalues and annihilating polynomials

I Theorem 32.8: Suppose A is a complex matrix and a is an
eigenvalue of A. If f is an annihilating polynomial of A then
f (a) = 0. In particular, every eigenvalue is a root of the
minimal polynomial.

I Proof: Suppose v is an eigenvector of A with eigenvalue a.

I Clearly, Akv = akv for every k.

I Hence for any polynomial f ,

f (A)v = f (a)v .

I Since v 6= 0, if f (A)v = 0 then f (a) = 0. Now the result is
immediate. �

I Now we may guess the following result.
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Cayley Hamilton theorem

I Theorem 32.9 (Cayley Hamilton theorem): Let A be a
complex n × n matrix and let p be the characteristic
polynomial of A. Then

p(A) = 0.

In other words, the characteristic polynomial is an annihilating
polynomial for A.

I Corollary 32.9: For any square matrix, the minimal polynomial
is a factor of the characteristic polynomial.
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A wrong proof

I Wrong proof: By the definition of the characteristic
polynomial:

p(x) = det(xI − A).

I Taking x = A,

p(A) = det(A.I − A) = det(A− A) = det(0) = 0. (1)

I This is a wrong proof, as in the equation above, on the left we
have a matrix, where as, on the right we have a scalar.

I We can’t blindly substitute x = A and do determinant
computations.

I We will see a correct proof in the next lecture.

I END OF LECTURE 32.
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