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Lecture 36: Simultaneous diagonalization

I To begin with we have simultaneous upper triangularization.

I Theorem 36.1: Let A1,A2 be two commuting n × n complex
matrices. Then there exists a unitary U and two upper
triangular matrices T1,T2 such that

Aj = UTjU
∗, j = 1, 2.

I Here we are considering the standard inner product on Cn.

I The point is that when A1,A2 commute, we can find a single
unitary U such that both U∗A1U and U∗A2U are upper
triangular.
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Continuation

I Proof: The proof is by induction. For n = 1, there is nothing
to show.

I Consider n ≥ 2. Fix some eigenvalue a1 of A1.

I Suppose A1v = a1v .

I By commutativity, A1A2v = A2A1v = A2(a1v) = a1(A2v).

I In other words, the eigenspace E1 = {v ∈ Cn : Av = a1v} is
left invariant by A2.
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Continuation

I Note that the dimension of E1 is the geometric multiplicity of
a1 for the matrix A1, and it is at least 1.

I Let {v1, v2, . . . , vk} be an orthonormal basis for E1.

I Extend it to an orthonormal basis B := {v1, . . . , vn} of Cn.

I Let U0 be the unitary whose columns are {v1, . . . , vn}.
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Continuation

I We have A1vj = a1vj for 1 ≤ j ≤ k .

I This means that the linear map x 7→ A1x , on the basis B has
a block matrix form:

R =

[
a1Ik R12

0 R22

]
.

I for some k × (n− k) matrix R12 and (n− k)× (n− k) matrix
R22 or equivalently,

A1U0 = U0R (1)
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Continuation

I We also know that A2 leaves E1 = span{v1, . . . , vk} invariant.

I This means that the linear map x 7→ A2x has in the basis B
has a block matrix form:

S =

[
S11 S12
0 S22

]
,

I or equivalently,
A2U0 = U0S (2).

I From equations (1) and (2), we have

A1 = U0RU
∗
0 , A2 = U0SU

∗
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I Now as A1,A2, commute, R,S also commute and we get:
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0 R22S22

]
=

[
a1S11 S11R12 + S12R22

0 S22R22

]
.

I In particular, R22 and S22 commute. Note that they have
order (n − k)× (n − k) with k ≥ 1. Hence the induction
hypothesis is applicable.
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I Therefore, there exist a unitary W , two upper triangular
matrices M1,M2 (all of order (n − k)× (n − k)), such that

R22 = WM1W
∗, S22 = WM2W

∗.

I Further, by Schur’s upper triangularization result, there exists
a unitary Z and an upper triangular matrix X (all of order
(k × k) such that S11 = ZXZ ∗.

I We observe that,

A1 = U0

[
Z 0
0 W

]
.

[
a1Ik Z ∗R12W

0 M1

] [
Z ∗ 0
0 W ∗

]
U∗
0

= U

[
a1Ik Z ∗R12W

0 M1

]
U∗,

I where

U = U0

[
Z 0
0 W

]
being a product of two unitaries is a unitary.
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Simultaneous diagonalization

I Theorem 36.2: Suppose A1,A2 are commuting normal
matrices. Then there exists a unitary U with two diagonal
matrices D1,D2 such that A1 = UD1U

∗, A2 = UD2U
∗.

I Proof: This is clear from the previous theorem, as T1,T2 are
upper triangular normal matrices they must be diagonal.

I Hence take D1 = T1 and D2 = T2.
I Corollary 36.3: Suppose A1,A2 are normal matrices. Then

A1,A2 are commuting if and only if there exists a normal
matrix A with polynomials p1, p2 such that
A1 = p1(A),A2 = p2(A).

I Proof: If A1,A2 are commuting, by the previous theorem, we
may assume that both A1,A2 are diagonal. Now take A as the
diagonal matrix with j-th diagonal entry as j . It is easy to get
polynomials p1, p2 so that p1(j) = (A1)jj , p2(j) = (A2)jj .
Hence p1(A) = A1, p2(A) = A2.

I The converse is to show that for any normal matrix A,
p1(A), p2(A) commute for any two polynomials and is easy.
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Families of commuting matrices

I Theorem 36.4: Fix k ≥ 1. Suppose A1,A2, . . . ,Ak are
commuting matrices. Then there exists a unitary U with
upper triangular matrices T1, . . . ,Tk such that

Aj = UTjU
∗, 1 ≤ j ≤ k .

I Proof: Exercise.

I Theorem 36.5: Fix k ≥ 1. Suppose A1,A2, . . . ,Ak are
commuting normal matrices. Then there exists a unitary U
with diagonal matrices D1, . . . ,Dk such that

Aj = UDjU
∗, 1 ≤ j ≤ k .

I Proof: Clear from the previous theorem.
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Simultaneous Jordan form?

I Example 36.6: For n ≥ 3, take A1 = J0(n) and A2 = J0(n)2.

I Then A1 and A2 are commuting.

I A1 is already in Jordan form. By the uniqueness of Jordan
form, if S−1A1S is in Jordan form, then S−1A1S = A1.

I That is, A1S = SA1.

I This implies A2
1S = SA2

1. Hence S−1A2S = A2. But A2 is not
in Jordan form.

I Therefore simultaneous Jordan form is not possible for A1 and
A2.

I END OF LECTURE 36.
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