

LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 34: Some applications of Cayley Hamilton theorem

- ▶ Recall: Let A be an $n \times n$ complex matrix. For any complex polynomial $f(x) = a_0 + a_1x + \cdots + a_mx^m$, by definition,

$$f(A) = a_0I + a_1A + \dots + a_mA^m.$$

Lecture 34: Some applications of Cayley Hamilton theorem

- ▶ Recall: Let A be an $n \times n$ complex matrix. For any complex polynomial $f(x) = a_0 + a_1x + \dots + a_mx^m$, by definition,

$$f(A) = a_0I + a_1A + \dots + a_mA^m.$$

- ▶ Consider

$$\mathcal{A} = \{f(A) : f \text{ is a polynomial}\}.$$

Lecture 34: Some applications of Cayley Hamilton theorem

- ▶ Recall: Let A be an $n \times n$ complex matrix. For any complex polynomial $f(x) = a_0 + a_1x + \cdots + a_mx^m$, by definition,

$$f(A) = a_0I + a_1A + \dots + a_mA^m.$$

- ▶ Consider

$$\mathcal{A} = \{f(A) : f \text{ is a polynomial}\}.$$

- ▶ Clearly this is a subspace of $M_n(\mathbb{C})$. Actually, \mathcal{A} is a 'sub-algebra' of $M_n(\mathbb{C})$, that is, it is also closed under taking products.

Lecture 34: Some applications of Cayley Hamilton theorem

- ▶ Recall: Let A be an $n \times n$ complex matrix. For any complex polynomial $f(x) = a_0 + a_1x + \dots + a_mx^m$, by definition,

$$f(A) = a_0I + a_1A + \dots + a_mA^m.$$

- ▶ Consider

$$\mathcal{A} = \{f(A) : f \text{ is a polynomial}\}.$$

- ▶ Clearly this is a subspace of $M_n(\mathbb{C})$. Actually, \mathcal{A} is a 'sub-algebra' of $M_n(\mathbb{C})$, that is, it is also closed under taking products.
- ▶ Note that $M_n(\mathbb{C})$ is a vector space of dimension n^2 . Therefore the dimension of \mathcal{A} can't be more than n^2 .

Lecture 34: Some applications of Cayley Hamilton theorem

- ▶ Recall: Let A be an $n \times n$ complex matrix. For any complex polynomial $f(x) = a_0 + a_1x + \dots + a_mx^m$, by definition,

$$f(A) = a_0I + a_1A + \dots + a_mA^m.$$

- ▶ Consider

$$\mathcal{A} = \{f(A) : f \text{ is a polynomial}\}.$$

- ▶ Clearly this is a subspace of $M_n(\mathbb{C})$. Actually, \mathcal{A} is a 'sub-algebra' of $M_n(\mathbb{C})$, that is, it is also closed under taking products.
- ▶ Note that $M_n(\mathbb{C})$ is a vector space of dimension n^2 . Therefore the dimension of \mathcal{A} can't be more than n^2 .
- ▶ In particular, $I, A, A^2, \dots, A^{n^2}$ are linearly dependent.

Continuation

- ▶ In other words, there exists a non-zero polynomial $q(x) = b_0 + b_1x + \cdots + b_mx^m$ of degree at most n^2 such that

$$q(A) = b_0I + b_1A + b_2A^2 + \cdots + b_mA^m = 0.$$

Continuation

- ▶ In other words, there exists a non-zero polynomial $q(x) = b_0 + b_1x + \cdots + b_mx^m$ of degree at most n^2 such that

$$q(A) = b_0I + b_1A + b_2A^2 + \cdots + b_mA^m = 0.$$

- ▶ Assume $b_m \neq 0$. Then

$$A^m = -\frac{1}{b_m}(b_0I + b_1A + \cdots + b_{m-1}A^{(m-1)}).$$

Continuation

- ▶ In other words, there exists a non-zero polynomial $q(x) = b_0 + b_1x + \cdots + b_mx^m$ of degree at most n^2 such that

$$q(A) = b_0I + b_1A + b_2A^2 + \cdots + b_mA^m = 0.$$

- ▶ Assume $b_m \neq 0$. Then $A^m = -\frac{1}{b_m}(b_0I + b_1A + \cdots + b_{m-1}A^{(m-1)})$.
- ▶ This may help us to compute higher powers of A or to simplify higher degree polynomials in A .

Continuation

- ▶ In other words, there exists a non-zero polynomial $q(x) = b_0 + b_1x + \cdots + b_mx^m$ of degree at most n^2 such that

$$q(A) = b_0I + b_1A + b_2A^2 + \cdots + b_mA^m = 0.$$

- ▶ Assume $b_m \neq 0$. Then $A^m = -\frac{1}{b_m}(b_0I + b_1A + \cdots + b_{m-1}A^{(m-1)})$.
- ▶ This may help us to compute higher powers of A or to simplify higher degree polynomials in A .
- ▶ So we would look for a non-zero polynomial q of lowest degree satisfying $q(A) = 0$.

Continuation

- ▶ In other words, there exists a non-zero polynomial $q(x) = b_0 + b_1x + \cdots + b_mx^m$ of degree at most n^2 such that

$$q(A) = b_0I + b_1A + b_2A^2 + \cdots + b_mA^m = 0.$$

- ▶ Assume $b_m \neq 0$. Then $A^m = -\frac{1}{b_m}(b_0I + b_1A + \cdots + b_{m-1}A^{(m-1)})$.
- ▶ This may help us to compute higher powers of A or to simplify higher degree polynomials in A .
- ▶ So we would look for a non-zero polynomial q of lowest degree satisfying $q(A) = 0$.
- ▶ We may scale such a polynomial to make the leading coefficient one, i. e. we may take it to be monic.

Annihilating polynomials and division algorithm

- ▶ **Definition 32.1:** A polynomial f is said to be **annihilating** for a matrix A if $f(A) = 0$.

Annihilating polynomials and division algorithm

- ▶ **Definition 32.1:** A polynomial f is said to be **annihilating** for a matrix A if $f(A) = 0$.
- ▶ **Theorem 32.2:** Let f, g be non-zero annihilating polynomials of a matrix A and suppose $\text{degree}(g) \leq \text{degree}(f)$. Then

$$f(x) = g(x)s(x) + r(x)$$

for some polynomials s, r , where either $r = 0$ or $\text{degree}(r) < \text{degree}(g)$ and $r(A) = 0$.

Annihilating polynomials and division algorithm

- ▶ **Definition 32.1:** A polynomial f is said to be **annihilating** for a matrix A if $f(A) = 0$.
- ▶ **Theorem 32.2:** Let f, g be non-zero annihilating polynomials of a matrix A and suppose $\text{degree}(g) \leq \text{degree}(f)$. Then

$$f(x) = g(x)s(x) + r(x)$$

for some polynomials s, r , where either $r = 0$ or $\text{degree}(r) < \text{degree}(g)$ and $r(A) = 0$.

- ▶ **Proof:** This is clear from the division algorithm for polynomials. As $f(A) = 0 = g(A).s(A)$, we get $r(A) = 0$.

Minimal polynomial

- **Theorem 32.3:** Let A be an $n \times n$ complex matrix. Then there exists a unique monic polynomial q of lowest degree such that $q(A) = 0$.

Minimal polynomial

- ▶ **Theorem 32.3:** Let A be an $n \times n$ complex matrix. Then there exists a unique monic polynomial q of lowest degree such that $q(A) = 0$.
- ▶ **Proof:** Suppose q_1, q_2 are two distinct non-zero monic polynomials of lowest degree such that $q_1(A) = q_2(A) = 0$.

Minimal polynomial

- ▶ **Theorem 32.3:** Let A be an $n \times n$ complex matrix. Then there exists a unique monic polynomial q of lowest degree such that $q(A) = 0$.
- ▶ **Proof:** Suppose q_1, q_2 are two distinct non-zero monic polynomials of lowest degree such that $q_1(A) = q_2(A) = 0$.
- ▶ Then clearly $q_1 - q_2$ is a lower degree polynomial with $(q_1 - q_2)(A) = 0$.

Minimal polynomial

- ▶ **Theorem 32.3:** Let A be an $n \times n$ complex matrix. Then there exists a unique monic polynomial q of lowest degree such that $q(A) = 0$.
- ▶ **Proof:** Suppose q_1, q_2 are two distinct non-zero monic polynomials of lowest degree such that $q_1(A) = q_2(A) = 0$.
- ▶ Then clearly $q_1 - q_2$ is a lower degree polynomial with $(q_1 - q_2)(A) = 0$.
- ▶ We may scale it suitably to make it monic. This contradicts minimality of q_1, q_2 . ■

Factorization

- ▶ **Definition 32.4:** Given a matrix A , the unique monic polynomial of lowest degree q , satisfying $q(A) = 0$ is defined as the **minimal polynomial** of A .

Factorization

- ▶ **Definition 32.4:** Given a matrix A , the unique monic polynomial of lowest degree q , satisfying $q(A) = 0$ is defined as the **minimal polynomial** of A .
- ▶ **Theorem 32.5:** Let A be an $n \times n$ complex matrix. Let q be the minimal polynomial of A . Suppose f is an annihilating polynomial of A , then there exists a polynomial s such that $f(x) = q(x)s(x)$. In other words, the minimal polynomial is a factor of every annihilating polynomial.

Factorization

- ▶ **Definition 32.4:** Given a matrix A , the unique monic polynomial of lowest degree q , satisfying $q(A) = 0$ is defined as the **minimal polynomial** of A .
- ▶ **Theorem 32.5:** Let A be an $n \times n$ complex matrix. Let q be the minimal polynomial of A . Suppose f is an annihilating polynomial of A , then there exists a polynomial s such that $f(x) = q(x)s(x)$. In other words, the minimal polynomial is a factor of every annihilating polynomial.
- ▶ **Proof:** This is clear from the minimality of q and the division algorithm on dividing f by q . ■

Example-I

- ▶ Example 32.6: Consider

$$C = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

Example-I

- ▶ Example 32.6: Consider

$$C = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

- ▶ Then for any polynomial f ,

$$f(C) = \begin{bmatrix} f(2) & 0 & 0 \\ 0 & f(2) & 0 \\ 0 & 0 & f(3) \end{bmatrix}.$$

Example-I

- ▶ Example 32.6: Consider

$$C = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

- ▶ Then for any polynomial f ,

$$f(C) = \begin{bmatrix} f(2) & 0 & 0 \\ 0 & f(2) & 0 \\ 0 & 0 & f(3) \end{bmatrix}.$$

- ▶ Therefore, f is an annihilating polynomial for C if and only if $f(2) = f(3) = 0$.

Example-1

- ▶ Example 32.6: Consider

$$C = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

- ▶ Then for any polynomial f ,

$$f(C) = \begin{bmatrix} f(2) & 0 & 0 \\ 0 & f(2) & 0 \\ 0 & 0 & f(3) \end{bmatrix}.$$

- ▶ Therefore, f is an annihilating polynomial for C if and only if $f(2) = f(3) = 0$.
- ▶ In particular, the unique minimal polynomial of C is given by $q(x) = (x - 2)(x - 3) = x^2 - 5x + 6$.

Example -II

- ▶ Example 32.7: Consider

$$D = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

Example -II

- ▶ Example 32.7: Consider

$$D = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

- ▶ Now the unique minimal polynomial of D is given by $q(x) = (x - 2)^2(x - 3)$.

Eigenvalues and annihilating polynomials

- ▶ **Theorem 32.8:** Suppose A is a complex matrix and a is an eigenvalue of A . If f is an annihilating polynomial of A then $f(a) = 0$. In particular, every eigenvalue is a root of the minimal polynomial.

Eigenvalues and annihilating polynomials

- ▶ **Theorem 32.8:** Suppose A is a complex matrix and a is an eigenvalue of A . If f is an annihilating polynomial of A then $f(a) = 0$. In particular, every eigenvalue is a root of the minimal polynomial.
- ▶ **Proof:** Suppose v is an eigenvector of A with eigenvalue a .

Eigenvalues and annihilating polynomials

- ▶ **Theorem 32.8:** Suppose A is a complex matrix and a is an eigenvalue of A . If f is an annihilating polynomial of A then $f(a) = 0$. In particular, every eigenvalue is a root of the minimal polynomial.
- ▶ **Proof:** Suppose v is an eigenvector of A with eigenvalue a .
- ▶ Clearly, $A^k v = a^k v$ for every k .

Eigenvalues and annihilating polynomials

- ▶ **Theorem 32.8:** Suppose A is a complex matrix and a is an eigenvalue of A . If f is an annihilating polynomial of A then $f(a) = 0$. In particular, every eigenvalue is a root of the minimal polynomial.
- ▶ **Proof:** Suppose v is an eigenvector of A with eigenvalue a .
- ▶ Clearly, $A^k v = a^k v$ for every k .
- ▶ Hence for any polynomial f ,

$$f(A)v = f(a)v.$$

Eigenvalues and annihilating polynomials

- ▶ **Theorem 32.8:** Suppose A is a complex matrix and a is an eigenvalue of A . If f is an annihilating polynomial of A then $f(a) = 0$. In particular, every eigenvalue is a root of the minimal polynomial.
- ▶ **Proof:** Suppose v is an eigenvector of A with eigenvalue a .
- ▶ Clearly, $A^k v = a^k v$ for every k .
- ▶ Hence for any polynomial f ,

$$f(A)v = f(a)v.$$

- ▶ Since $v \neq 0$, if $f(A)v = 0$ then $f(a) = 0$. Now the result is immediate. ■

Eigenvalues and annihilating polynomials

- ▶ **Theorem 32.8:** Suppose A is a complex matrix and a is an eigenvalue of A . If f is an annihilating polynomial of A then $f(a) = 0$. In particular, every eigenvalue is a root of the minimal polynomial.
- ▶ **Proof:** Suppose v is an eigenvector of A with eigenvalue a .
- ▶ Clearly, $A^k v = a^k v$ for every k .
- ▶ Hence for any polynomial f ,

$$f(A)v = f(a)v.$$

- ▶ Since $v \neq 0$, if $f(A)v = 0$ then $f(a) = 0$. Now the result is immediate. ■
- ▶ Now we may guess the following result.

Cayley Hamilton theorem

- Theorem 32.9 (Cayley Hamilton theorem): Let A be a complex $n \times n$ matrix and let p be the characteristic polynomial of A . Then

$$p(A) = 0.$$

In other words, the characteristic polynomial is an annihilating polynomial for A .

Cayley Hamilton theorem

- **Theorem 32.9 (Cayley Hamilton theorem):** Let A be a complex $n \times n$ matrix and let p be the characteristic polynomial of A . Then

$$p(A) = 0.$$

In other words, the characteristic polynomial is an annihilating polynomial for A .

- **Corollary 32.9:** For any square matrix, the minimal polynomial is a factor of the characteristic polynomial.

A wrong proof

- ▶ **Wrong proof:** By the definition of the characteristic polynomial:

$$p(x) = \det(xI - A).$$

A wrong proof

- ▶ **Wrong proof:** By the definition of the characteristic polynomial:

$$p(x) = \det(xI - A).$$

- ▶ Taking $x = A$,

$$p(A) = \det(A \cdot I - A) = \det(A - A) = \det(0) = 0. \quad (1)$$

A wrong proof

- ▶ **Wrong proof:** By the definition of the characteristic polynomial:

$$p(x) = \det(xI - A).$$

- ▶ Taking $x = A$,

$$p(A) = \det(A \cdot I - A) = \det(A - A) = \det(0) = 0. \quad (1)$$

- ▶ This is a wrong proof, as in the equation above, on the left we have a matrix, whereas, on the right we have a scalar.

A wrong proof

- ▶ **Wrong proof:** By the definition of the characteristic polynomial:

$$p(x) = \det(xI - A).$$

- ▶ Taking $x = A$,

$$p(A) = \det(A \cdot I - A) = \det(A - A) = \det(0) = 0. \quad (1)$$

- ▶ This is a wrong proof, as in the equation above, on the left we have a matrix, whereas, on the right we have a scalar.
- ▶ We can't blindly substitute $x = A$ and do determinant computations.

Similarity instead of unitary equivalence

- ▶ Example 33.1: Consider

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$

Similarity instead of unitary equivalence

- ▶ Example 33.1: Consider

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$

- ▶ Then clearly A is not normal. Hence A can not be diagonalized using unitary equivalence.

Similarity instead of unitary equivalence

- ▶ Example 33.1: Consider

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$

- ▶ Then clearly A is not normal. Hence A can not be diagonalized using unitary equivalence.
- ▶ However, $\sigma(A) = \{1, 3\}$ and since the corresponding geometric multiplicities are at least 1, we can get a basis of eigenvectors of A . In other words, there exists an invertible matrix S such that

$$A = S \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} S^{-1}.$$

Similarity instead of unitary equivalence

- ▶ Example 33.1: Consider

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$

- ▶ Then clearly A is not normal. Hence A can not be diagonalized using unitary equivalence.
- ▶ However, $\sigma(A) = \{1, 3\}$ and since the corresponding geometric multiplicities are at least 1, we can get a basis of eigenvectors of A . In other words, there exists an invertible matrix S such that

$$A = S \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} S^{-1}.$$

Similarity instead of unitary equivalence

- ▶ Example 33.1: Consider

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$

- ▶ Then clearly A is not normal. Hence A can not be diagonalized using unitary equivalence.
- ▶ However, $\sigma(A) = \{1, 3\}$ and since the corresponding geometric multiplicities are at least 1, we can get a basis of eigenvectors of A . In other words, there exists an invertible matrix S such that

$$A = S \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} S^{-1}.$$

- ▶ This shows that some times it maybe more prudent not to insist on unitary equivalence. We may try to simplify A through similarity instead of unitary equivalence. This is done either when there is no underlying inner product or when we have a prescribed inner product but we choose to ignore it.

Upper triangular form

- **Theorem 33.2:** Let A be an $n \times n$ complex matrix. Then there exists an upper triangular matrix T and an invertible matrix S such that

$$A = STS^{-1}.$$

Upper triangular form

- **Theorem 33.2:** Let A be an $n \times n$ complex matrix. Then there exists an upper triangular matrix T and an invertible matrix S such that

$$A = STS^{-1}.$$

- **Proof:** We may consider the standard inner product on \mathbb{C}^n . Then by Schur's upper triangularization theorem, there exists a unitary U and an upper triangular matrix T such that

$$A = UTU^*.$$

Take $S = U$. Since $U^* = S^{-1}$, the proof is complete.

Upper triangular form

- **Theorem 33.2:** Let A be an $n \times n$ complex matrix. Then there exists an upper triangular matrix T and an invertible matrix S such that

$$A = STS^{-1}.$$

- **Proof:** We may consider the standard inner product on \mathbb{C}^n . Then by Schur's upper triangularization theorem, there exists a unitary U and an upper triangular matrix T such that

$$A = UTU^*.$$

Take $S = U$. Since $U^* = S^{-1}$, the proof is complete.

- Alternatively, we may imitate the proof of Schur's upper triangularization theorem. Choose an eigenvector v_1 corresponding to some eigenvalue a_1 of A , extend $\{v_1\}$ to a basis of \mathbb{C}^n .

Continuation

- ▶ In the new basis, the linear map A will have the form:

$$A = \begin{bmatrix} a_1 & y \\ 0 & B \end{bmatrix}$$

for some $1 \times (n - 1)$ row vector y and $(n - 1) \times (n - 1)$ matrix B . Now use induction. ■.

A Lemma

► **Lemma 33.3:** Let T be an upper triangular matrix with diagonal entries d_1, d_2, \dots, d_n . For $1 \leq k \leq n$, take

$$M_k = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_k \\ 0 \\ \vdots \\ 0 \end{pmatrix} : x_1, x_2, \dots, x_k \in \mathbb{C} \right\}.$$

Take $M_0 = \{0\}$. Then for every $1 \leq k \leq n$,

$$(T - d_k I)(M_k) \subseteq M_{k-1}.$$

A Lemma

► **Lemma 33.3:** Let T be an upper triangular matrix with diagonal entries d_1, d_2, \dots, d_n . For $1 \leq k \leq n$, take

$$M_k = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_k \\ 0 \\ \vdots \\ 0 \end{pmatrix} : x_1, x_2, \dots, x_k \in \mathbb{C} \right\}.$$

Take $M_0 = \{0\}$. Then for every $1 \leq k \leq n$,

$$(T - d_k I)(M_k) \subseteq M_{k-1}.$$

► **Proof:** Let $\{e_1, \dots, e_n\}$ be the standard basis of \mathbb{C}^n .

A Lemma

► **Lemma 33.3:** Let T be an upper triangular matrix with diagonal entries d_1, d_2, \dots, d_n . For $1 \leq k \leq n$, take

$$M_k = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_k \\ 0 \\ \vdots \\ 0 \end{pmatrix} : x_1, x_2, \dots, x_k \in \mathbb{C} \right\}.$$

Take $M_0 = \{0\}$. Then for every $1 \leq k \leq n$,

$$(T - d_k I)(M_k) \subseteq M_{k-1}.$$

► **Proof:** Let $\{e_1, \dots, e_n\}$ be the standard basis of \mathbb{C}^n .
► Then $M_k = \text{span}\{e_1, e_2, \dots, e_k\}$.

A Lemma

► **Lemma 33.3:** Let T be an upper triangular matrix with diagonal entries d_1, d_2, \dots, d_n . For $1 \leq k \leq n$, take

$$M_k = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_k \\ 0 \\ \vdots \\ 0 \end{pmatrix} : x_1, x_2, \dots, x_k \in \mathbb{C} \right\}.$$

Take $M_0 = \{0\}$. Then for every $1 \leq k \leq n$,

$$(T - d_k I)(M_k) \subseteq M_{k-1}.$$

► **Proof:** Let $\{e_1, \dots, e_n\}$ be the standard basis of \mathbb{C}^n .

► Then $M_k = \text{span}\{e_1, e_2, \dots, e_k\}$.

► Since T is upper triangular $(T - d_k I)$ is also upper triangular with k -th diagonal entry equal to 0.

Continuation

- ▶ In particular, the j -th column of $(T - d_k I)$ is in the span of $\{e_1, e_2, \dots, e_{k-1}\}$ for $1 \leq j \leq k$.

Continuation

- ▶ In particular, the j -th column of $(T - d_k I)$ is in the span of $\{e_1, e_2, \dots, e_{k-1}\}$ for $1 \leq j \leq k$.
- ▶ In other words $(T - d_k I)e_j \in M_{k-1}$ for $1 \leq k \leq n$. ■

Cayley-Hamilton Theorem

- ▶ Now we present a proof of this famous theorem.

Cayley-Hamilton Theorem

- ▶ Now we present a proof of this famous theorem.
- ▶ **Theorem 32.9 (Cayley Hamilton theorem):** Let A be a complex $n \times n$ matrix and let p be the characteristic polynomial of A . Then

$$p(A) = 0.$$

In other words, the characteristic polynomial is an annihilating polynomial for A .

Cayley-Hamilton Theorem

- ▶ Now we present a proof of this famous theorem.
- ▶ **Theorem 32.9 (Cayley Hamilton theorem):** Let A be a complex $n \times n$ matrix and let p be the characteristic polynomial of A . Then

$$p(A) = 0.$$

In other words, the characteristic polynomial is an annihilating polynomial for A .

- ▶ **Proof:** By Theorem 33.2, there exists a non-singular matrix S and an upper triangular matrix T such that

$$A = STS^{-1}.$$

Cayley-Hamilton Theorem

- ▶ Now we present a proof of this famous theorem.
- ▶ **Theorem 32.9 (Cayley Hamilton theorem):** Let A be a complex $n \times n$ matrix and let p be the characteristic polynomial of A . Then

$$p(A) = 0.$$

In other words, the characteristic polynomial is an annihilating polynomial for A .

- ▶ **Proof:** By Theorem 33.2, there exists a non-singular matrix S and an upper triangular matrix T such that

$$A = STS^{-1}.$$

- ▶ Note that for any polynomial f ,

$$f(A) = Sf(T)S^{-1}.$$

Cayley-Hamilton Theorem

- ▶ Now we present a proof of this famous theorem.
- ▶ **Theorem 32.9 (Cayley Hamilton theorem):** Let A be a complex $n \times n$ matrix and let p be the characteristic polynomial of A . Then

$$p(A) = 0.$$

In other words, the characteristic polynomial is an annihilating polynomial for A .

- ▶ **Proof:** By Theorem 33.2, there exists a non-singular matrix S and an upper triangular matrix T such that

$$A = STS^{-1}.$$

- ▶ Note that for any polynomial f ,

$$f(A) = Sf(T)S^{-1}.$$

- ▶ Let p be the characteristic polynomial of A and let d_1, \dots, d_n be the diagonal entries of T .

Continuation

- ▶ Then p is also the characteristic polynomial of T and

$$p(x) = (x - d_1)(x - d_2) \cdots (x - d_n).$$

Continuation

- ▶ Then p is also the characteristic polynomial of T and
$$p(x) = (x - d_1)(x - d_2) \cdots (x - d_n).$$
- ▶ As $p(A) = Sp(T)S^{-1}$, it suffices to show that $p(T) = 0$.

Continuation

- ▶ Then p is also the characteristic polynomial of T and

$$p(x) = (x - d_1)(x - d_2) \cdots (x - d_n).$$

- ▶ As $p(A) = Sp(T)S^{-1}$, it suffices to show that $p(T) = 0$.
- ▶ We use the notation of previous lemma. Consider any $x \in \mathbb{C}^n = M_n$.

Continuation

- ▶ Then p is also the characteristic polynomial of T and

$$p(x) = (x - d_1)(x - d_2) \cdots (x - d_n).$$

- ▶ As $p(A) = Sp(T)S^{-1}$, it suffices to show that $p(T) = 0$.
- ▶ We use the notation of previous lemma. Consider any $x \in \mathbb{C}^n = M_n$.
- ▶ By the lemma

$$(T - d_n I)x \in M_{n-1}.$$

Continuation

- ▶ Then p is also the characteristic polynomial of T and

$$p(x) = (x - d_1)(x - d_2) \cdots (x - d_n).$$

- ▶ As $p(A) = Sp(T)S^{-1}$, it suffices to show that $p(T) = 0$.
- ▶ We use the notation of previous lemma. Consider any $x \in \mathbb{C}^n = M_n$.
- ▶ By the lemma

$$(T - d_n I)x \in M_{n-1}.$$

- ▶ As $(T - d_{n-1} I)M_{n-1} \subseteq M_{n-2}$ we get

$$(T - d_{n-1} I)(T - d_n I)x \in M_{n-2}.$$

Continuation

- ▶ Continuing this way (i.e., by induction) :

$$(T - d_1 I)(T - d_2 I) \cdots (T - d_n I)x \in M_0 = \{0\}.$$

Continuation

- ▶ Continuing this way (i.e., by induction) :

$$(T - d_1 I)(T - d_2 I) \cdots (T - d_n I)x \in M_0 = \{0\}.$$

- ▶ In other words, $p(T)x = 0$ for every $x \in \mathbb{C}^n$.

Continuation

- ▶ Continuing this way (i.e., by induction) :

$$(T - d_1 I)(T - d_2 I) \cdots (T - d_n I)x \in M_0 = \{0\}.$$

- ▶ In other words, $p(T)x = 0$ for every $x \in \mathbb{C}^n$.
- ▶ This proves the claim. ■

Example

► **Example 33.4** Suppose D is a diagonal matrix with diagonal entries d_1, d_2, \dots, d_n . Then the characteristic polynomial of D is given by

$$p(x) = (x - d_1)(x - d_2) \cdots (x - d_n).$$

Example

- ▶ **Example 33.4** Suppose D is a diagonal matrix with diagonal entries d_1, d_2, \dots, d_n . Then the characteristic polynomial of D is given by

$$p(x) = (x - d_1)(x - d_2) \cdots (x - d_n).$$

- ▶ It is clear that $p(D) = 0$.

Example

- ▶ **Example 33.4** Suppose D is a diagonal matrix with diagonal entries d_1, d_2, \dots, d_n . Then the characteristic polynomial of D is given by

$$p(x) = (x - d_1)(x - d_2) \cdots (x - d_n).$$

- ▶ It is clear that $p(D) = 0$.
- ▶ **Corollary 33.5:** Suppose A is an $n \times n$ matrix. Then the dimension of

$$\mathcal{A} = \{f(A) : f \text{ is a polynomial}\}$$

Example

- ▶ **Example 33.4** Suppose D is a diagonal matrix with diagonal entries d_1, d_2, \dots, d_n . Then the characteristic polynomial of D is given by

$$p(x) = (x - d_1)(x - d_2) \cdots (x - d_n).$$

- ▶ It is clear that $p(D) = 0$.
- ▶ **Corollary 33.5:** Suppose A is an $n \times n$ matrix. Then the dimension of

$$\mathcal{A} = \{f(A) : f \text{ is a polynomial}\}$$

- ▶ is at most n .

Example

- ▶ **Example 33.4** Suppose D is a diagonal matrix with diagonal entries d_1, d_2, \dots, d_n . Then the characteristic polynomial of D is given by

$$p(x) = (x - d_1)(x - d_2) \cdots (x - d_n).$$

- ▶ It is clear that $p(D) = 0$.
- ▶ **Corollary 33.5:** Suppose A is an $n \times n$ matrix. Then the dimension of

$$\mathcal{A} = \{f(A) : f \text{ is a polynomial}\}$$

- ▶ is at most n .
- ▶ **Proof:** This is now clear, as the Cayley Hamilton theorem tells us that A^n is a linear combination of $\{I, A, \dots, A^{n-1}\}$.

Example

- ▶ **Example 33.4** Suppose D is a diagonal matrix with diagonal entries d_1, d_2, \dots, d_n . Then the characteristic polynomial of D is given by

$$p(x) = (x - d_1)(x - d_2) \cdots (x - d_n).$$

- ▶ It is clear that $p(D) = 0$.
- ▶ **Corollary 33.5:** Suppose A is an $n \times n$ matrix. Then the dimension of

$$\mathcal{A} = \{f(A) : f \text{ is a polynomial}\}$$

- ▶ is at most n .
- ▶ **Proof:** This is now clear, as the Cayley Hamilton theorem tells us that A^n is a linear combination of $\{I, A, \dots, A^{n-1}\}$.
- ▶ It is then easy to see that A^m for $m \geq n$ are also in the span of $\{I, A, \dots, A^{n-1}\}$.
- ▶ **END OF REVIEW**

Computation of polynomials

- We have already indicated how the Cayley Hamilton theorem can help us to compute higher powers or general polynomials of matrices.

Computation of polynomials

- ▶ We have already indicated how the Cayley Hamilton theorem can help us to compute higher powers or general polynomials of matrices.
- ▶ Here we present some other simple applications.

Nilpotent matrices

- ▶ **Definition 34.1:** A matrix A is said to be **nilpotent** if $A^k = 0$ for some $k \geq 1$.

Nilpotent matrices

- ▶ **Definition 34.1:** A matrix A is said to be **nilpotent** if $A^k = 0$ for some $k \geq 1$.
- ▶ **Theorem 34.2:** A matrix A is nilpotent if and only if $\sigma(A) = \{0\}$.

Nilpotent matrices

- ▶ **Definition 34.1:** A matrix A is said to be **nilpotent** if $A^k = 0$ for some $k \geq 1$.
- ▶ **Theorem 34.2:** A matrix A is nilpotent if and only if $\sigma(A) = \{0\}$.
- ▶ **Proof:** Suppose $\sigma(A) = \{0\}$. Then the characteristic polynomial of A is $p(x) = x^n$.

Nilpotent matrices

- ▶ **Definition 34.1:** A matrix A is said to be **nilpotent** if $A^k = 0$ for some $k \geq 1$.
- ▶ **Theorem 34.2:** A matrix A is nilpotent if and only if $\sigma(A) = \{0\}$.
- ▶ **Proof:** Suppose $\sigma(A) = \{0\}$. Then the characteristic polynomial of A is $p(x) = x^n$.
- ▶ Hence by Cayley Hamilton theorem, $A^n = 0$.

Nilpotent matrices

- ▶ **Definition 34.1:** A matrix A is said to be **nilpotent** if $A^k = 0$ for some $k \geq 1$.
- ▶ **Theorem 34.2:** A matrix A is nilpotent if and only if $\sigma(A) = \{0\}$.
- ▶ **Proof:** Suppose $\sigma(A) = \{0\}$. Then the characteristic polynomial of A is $p(x) = x^n$.
- ▶ Hence by Cayley Hamilton theorem, $A^n = 0$.
- ▶ Conversely, suppose $A^k = 0$. Now if a is an eigenvalue with eigenvector v , we get $A^k v = a^k v = 0$

Nilpotent matrices

- ▶ **Definition 34.1:** A matrix A is said to be **nilpotent** if $A^k = 0$ for some $k \geq 1$.
- ▶ **Theorem 34.2:** A matrix A is nilpotent if and only if $\sigma(A) = \{0\}$.
- ▶ **Proof:** Suppose $\sigma(A) = \{0\}$. Then the characteristic polynomial of A is $p(x) = x^n$.
- ▶ Hence by Cayley Hamilton theorem, $A^n = 0$.
- ▶ Conversely, suppose $A^k = 0$. Now if a is an eigenvalue with eigenvector v , we get $A^k v = a^k v = 0$
- ▶ As $v \neq 0$, this implies $a^k = 0$. Hence $a = 0$. Therefore $\sigma(A) = \{0\}$. ■

Comparison of coefficients

- ▶ Let $p(x) = x^n + c_{n-1}x^{n-1} + \cdots + c_1x + c_0$ be the characteristic polynomial of a matrix A .

Comparison of coefficients

- ▶ Let $p(x) = x^n + c_{n-1}x^{n-1} + \cdots + c_1x + c_0$ be the characteristic polynomial of a matrix A .
- ▶ If d_1, \dots, d_n are the eigenvalues of A , then

$$p(x) = (x - d_1)(x - d_2) \cdots (x - d_n).$$

Comparison of coefficients

- ▶ Let $p(x) = x^n + c_{n-1}x^{n-1} + \cdots + c_1x + c_0$ be the characteristic polynomial of a matrix A .
- ▶ If d_1, \dots, d_n are the eigenvalues of A , then

$$p(x) = (x - d_1)(x - d_2) \cdots (x - d_n).$$

- ▶ Comparing the coefficients, we see that
 $c_{n-1} = (-1)(d_1 + d_2 + \cdots + d_n) = -(\text{trace}(A))$ and
 $c_0 = (-1)^n d_1 d_2 \cdots d_n = (-1)^n (\det(A)).$

Comparison of coefficients

- ▶ Let $p(x) = x^n + c_{n-1}x^{n-1} + \cdots + c_1x + c_0$ be the characteristic polynomial of a matrix A .
- ▶ If d_1, \dots, d_n are the eigenvalues of A , then

$$p(x) = (x - d_1)(x - d_2) \cdots (x - d_n).$$

- ▶ Comparing the coefficients, we see that
 $c_{n-1} = (-1)(d_1 + d_2 + \cdots + d_n) = -(\text{trace}(A))$ and
 $c_0 = (-1)^n d_1 d_2 \cdots d_n = (-1)^n (\det(A)).$
- ▶ In particular, A is invertible if and only if $c_0 \neq 0$.

Computation of inverse

- ▶ Now by Cayley Hamilton theorem,

$$A^n + c_{n-1}A^{n-1} + \cdots + c_1A + c_0I = 0.$$

Computation of inverse

- ▶ Now by Cayley Hamilton theorem,

$$A^n + c_{n-1}A^{n-1} + \cdots + c_1A + c_0I = 0.$$

- ▶ This implies,

$$A(A^{n-1} + c_{n-1}A^{n-2} + \cdots + c_1I) = -c_0I.$$

Computation of inverse

- ▶ Now by Cayley Hamilton theorem,

$$A^n + c_{n-1}A^{n-1} + \cdots + c_1A + c_0I = 0.$$

- ▶ This implies,

$$A(A^{n-1} + c_{n-1}A^{n-2} + \cdots + c_1I) = -c_0I.$$

- ▶ Assuming that A is invertible,

$$-\frac{1}{c_0}(A^{n-1} + c_{n-1}A^{n-2} + \cdots + c_1I)$$

is the inverse of A .

Special Case

- ▶ Consider the 2×2 case:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

Special Case

- ▶ Consider the 2×2 case:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

- ▶ We have the characteristic polynomial:

$$p(x) = (x - a)(x - d) - bc = x^2 - (a + d)x + (ad - bc).$$

Special Case

- ▶ Consider the 2×2 case:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

- ▶ We have the characteristic polynomial:

$$p(x) = (x - a)(x - d) - bc = x^2 - (a + d)x + (ad - bc).$$

- ▶ Note that we are getting the trace and the determinant as the coefficients.

Special Case

- ▶ Consider the 2×2 case:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

- ▶ We have the characteristic polynomial:

$$p(x) = (x - a)(x - d) - bc = x^2 - (a + d)x + (ad - bc).$$

- ▶ Note that we are getting the trace and the determinant as the coefficients.
- ▶ We have from the Cayley Hamilton theorem

$$A^2 - (a + d)A + (ad - bc) = 0.$$

Special Case

- ▶ Consider the 2×2 case:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

- ▶ We have the characteristic polynomial:

$$p(x) = (x - a)(x - d) - bc = x^2 - (a + d)x + (ad - bc).$$

- ▶ Note that we are getting the trace and the determinant as the coefficients.
- ▶ We have from the Cayley Hamilton theorem

$$A^2 - (a + d)A + (ad - bc) = 0.$$

- ▶ In particular, if the determinant of A is non-zero, then

$$A^{-1} = \frac{-1}{ad - bc}(A - (a + d)I) = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Computing eigenvectors

- ▶ Suppose A is a matrix with eigenvalues d_1, d_2, \dots, d_n .

Computing eigenvectors

- ▶ Suppose A is a matrix with eigenvalues d_1, d_2, \dots, d_n .
- ▶ By the Cayley Hamilton theorem,

$$(A - d_1 I)(A - d_2 I) \cdots (A - d_n I) = 0.$$

Computing eigenvectors

- ▶ Suppose A is a matrix with eigenvalues d_1, d_2, \dots, d_n .
- ▶ By the Cayley Hamilton theorem,

$$(A - d_1 I)(A - d_2 I) \cdots (A - d_n I) = 0.$$

- ▶ So if

$$(A - d_2 I) \cdots (A - d_n I) \neq 0$$

Computing eigenvectors

- ▶ Suppose A is a matrix with eigenvalues d_1, d_2, \dots, d_n .
- ▶ By the Cayley Hamilton theorem,

$$(A - d_1 I)(A - d_2 I) \cdots (A - d_n I) = 0.$$

- ▶ So if

$$(A - d_2 I) \cdots (A - d_n I) \neq 0$$

- ▶ Then any non-zero column of $(A - d_2 I) \cdots (A - d_n I)$ is an eigenvector of A with eigenvalue d_1 .

Computing eigenvectors

- ▶ Suppose A is a matrix with eigenvalues d_1, d_2, \dots, d_n .
- ▶ By the Cayley Hamilton theorem,

$$(A - d_1 I)(A - d_2 I) \cdots (A - d_n I) = 0.$$

- ▶ So if

$$(A - d_2 I) \cdots (A - d_n I) \neq 0$$

- ▶ Then any non-zero column of $(A - d_2 I) \cdots (A - d_n I)$ is an eigenvector of A with eigenvalue d_1 .
- ▶ If the product above is zero, this means that $d_j = d_1$ for some $j > 1$. (Recall that every eigenvalue must be a root of any annihilating polynomial).

Computing eigenvectors

- ▶ Suppose A is a matrix with eigenvalues d_1, d_2, \dots, d_n .
- ▶ By the Cayley Hamilton theorem,

$$(A - d_1 I)(A - d_2 I) \cdots (A - d_n I) = 0.$$

- ▶ So if

$$(A - d_2 I) \cdots (A - d_n I) \neq 0$$

- ▶ Then any non-zero column of $(A - d_2 I) \cdots (A - d_n I)$ is an eigenvector of A with eigenvalue d_1 .
- ▶ If the product above is zero, this means that $d_j = d_1$ for some $j > 1$. (Recall that every eigenvalue must be a root of any annihilating polynomial).
- ▶ In such cases, you may drop some of the factors $(A - d_j I)$ with $d_j = d_1$ to get eigenvectors.

Example

- ▶ Example 34.3: Consider

$$T = \begin{bmatrix} 1 & 4 & 5 \\ 0 & 2 & 6 \\ 0 & 0 & 3 \end{bmatrix}.$$

Example

- ▶ Example 34.3: Consider

$$T = \begin{bmatrix} 1 & 4 & 5 \\ 0 & 2 & 6 \\ 0 & 0 & 3 \end{bmatrix}.$$

- ▶ It is clear that $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ is an eigenvector with eigenvalue 1.

Example

- ▶ Example 34.3: Consider

$$T = \begin{bmatrix} 1 & 4 & 5 \\ 0 & 2 & 6 \\ 0 & 0 & 3 \end{bmatrix}.$$

- ▶ It is clear that $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ is an eigenvector with eigenvalue 1.
- ▶ What about eigenvalues 2, 3?

Example

- ▶ Example 34.3: Consider

$$T = \begin{bmatrix} 1 & 4 & 5 \\ 0 & 2 & 6 \\ 0 & 0 & 3 \end{bmatrix}.$$

- ▶ It is clear that $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ is an eigenvector with eigenvalue 1.
- ▶ What about eigenvalues 2, 3?
- ▶ By direct computation

$$(T - I)(T - 2I) = \begin{bmatrix} 0 & 0 & 29 \\ 0 & 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}.$$

Example

- ▶ Example 34.3: Consider

$$T = \begin{bmatrix} 1 & 4 & 5 \\ 0 & 2 & 6 \\ 0 & 0 & 3 \end{bmatrix}.$$

- ▶ It is clear that $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ is an eigenvector with eigenvalue 1.
- ▶ What about eigenvalues 2, 3?
- ▶ By direct computation

$$(T - I)(T - 2I) = \begin{bmatrix} 0 & 0 & 29 \\ 0 & 0 & 12 \\ 0 & 0 & 2 \end{bmatrix}.$$

- ▶ This shows that $\begin{pmatrix} 29 \\ 12 \\ 2 \end{pmatrix}$ is an eigenvector with eigenvalue 3.

Continuation

- ▶ Similarly

$$(T - I)(T - 3I) = \begin{bmatrix} 0 & -4 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Continuation

- ▶ Similarly

$$(T - I)(T - 3I) = \begin{bmatrix} 0 & -4 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

- ▶ Hence we see that $\begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix}$ is an eigenvector with eigenvalue 2.

Continuation

- ▶ Similarly

$$(T - I)(T - 3I) = \begin{bmatrix} 0 & -4 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

- ▶ Hence we see that $\begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix}$ is an eigenvector with eigenvalue 2.
- ▶ END OF LECTURE 34