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Lecture 35: Jordan canonical form

I Recall that we can’t diagonalize some matrices.

I However, we have the following theorem.

I Theorem 33.2: Let A be an n× n complex matrix. Then there
exists an upper triangular matrix T and an invertible matrix S
such that

A = STS−1.

I Here the diagonal entries of T are the eigenvalues of A and
they can appear in any order we like.

I What about off-diagonal entries. Can we bring some order in
them?

I This is answered by Jordan canonical form theorem.
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Jordan blocks

I We need some notation.

I Notation: For b ∈ C and n ∈ N, let Jb(n) denote the n × n
matrix whose diagonal entries are equal to b and the super
diagonal entries are equal to 1 and all the other entries are
equal to zero:

Jb(1) = [b], Jb(n) =


b 1 0 . . . 0
0 b 1 . . . 0
0 0 b . . . 0
...

...
...

. . .
...

0 0 0 . . . b

 .

I Alternatively,

(Jb(n))ij =


b ifj = i ;
1 if j = i + 1;
0 otherwise.
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Eigenvalues and eigenvectors

I We observe that for any Jordan block matrix Jb(n), the only
eigenvalue is b and the only eigenvectors are vectors of the
form 

c
0
...
0

 .

I Therefore the eigenvalue b has algebraic multiplicity n and
geometric multiplicity 1 in Jb(n).

I The characteristic polynomial of Jb(n) is (x − b)n.
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Jordan block theorem

I Theorem 35.1: Every square matrix is similar to a direct sum
of Jordan blocks, which are unique up to permutation.

I In other words, if A is an n × n matrix and a1, a2, . . . , ak are
the distinct eigenvalues of A, with geometric multiplicities
g1, g2, . . . , gk , then there exist natural numbers
nij , 1 ≤ i ≤ k, 1 ≤ j ≤ gi such that A is similar to

⊕k
i=1 ⊕

gi
j=1 Jai (nij).

This decomposition is unique up to permutation.
I Note that we must have:

k∑
i=1

gi∑
j=1

nij = n.

I In other words, the sum of block sizes is equal to n and for
each distinct eigenvalue there are as many Jordan blocks
(possibly of different sizes) as the geometric multiplicity of the
eigenvalue.
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Examples

I Example 35.1: Suppose A is similar to

J0(1)⊕ J0(2)⊕ J0(4)⊕ J5(3).

Then the eigenvalues are 0 and 5. The order of A is
1 + 2 + 4 + 3 = 10. The algebraic multiplicity of 0 is
(1 + 2 + 4) = 7 and the geometric multiplicity of 0 is 3. The
algebraic multiplicity of 5 is 3 and its geometric multiplicity is
1.

I Note that if A is diagonalizable (in particular, if it is normal),
all Jordan blocks would have size 1 and A is similar to

⊕k
i=1 ⊕

ni
j=1 Jai (1).

In other words geometric and algebraic multiplicities of ai are
equal to ni and n1 + n2 + · · ·+ nk = n.
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Minimal polynomial and characteristic polynomial

I Consider a Jordan block

Jb(n) =


b 1 0 . . . 0
0 b 1 . . . 0
0 0 b . . . 0
...

...
...

. . .
...

0 0 0 . . . b

 .

I Then the characteristic polynomial of Jb(n) is
p(x) = (x − b)n and is also the minimal polynomial of Jb(n).

I If we consider B = Jb(n1)⊕ Jb(n2)⊕ · · · Jb(nr ) then the
characteristic polynomial of B is

p(x) = (x − b)n1+n2+···+nr

and the minimal polynomial is q(x) = (x − b)m where
m = max{n1, n2, . . . , nr}.

I Thus we get the following result.
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Minimal polynomial and characteristic polynomial

I Theorem 35.1 Let A be a matrix similar to Jordan block

⊕k
i=1 ⊕

gi
j=1 Jai (nij).

as in Theorem 35.1. Then the characteristic polynomial of A
is given by

p(x) = Πk
i=1(x − ai )

∑gi
j=1 nij

The minimal polynomial is given by

q(x) = Πk
i=1(x − ai )

mi ,

where mi = max{nij : 1 ≤ j ≤ gi}.



Powers of Jordan blocks

I Consider B = Jb(n) with n ≥ q.

I Take N = [nij ] be the n × n matrix where

nij =

{
1 if j = i + 1
0 otherwise.

.

I Observe that
N2

is given by

(N2)ij =

{
1 if j = i + 2
0 otherwise.

.

I Similarly,

(N3)ij =

{
1 if j = i + 3
0 otherwise.

.

I Finally,

(Nn−1)ij =

{
1 if i = 1, j = n
0 otherwise.

.

I and Nn = 0.
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Continuation

I Now Jb(n) = bI + N.

I Since bI and N commute, the binomial expansion is applicable
and for m ≥ 1 we get

(bI + N)m =
m∑

k=0

(
m
k

)
bm−kNk .

I In other words,

(Jb(n)m)ij =


(

m
j − i

)
bm−(j−i) i ≤ j ≤ n;

0 otherwise.
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Continuation

I More explicitly: (Jb(n))m equals

bm mbm−1

(
m
2

)
bm−2

(
m
3

)
bm−3 . . .

0 bm mbm−1

(
m
2

)
bm−2 . . .

0 0 bm mbm−1 . . .
0 0 0 bm . . .
...

...
...

...
. . .


.

I This way we can write down powers of Jordan blocks explicitly.

I The proof of Jordan block theorem has been omitted.
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Generalized eigenspaces

I Let A be a complex n× n matrix and let a be an eigenvalue of
A.

I Then
E (a) = {(x ∈ Cn : (A− aI )x = 0}

is known as the eigenspace of A with respect to eigenvalue a.
By definition, the dimension of E (a) is the geometric
multiplicity of eigenvalue a.

I The space

F (a) = {x ∈ Cn : (A− aI )mx = 0, for some m ∈ N}

is known as the generalized eigenspace of eigenvalue a.

I The Jordan Canonical form tells us that the dimension of
F (a) is the algebraic multiplicity of eigenvalue a.

I END OF LECTURE 35.
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