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Recall that we can't diagonalize some matrices.
However, we have the following theorem.

Theorem 33.2: Let A be an n x n complex matrix. Then there
exists an upper triangular matrix T and an invertible matrix S
such that

A=STSt

Here the diagonal entries of T are the eigenvalues of A and
they can appear in any order we like.

What about off-diagonal entries. Can we bring some order in
them?

This is answered by Jordan canonical form theorem.
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Jordan blocks

» We need some notation.

» Notation: For b € C and n € N, let Jy(n) denote the n x n
matrix whose diagonal entries are equal to b and the super
diagonal entries are equal to 1 and all the other entries are
equal to zero:

b 1 0 0
0O b1 ... 0
J(1)=1[b], Jp(n)=]0 0 b ... 0
| 0 0 0 b |
P Alternatively,
b iff =i,
(Jb(n)),-j: 1 ifj: i+1;

0 otherwise.
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Eigenvalues and eigenvectors

> We observe that for any Jordan block matrix Jy(n), the only
eigenvalue is b and the only eigenvectors are vectors of the

form
c

0

0
» Therefore the eigenvalue b has algebraic multiplicity n and
geometric multiplicity 1 in Jp(n).
» The characteristic polynomial of Jy(n) is (x — b)".
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Jordan block theorem

» Theorem 35.1: Every square matrix is similar to a direct sum
of Jordan blocks, which are unique up to permutation.

» In other words, if Ais an n x n matrix and a1, as, ..., ax are
the distinct eigenvalues of A, with geometric multiplicities
g1,&2,--.,8k then there exist natural numbers

nj, 1<i<k, 1<) <gisuchthat Aissimilar to
k i
Bizy BFLy Jay(n)-

This decomposition is unique up to permutation.
» Note that we must have:

k &
Z Z n,~j =n.
i=1 j=1
» In other words, the sum of block sizes is equal to n and for
each distinct eigenvalue there are as many Jordan blocks
(possibly of different sizes) as the geometric multiplicity of the
eigenvalue.
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1.



Examples

» Example 35.1: Suppose A is similar to
Jo(1) & Jo(2) & Jo(4) & J5(3).

Then the eigenvalues are 0 and 5. The order of A is

142+ 44 3 =10. The algebraic multiplicity of 0 is
(1+2+4) =7 and the geometric multiplicity of 0 is 3. The
algebraic multiplicity of 5 is 3 and its geometric multiplicity is
1.

» Note that if A is diagonalizable (in particular, if it is normal),
all Jordan blocks would have size 1 and A is similar to

Dy Oy Jay(1).

In other words geometric and algebraic multiplicities of a; are
equal to njand ni +ny+ -+ ng = n.
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Minimal polynomial and characteristic polynomial

» Consider a Jordan block

b 1 0 0
0 1 ... 0
Jp(ny=10 0 b ... 0
10 0 0 ... b

» Then the characteristic polynomial of Jy(n) is
p(x) = (x — b)" and is also the minimal polynomial of Jp(n).
» If we consider B = Jp(n1) @ Jp(n2) @ - - - Jp(n,) then the
characteristic polynomial of B is

p(X) — (X _ b)n1+n2+-~~+nr

and the minimal polynomial is g(x) = (x — b)™ where
m = max{ny, n,...,n}.
» Thus we get the following result.



Minimal polynomial and characteristic polynomial

» Theorem 35.1 Let A be a matrix similar to Jordan block
DIy OF S ().

as in Theorem 35.1. Then the characteristic polynomial of A
is given by
&
p(x) = My (x — @)= ™

The minimal polynomial is given by
q(x) = Ny (x — a)™,

where m; = max{n;; : 1 < j < g;}.
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» Consider B = Jp(n) with n > q.
» Take N = [njj] be the n x n matrix where

1 =it
Y71 0 otherwise.

» Observe that
N2

1 ifj=i+42
(Nz)ij:{ / :

is given by

0 otherwise.

> Similarly,
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0 otherwise.
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Powers of Jordan blocks

» Consider B = Jp(n) with n > q.
» Take N = [njj] be the n x n matrix where
{1 ifj=it1
i 0 otherwise.

» Observe that

N2
is given by
1 ifj=i+2
2y, J
(M) = { 0 otherwise.
> Similarly,
1 ifj=i+3
3y _ J
(M) = { 0 otherwise.
> Finally,
wy [ 1 ifi=1j=n
(N"5)j = { 0 otherwise. ‘

» and N" =0.
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Continuation

» Now Jy(n) = bl + N.
» Since bl and N commute, the binomial expansion is applicable
and for m > 1 we get

m __ . m m—k prk
W+N)—Xxk>b Nk
k=0
» In other words,

m

m ) pmUE) <<
(s(n)™)j = (J—/> P=s=n

0 otherwise.
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Continuation

> More explicitly: (Jp(n))™ equals

0 b™ mbm~1
0 0 b™

0 0 0

» This way we can write down powers of Jordan blocks explicitly.

m m—1 m m—2
o s (7 )i

m m—3
;)

m

2

mbm—l
pm

bm72




Continuation

> More explicitly: (Jp(n))™ equals

m m—1 m m—2 m m—3 i
b™ mb (2)b (3)b

0 pm mbmfl Z’ bm72
0 0 b™m mb™—1

0 0 0 b™

» This way we can write down powers of Jordan blocks explicitly.
» The proof of Jordan block theorem has been omitted.
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>

Let A be a complex n x n matrix and let a be an eigenvalue of
A.

Then
E(a) ={(xeC":(A—al)x =0}

is known as the eigenspace of A with respect to eigenvalue a.
By definition, the dimension of E(a) is the geometric
multiplicity of eigenvalue a.

The space
F(a)={xeC":(A—al)"x =0, forsome me N}

is known as the generalized eigenspace of eigenvalue a.

The Jordan Canonical form tells us that the dimension of
F(a) is the algebraic multiplicity of eigenvalue a.

END OF LECTURE 35.



