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» To begin with we have simultaneous upper triangularization.

> Theorem 36.1: Let Aj, A> be two commuting n X n complex
matrices. Then there exists a unitary U and two upper
triangular matrices T1, T such that

A= UT;U*, j=1,2.

» Here we are considering the standard inner product on C".

» The point is that when A;, A> commute, we can find a single
unitary U such that both U*A;U and U*AyU are upper
triangular.
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Proof: The proof is by induction. For n =1, there is nothing
to show.

Consider n > 2. Fix some eigenvalue a; of Aj.
Suppose Ajv = ayv.
By commutativity, AjAyv = AxAr1v = Az(a1v) = a1(Azv).

vvvyyypy

In other words, the eigenspace E; = {v € C": Av = ajv} is
left invariant by A,.
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> Note that the dimension of Ej is the geometric multiplicity of
a; for the matrix A1, and it is at least 1.

» Let {vi,vs,..., vk} be an orthonormal basis for E;.
» Extend it to an orthonormal basis B := {v1,...,v,} of C".

» Let Uy be the unitary whose columns are {vq,...,v,}.
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» We have Arv; = ayvj for 1 <j < k.

» This means that the linear map x + Aix, on the basis B has
a block matrix form:

| ailk Rz
e o ]

» for some k x (n — k) matrix Ri2 and (n— k) x (n — k) matrix
R>o or equivalently,

Alp = UR (1)
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» We also know that Ay leaves E; = span{vi,..., v} invariant.

» This means that the linear map x — Ayx has in the basis B
has a block matrix form:

| Suu S
s=| % 2],

P or equivalently,
AUg = UpS (2).

» From equations (1) and (2), we have

A1 = UoRUZ, Ag = UpSUg.
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» Now as Aj, Ay, commute, R, S also commute and we get:
>

alk Rz SioS12 | _ | Su S atlk Ri2
0 Rxn| | 0 S5» 0 S| | 0 R’

» By block matrix computations,

[ a1S11 a1S12 + R1252 ] _ [ a1511 S11Ri2 + S12R2 ]
0 R22 522 0 S0 R0 ’

» In particular, Ry» and Sp» commute. Note that they have
order (n — k) x (n — k) with k > 1. Hence the induction
hypothesis is applicable.
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>

Therefore, there exist a unitary W, two upper triangular
matrices My, My (all of order (n — k) x (n — k)), such that

Ry = WML W™, Spo = WM W™

Further, by Schur’s upper triangularization result, there exists
a unitary Z and an upper triangular matrix X (all of order

(k x k) such that 511 = ZXZ*.

We observe that,

A1:U0|:Z 0:|'|:31/k ZR12W:||:Z 0:|U(>)k

0o w 0 M, 0o w*
allk Z*R12W *
u[ 2R ]u,
where
Z 0
u_uo[o W}

being a product of two unitaries is a unitary.
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> Similarly,
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> Similarly,
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is a unitary.
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> Similarly,
_ Z 0 X Z*SipoW
v a3 1|
X Z*S; W N

u[o s ]u,

> where
Z 0
U_UO[O W}
is a unitary.

| 2

0 M
is upper triangular as My is upper triangular.

Ty = [ aily Rz ]

Z*
0

0
W*

|
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> Similarly,
_ Z 0 X Z*S51,W Z* 0 «
A = Uo{o W][O Mo Ho W*]UO
X Z*S1oW .
u[o s ]u,
> where
Z 0
U_UO[O W}
is a unitary.
>

0 M
is upper triangular as My is upper triangular.
T X Z*S51,W
2710 M

e 1ninner frianagiilar ac ¥ M~ are iinner +rianagiiiar IR

Ty = [ aily Rz ]
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» Corollary 36.3: Suppose A1, Ay are normal matrices. Then
A1, Ax are commuting if and only if there exists a normal
matrix A with polynomials p1, p» such that
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» Proof: If A;, A, are commuting, by the previous theorem, we
may assume that both A;, Ay are diagonal. Now take A as the
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Theorem 36.2: Suppose A1, A> are commuting normal
matrices. Then there exists a unitary U with two diagonal
matrices D;, D, such that Ay = UD,U*, A, = UD,U*.
Proof: This is clear from the previous theorem, as T1, T» are
upper triangular normal matrices they must be diagonal.
Hence take D1 = T7 and Dy = T».

Corollary 36.3: Suppose Aj, Ay are normal matrices. Then
A1, Ax are commuting if and only if there exists a normal
matrix A with polynomials p1, p» such that

A1 = p1(A), A2 = p2(A).

Proof: If Aj, A» are commuting, by the previous theorem, we
may assume that both A;, Ay are diagonal. Now take A as the
diagonal matrix with j-th diagonal entry as j. It is easy to get
polynomials py, p2 so that p1(j) = (A1), p2(j) = (A2)-
Hence p1(A) = A1, p2(A) = Az.

The converse is to show that for any normal matrix A,

p1(A), p2(A) commute for any two polynomials and is easy.
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» Theorem 36.4: Fix k > 1. Suppose A1, Ay, ..., A are
commuting matrices. Then there exists a unitary U with
upper triangular matrices Ti,..., T, such that

Aj=UT;U*, 1<j<k.

» Proof: Exercise.

» Theorem 36.5: Fix k > 1. Suppose Az, Ao, ..., Ak are
commuting normal matrices. Then there exists a unitary U
with diagonal matrices Dy, ..., Dy such that

A= UDjU*, 1<j<k.

» Proof: Clear from the previous theorem.
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Example 36.6: For n > 3, take A; = Jo(n) and Ay = Jo(n)?.
Then A; and A are commuting.

Aj is already in Jordan form. By the uniqueness of Jordan
form, if ST1A;S is in Jordan form, then S71A;S = A;.

That is, A1S = SA;.

This implies A%S = SA%. Hence S~1A,S = A,. But A, is not
in Jordan form.

Therefore simultaneous Jordan form is not possible for A; and
As.
END OF LECTURE 36.



