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Lecture 34: Some applications of Cayley Hamilton theorem

> Recall: Let A be an n x n complex matrix. For any complex
polynomial f(x) = ap + aix + - - - + amx™, by definition,

f(A) =aol + a1A+ ...+ anA".

» Consider
A= {f(A): f is a polynomial}.

» Clearly this is a subspace of M,(C). Actually, A is a
‘sub-algebra’ of M,(C), that is, it is also closed under taking
products.

> Note that M,(C) is a vector space of dimension n?. Therefore

the dimension of A can't be more than n?.

» In particular, I, A, A%, ... 7A”2 are linearly dependent.
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» In other words, there exists a non-zero polynomial
q(x) = by + bix + - - - + bymx™ of degree at most n? such that

q(A) = bol + biA+ b A’ + - + b, A" = 0.

» Assume by, # 0. Then
AT = — i (bol + biA+ - + b 1AM,

» This may help us to compute higher powers of A or to
simplify higher degree polynomials in A.

> So we would look for a non-zero polynomial g of lowest
degree satisfying g(A) = 0.

> We may scale such a polynomial to make the leading
coefficient one, i. e. we may take it to be monic.
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Annihilating polynomials and division algorithm

» Definition 32.1: A polynomial f is said to be annihilating for a
matrix A if f(A) =0.

» Theorem 32.2: Let f, g be non-zero annihilating polynomials
of a matrix A and suppose degree (g) < degree (f). Then

f(x) = g(x)s(x) + r(x)
for some polynomials s, r, where either r = 0 or degree (r) <
degree (g) and r(A) = 0.

» Proof: This is clear from the division algorithm for
polynomials. As f(A) =0 = g(A).s(A), we get r(A) = 0.
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Minimal polynomial

» Theorem 32.3: Let A be an n x n complex matrix. Then there
exists a unique monic polynomial g of lowest degree such that

q(A) =0.
» Proof: Suppose g1, g are two distinct non-zero monic
polynomials of lowest degree such that g1(A) = g2(A) = 0.
» Then clearly g1 — g» is a lower degree polynomial with
(1 — q2)(A) = 0.
> We may scale it suitably to make it monic. This contradicts
minimality of g1, g>. B
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Factorization

» Definition 32.4: Given a matrix A, the unique monic
polynomial of lowest degree g, satisfying g(A) = 0 is defined
as the minimal polynomial of A.

» Theorem 32.5: Let A be an n x n complex matrix. Let g be
the minimal polynomial of A. Suppose f is an annihilating
polynomial of A, then there exists a polynomial s such that
f(x) = g(x)s(x). In other words, the minimal polynomial is a
factor of every annihilating polynomial.

» Proof: This is clear from the minimality of g and the division
algorithm on dividing f by g. B
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» Then for any polynomial f,

» Therefore, f is an annihilating polynomial for C if and only if
f(2)=f(3)=0.
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» Example 32.6: Consider

2 00
C=1020
0 0 3

» Then for any polynomial f,

» Therefore, f is an annihilating polynomial for C if and only if
f(2)=f(3)=0.

» In particular, the unique minimal polynomial of C is given by
q(x) = (x = 2)(x —3) = x> = 5x +6.
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» Example 32.7: Consider

D=

O ON

10
20
0 3

» Now the unique minimal polynomial of D is given by
q(x) = (x = 2)*(x - 3).
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Theorem 32.8: Suppose A is a complex matrix and a is an
eigenvalue of A. If f is an annihilating polynomial of A then
f(a) = 0. In particular, every eigenvalue is a root of the
minimal polynomial.

Proof: Suppose v is an eigenvector of A with eigenvalue a.
Clearly, Akv = akv for every k.

Hence for any polynomial f,

Since v # 0, if f(A)v = 0 then f(a) = 0. Now the result is
immediate. W

Now we may guess the following result.
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» Theorem 32.9 (Cayley Hamilton theorem): Let A be a
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Cayley Hamilton theorem

» Theorem 32.9 (Cayley Hamilton theorem): Let A be a
complex n X n matrix and let p be the characteristic
polynomial of A. Then

p(A) =0.

In other words, the characteristic polynomial is an annihilating
polynomial for A.

» Corollary 32.9: For any square matrix, the minimal polynomial
is a factor of the characteristic polynomial.
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A wrong proof

» Wrong proof: By the definition of the characteristic
polynomial:
p(x) = det(xI — A).

> Taking x = A,
p(A) = det(A.] — A) = det(A— A) =det(0) =0. (1)

» This is a wrong proof, as in the equation above, on the left we
have a matrix, where as, on the right we have a scalar.

> We can't blindly substitute x = A and do determinant
computations.
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Example 33.1: Consider
1 2
ST
Then clearly A is not normal. Hence A can not be
diagonalized using unitary equivalence.
However, o(A) = {1,3} and since the corresponding

geometric multiplicities are at least 1, we can get a basis of
eigenvectors of A. In other words, there exists an invertible

matrix S such that
B 10 1
azs[L 05

This shows that some times it maybe more prudent not to
insist on unitary equivalence. We may try to simplify A
through similarity instead of unitary equivalence. This is done
either when there is no underlying inner product or when we
have a prescribed inner product but we choose to ignore it.
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Upper triangular form

» Theorem 33.2: Let A be an n x n complex matrix. Then there
exists an upper triangular matrix T and an invertible matrix S
such that

A=STSt

» Proof: We may consider the standard inner product on C".
Then by Schur's upper triangularization theorem, there exists
a unitary U and an upper triangular matrix T such that

A= UTU".

Take S = U. Since U* = S71, the proof is complete.

> Alternatively, we may imitate the proof of Schur's upper
triangularization theorem. Choose an eigenvector vy
corresponding to some eigenvalue a; of A, extend {v;} to a
basis of C".



Continuation

» In the new basis, the linear map A will have the form:

|l a Yy
=155
for some 1 x (n— 1) row vector y and (n —1) x (n—1)
matrix B. Now use induction. H.
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Il
——

D X1, X2, ..., xk € C}.

0
Take My = {0}. Then for every 1 < k < n,
(T — dil)(My) C My_1.



A Lemma
> Lemma 33.3: Let T be an upper triangular matrix with
diagonal entries dq, do,...,d,. For 1 < k < n, take

X1

Xk

M 0

Il
——

D X1, X2, ..., xk € C}.

0
Take My = {0}. Then for every 1 < k < n,
(T — dil)(My) C My_1.

» Proof: Let {e1,...,e,} be the standard basis of C".



A Lemma
> Lemma 33.3: Let T be an upper triangular matrix with
diagonal entries dq, do,...,d,. For 1 < k < n, take

X1

Xk

M 0

Il
——

D X1, X2, ..., xk € C}.

0
Take My = {0}. Then for every 1 < k < n,
(T — dil)(My) C My_1.

» Proof: Let {e1,...,e,} be the standard basis of C".
» Then My = span{ej,en,..., e}



A Lemma

> Lemma 33.3: Let T be an upper triangular matrix with
diagonal entries dq, do,...,d,. For 1 < k < n, take

X1

Xk

M 0

D X1, X2, ..., xk € C}.

Il
——

0
Take My = {0}. Then for every 1 < k < n,
(T — dil)(My) C My_1.

» Proof: Let {e1,...,e,} be the standard basis of C".

» Then My = span{ej,en,..., e}

» Since T is upper triangular (T — di/) is also upper triangular
with k-th diagonal entry equal to 0.
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» In particular, the j-th column of (T — di/) is in the span of
{el,ez, .. .,ek,l} for 1 <j<k.



Continuation

» In particular, the j-th column of (T — di/) is in the span of
{el,ez,...,ek,l} for 1 <j<k.
» In other words (T — dil)ej € My_1 for 1< k<n. R
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» Theorem 32.9 (Cayley Hamilton theorem): Let A be a
complex n X n matrix and let p be the characteristic
polynomial of A. Then

p(A) = 0.

In other words, the characteristic polynomial is an annihilating
polynomial for A.
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A=STSt
» Note that for any polynomial f,
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Now we present a proof of this famous theorem.
Theorem 32.9 (Cayley Hamilton theorem): Let A be a
complex n X n matrix and let p be the characteristic
polynomial of A. Then

p(A) = 0.

In other words, the characteristic polynomial is an annihilating
polynomial for A.

Proof: By Theorem 33.2, there exists a non-singular matrix S
and an upper triangular matrix T such that

A=STSt
Note that for any polynomial f,
f(A) = SF(T)S™L.

Let p be the characteristic polynomial of A and let di,...,d,
be the diagonal entries of T.
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» Then p is also the characteristic polynomial of T and

p(x) = (x = di)(x = da) - - (x = dn).
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» Then p is also the characteristic polynomial of T and
p(x) = (x—di)(x — d2) -+ (x — dp).

» As p(A) = Sp(T)S1, it suffices to show that p(T) = 0.
» We use the notation of previous lemma. Consider any
xeC"=M,.
» By the lemma
(T —dpl)x € M_;.

» As (T — dp—1l)Mp—1 € M,_> we get

(T — d,,,ll)(T — d,,/)X e M,_».
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Continuation

» Continuing this way (i.e., by induction) :
(T —di)(T—dal)--- (T —dpl)x € My = {0}.

» In other words, p(T)x = 0 for every x € C".
» This proves the claim. W
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is given by
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Example 33.4 Suppose D is a diagonal matrix with diagonal
entries di, da, ..., d,. Then the characteristic polynomial of D
is given by

p(x) = (x — di)(x = da) - - (x — dn).

It is clear that p(D) = 0.

Corollary 33.5: Suppose A is an n x n matrix. Then the
dimension of

A = {f(A): f is a polynomial}

is at most n.

Proof: This is now clear, as the Cayley Hamilton theorem tells
us that A" is a linear combination of {/, A,... A1},

It is then easy to see that A™ for m > n are also in the span
of {I,A,...,A""1}.

END OF REVIEW
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can help us to compute higher powers or general polynomials
of matrices.

» Here we present some other simple applications.
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Nilpotent matrices

» Definition 34.1: A matrix A is said to be nilpotent if AX =0
for some k > 1.

» Theorem 34.2: A matrix A is nilpotent if and only if
o(A) = {0}.

» Proof: Suppose o(A) = {0}. Then the characteristic
polynomial of A is p(x) = x".

» Hence by Cayley Hamilton theorem, A" = 0.

» Conversely, suppose AX = 0. Now if a is an eigenvalue with
eigenvector v, we get AKv = akv =0

> As v # 0, this implies ak = 0. Hence a = 0. Therefore
o(A)={0}. 1
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Comparison of coefficients

> Let p(x) = x"+ cp1x" "+ + c1x + g be the
characteristic polynomial of a matrix A.
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Comparison of coefficients

> Let p(x) = x"+ cp1x" "+ + c1x + g be the
characteristic polynomial of a matrix A.

> If di,...,d, are the eigenvalues of A, then
p(x) = (x —di)(x — d2) - - (x — dp).

» Comparing the coefficients, we see that
cr-1=(—1)(di +do +--- + dp) = —( trace (A)) and
¢ =(-1)"did> - d, = (—1)"(det(A)).

» In particular, A is invertible if and only if ¢g # 0.



Computation of inverse

» Now by Cayley Hamilton theorem,

A"t ch 1A b A+ ol = 0.



Computation of inverse

» Now by Cayley Hamilton theorem,
A"t ch 1A b A+ ol = 0.
» This implies,

A(An—l + CnflAn_2 4+t Cll) = —q¢l.



Computation of inverse

» Now by Cayley Hamilton theorem,
A"+ cp AT 4+ a A+l = 0.
» This implies,
AA™ 4, 1A 2 4 al) = —ql.

P> Assuming that A is invertible,

1
—C—O(A"‘1 + 1A 2+t al)

is the inverse of A.
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Special Case

» Consider the 2 x 2 case:

» \We have the characteristic polynomial:
p(x) = (x — a)(x — d) — bc = x*> — (a+ d)x + (ad — bc).

> Note that we are getting the trace and the determinant as the
coefficients.

» We have from the Cayley Hamilton theorem
A% — (a+ d)A+ (ad — bc) = 0.

» In particular, if the determinant of A is non-zero, then

-1 1 d —b
ad—bc( (a+d)1) ad—bc[—c a ]
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(A= di1)(A—dol)---(A—dpl) = 0.

> Soif
(A—dal) - (A—dpl) £0
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Computing eigenvectors

» Suppose A is a matrix with eigenvalues di, do, ..., dp.

» By the Cayley Hamilton theorem,
(A—=dil)(A—dal)---(A—d,l)=0.

> So if
(A=dal)---(A—dpl)#0

» Then any non-zero column of (A — da/)---(A—dpl) is an
eigenvector of A with eigenvalue dj.

» If the product above is zero, this means that d; = d; for some
J > 1. (Recall that every eigenvalue must be a root of any
annihilating polynomial).

» In such cases, you may drop some of the factors (A — d;/)
with d; = d; to get eigenvectors.
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» Example 34.3: Consider
1 45
T=]10 26
0 03

1

P It is clear that | O | is an eigenvector with eigenvalue 1.
0

> What about eigenvalues 2, 37

» By direct computation

N
O

(T-I(T-=-2)=

o oo
o oo
—_
N



Example

» Example 34.3: Consider
1 45
T=]10 26
0 03

1
P It is clear that | O | is an eigenvector with eigenvalue 1.

0
> What about eigenvalues 2, 37
» By direct computation

0 0 29
(T—I(T-2)=1]0 0 12
00 2

29

» This shows that | 12 | is an eigenvector with eigenvalue 3.
2
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Continuation

» Similarly
0 -4 0
(T-1(T-3N)=|0 -1 0
0 0 0

> Hence we see that | 1 | is an eigenvector with eigenvalue 2.



Continuation

» Similarly
0 -4 0
(T—-I)(T-3N)=|0 -1 0
0 0 O
4
> Hence we see that | 1 | is an eigenvector with eigenvalue 2.
0

» END OF LECTURE 34



