

LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 36: Simultaneous diagonalization

- ▶ To begin with we have simultaneous upper triangularization.

Lecture 36: Simultaneous diagonalization

- ▶ To begin with we have simultaneous upper triangularization.
- ▶ **Theorem 36.1:** Let A_1, A_2 be two **commuting** $n \times n$ complex matrices. Then there exists a unitary U and two upper triangular matrices T_1, T_2 such that

$$A_j = UT_j U^*, \quad j = 1, 2.$$

Lecture 36: Simultaneous diagonalization

- ▶ To begin with we have simultaneous upper triangularization.
- ▶ **Theorem 36.1:** Let A_1, A_2 be two **commuting** $n \times n$ complex matrices. Then there exists a unitary U and two upper triangular matrices T_1, T_2 such that

$$A_j = UT_j U^*, \quad j = 1, 2.$$

- ▶ Here we are considering the standard inner product on \mathbb{C}^n .

Lecture 36: Simultaneous diagonalization

- ▶ To begin with we have simultaneous upper triangularization.
- ▶ **Theorem 36.1:** Let A_1, A_2 be two **commuting** $n \times n$ complex matrices. Then there exists a unitary U and two upper triangular matrices T_1, T_2 such that

$$A_j = UT_j U^*, \quad j = 1, 2.$$

- ▶ Here we are considering the standard inner product on \mathbb{C}^n .
- ▶ The point is that when A_1, A_2 commute, we can find a single unitary U such that both $U^* A_1 U$ and $U^* A_2 U$ are upper triangular.

Continuation

- ▶ **Proof:** The proof is by induction. For $n = 1$, there is nothing to show.

Continuation

- ▶ **Proof:** The proof is by induction. For $n = 1$, there is nothing to show.
- ▶ Consider $n \geq 2$. Fix some eigenvalue a_1 of A_1 .
- ▶ Suppose $A_1 v = a_1 v$.

Continuation

- ▶ **Proof:** The proof is by induction. For $n = 1$, there is nothing to show.
- ▶ Consider $n \geq 2$. Fix some eigenvalue a_1 of A_1 .
- ▶ Suppose $A_1 v = a_1 v$.
- ▶ By commutativity, $A_1 A_2 v = A_2 A_1 v = A_2(a_1 v) = a_1(A_2 v)$.

Continuation

- ▶ **Proof:** The proof is by induction. For $n = 1$, there is nothing to show.
- ▶ Consider $n \geq 2$. Fix some eigenvalue a_1 of A_1 .
- ▶ Suppose $A_1 v = a_1 v$.
- ▶ By commutativity, $A_1 A_2 v = A_2 A_1 v = A_2(a_1 v) = a_1(A_2 v)$.
- ▶ In other words, the eigenspace $E_1 = \{v \in \mathbb{C}^n : Av = a_1 v\}$ is left invariant by A_2 .

Continuation

- ▶ Note that the dimension of E_1 is the geometric multiplicity of a_1 for the matrix A_1 , and it is at least 1.

Continuation

- ▶ Note that the dimension of E_1 is the geometric multiplicity of a_1 for the matrix A_1 , and it is at least 1.
- ▶ Let $\{v_1, v_2, \dots, v_k\}$ be an orthonormal basis for E_1 .

Continuation

- ▶ Note that the dimension of E_1 is the geometric multiplicity of a_1 for the matrix A_1 , and it is at least 1.
- ▶ Let $\{v_1, v_2, \dots, v_k\}$ be an orthonormal basis for E_1 .
- ▶ Extend it to an orthonormal basis $\mathcal{B} := \{v_1, \dots, v_n\}$ of \mathbb{C}^n .

Continuation

- ▶ Note that the dimension of E_1 is the geometric multiplicity of a_1 for the matrix A_1 , and it is at least 1.
- ▶ Let $\{v_1, v_2, \dots, v_k\}$ be an orthonormal basis for E_1 .
- ▶ Extend it to an orthonormal basis $\mathcal{B} := \{v_1, \dots, v_n\}$ of \mathbb{C}^n .
- ▶ Let U_0 be the unitary whose columns are $\{v_1, \dots, v_n\}$.

Continuation

- We have $A_1 v_j = a_1 v_j$ for $1 \leq j \leq k$.

Continuation

- ▶ We have $A_1 v_j = a_1 v_j$ for $1 \leq j \leq k$.
- ▶ This means that the linear map $x \mapsto A_1 x$, on the basis \mathcal{B} has a block matrix form:

$$R = \begin{bmatrix} a_1 I_k & R_{12} \\ 0 & R_{22} \end{bmatrix}.$$

Continuation

- ▶ We have $A_1 v_j = a_1 v_j$ for $1 \leq j \leq k$.
- ▶ This means that the linear map $x \mapsto A_1 x$, on the basis \mathcal{B} has a block matrix form:

$$R = \begin{bmatrix} a_1 I_k & R_{12} \\ 0 & R_{22} \end{bmatrix}.$$

- ▶ for some $k \times (n - k)$ matrix R_{12} and $(n - k) \times (n - k)$ matrix R_{22} or equivalently,

$$A_1 U_0 = U_0 R \quad (1)$$

Continuation

- ▶ We also know that A_2 leaves $E_1 = \text{span}\{v_1, \dots, v_k\}$ invariant.

Continuation

- ▶ We also know that A_2 leaves $E_1 = \text{span}\{v_1, \dots, v_k\}$ invariant.
- ▶ This means that the linear map $x \mapsto A_2x$ has in the basis \mathcal{B} has a block matrix form:

$$S = \begin{bmatrix} S_{11} & S_{12} \\ 0 & S_{22} \end{bmatrix},$$

Continuation

- ▶ We also know that A_2 leaves $E_1 = \text{span}\{v_1, \dots, v_k\}$ invariant.
- ▶ This means that the linear map $x \mapsto A_2x$ has in the basis \mathcal{B} has a block matrix form:

$$S = \begin{bmatrix} S_{11} & S_{12} \\ 0 & S_{22} \end{bmatrix},$$

- ▶ or equivalently,

$$A_2 U_0 = U_0 S \quad (2).$$

Continuation

- ▶ We also know that A_2 leaves $E_1 = \text{span}\{v_1, \dots, v_k\}$ invariant.
- ▶ This means that the linear map $x \mapsto A_2x$ has in the basis \mathcal{B} has a block matrix form:

$$S = \begin{bmatrix} S_{11} & S_{12} \\ 0 & S_{22} \end{bmatrix},$$

- ▶ or equivalently,

$$A_2 U_0 = U_0 S \quad (2).$$

- ▶ From equations (1) and (2), we have

$$A_1 = U_0 R U_0^*, \quad A_2 = U_0 S U_0^*.$$

Continuation

- ▶ Now as A_1, A_2 , commute, R, S also commute and we get:

Continuation

- ▶ Now as A_1, A_2 , commute, R, S also commute and we get:
- ▶

$$\begin{bmatrix} a_1 I_k & R_{12} \\ 0 & R_{22} \end{bmatrix} \cdot \begin{bmatrix} S_{11} & S_{12} \\ 0 & S_{22} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ 0 & S_{22} \end{bmatrix} \cdot \begin{bmatrix} a_1 I_k & R_{12} \\ 0 & R_{22} \end{bmatrix}.$$

Continuation

- ▶ Now as A_1, A_2 , commute, R, S also commute and we get:
▶

$$\begin{bmatrix} a_1 I_k & R_{12} \\ 0 & R_{22} \end{bmatrix} \cdot \begin{bmatrix} S_{11} & S_{12} \\ 0 & S_{22} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ 0 & S_{22} \end{bmatrix} \cdot \begin{bmatrix} a_1 I_k & R_{12} \\ 0 & R_{22} \end{bmatrix}.$$

- ▶ By block matrix computations,

$$\begin{bmatrix} a_1 S_{11} & a_1 S_{12} + R_{12} S_{22} \\ 0 & R_{22} S_{22} \end{bmatrix} = \begin{bmatrix} a_1 S_{11} & S_{11} R_{12} + S_{12} R_{22} \\ 0 & S_{22} R_{22} \end{bmatrix}.$$

Continuation

- ▶ Now as A_1, A_2 , commute, R, S also commute and we get:
 - ▶

$$\begin{bmatrix} a_1 I_k & R_{12} \\ 0 & R_{22} \end{bmatrix} \cdot \begin{bmatrix} S_{11} & S_{12} \\ 0 & S_{22} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ 0 & S_{22} \end{bmatrix} \cdot \begin{bmatrix} a_1 I_k & R_{12} \\ 0 & R_{22} \end{bmatrix}.$$

- ▶ By block matrix computations,

$$\begin{bmatrix} a_1 S_{11} & a_1 S_{12} + R_{12} S_{22} \\ 0 & R_{22} S_{22} \end{bmatrix} = \begin{bmatrix} a_1 S_{11} & S_{11} R_{12} + S_{12} R_{22} \\ 0 & S_{22} R_{22} \end{bmatrix}.$$

- ▶ In particular, R_{22} and S_{22} commute. Note that they have order $(n - k) \times (n - k)$ with $k \geq 1$. Hence the induction hypothesis is applicable.

Continuation

- ▶ Therefore, there exist a unitary W , two upper triangular matrices M_1, M_2 (all of order $(n - k) \times (n - k)$), such that

$$R_{22} = WM_1W^*, \quad S_{22} = WM_2W^*.$$

Continuation

- ▶ Therefore, there exist a unitary W , two upper triangular matrices M_1, M_2 (all of order $(n - k) \times (n - k)$), such that

$$R_{22} = WM_1W^*, \quad S_{22} = WM_2W^*.$$

- ▶ Further, by Schur's upper triangularization result, there exists a unitary Z and an upper triangular matrix X (all of order $(k \times k)$) such that $S_{11} = ZXZ^*$.

Continuation

- ▶ Therefore, there exist a unitary W , two upper triangular matrices M_1, M_2 (all of order $(n - k) \times (n - k)$), such that

$$R_{22} = WM_1W^*, \quad S_{22} = WM_2W^*.$$

- ▶ Further, by Schur's upper triangularization result, there exists a unitary Z and an upper triangular matrix X (all of order $(k \times k)$) such that $S_{11} = ZXZ^*$.
- ▶ We observe that,

$$\begin{aligned} A_1 &= U_0 \begin{bmatrix} Z & 0 \\ 0 & W \end{bmatrix} \cdot \begin{bmatrix} a_1 I_k & Z^* R_{12} W \\ 0 & M_1 \end{bmatrix} \begin{bmatrix} Z^* & 0 \\ 0 & W^* \end{bmatrix} U_0^* \\ &= U \begin{bmatrix} a_1 I_k & Z^* R_{12} W \\ 0 & M_1 \end{bmatrix} U^*, \end{aligned}$$

Continuation

- ▶ Therefore, there exist a unitary W , two upper triangular matrices M_1, M_2 (all of order $(n - k) \times (n - k)$), such that

$$R_{22} = WM_1W^*, \quad S_{22} = WM_2W^*.$$

- ▶ Further, by Schur's upper triangularization result, there exists a unitary Z and an upper triangular matrix X (all of order $(k \times k)$) such that $S_{11} = ZXZ^*$.
- ▶ We observe that,

$$\begin{aligned} A_1 &= U_0 \begin{bmatrix} Z & 0 \\ 0 & W \end{bmatrix} \cdot \begin{bmatrix} a_1 I_k & Z^* R_{12} W \\ 0 & M_1 \end{bmatrix} \begin{bmatrix} Z^* & 0 \\ 0 & W^* \end{bmatrix} U_0^* \\ &= U \begin{bmatrix} a_1 I_k & Z^* R_{12} W \\ 0 & M_1 \end{bmatrix} U^*, \end{aligned}$$

- ▶ where

$$U = U_0 \begin{bmatrix} Z & 0 \\ 0 & W \end{bmatrix}$$

being a product of two unitaries is a unitary.

Continuation

► Similarly,

$$\begin{aligned} A_2 &= U_0 \begin{bmatrix} Z & 0 \\ 0 & W \end{bmatrix} \cdot \begin{bmatrix} X & Z^* S_{12} W \\ 0 & M_2 \end{bmatrix} \begin{bmatrix} Z^* & 0 \\ 0 & W^* \end{bmatrix} U_0^* \\ &= U \begin{bmatrix} X & Z^* S_{12} W \\ 0 & M_2 \end{bmatrix} U^*, \end{aligned}$$

Continuation

► Similarly,

$$\begin{aligned} A_2 &= U_0 \begin{bmatrix} Z & 0 \\ 0 & W \end{bmatrix} \cdot \begin{bmatrix} X & Z^* S_{12} W \\ 0 & M_2 \end{bmatrix} \begin{bmatrix} Z^* & 0 \\ 0 & W^* \end{bmatrix} U_0^* \\ &= U \begin{bmatrix} X & Z^* S_{12} W \\ 0 & M_2 \end{bmatrix} U^*, \end{aligned}$$

Continuation

- ▶ Similarly,

$$\begin{aligned} A_2 &= U_0 \begin{bmatrix} Z & 0 \\ 0 & W \end{bmatrix} \cdot \begin{bmatrix} X & Z^* S_{12} W \\ 0 & M_2 \end{bmatrix} \begin{bmatrix} Z^* & 0 \\ 0 & W^* \end{bmatrix} U_0^* \\ &= U \begin{bmatrix} X & Z^* S_{12} W \\ 0 & M_2 \end{bmatrix} U^*, \end{aligned}$$

- ▶ where

$$U = U_0 \begin{bmatrix} Z & 0 \\ 0 & W \end{bmatrix}$$

is a unitary.

Continuation

- ▶ Similarly,

$$\begin{aligned} A_2 &= U_0 \begin{bmatrix} Z & 0 \\ 0 & W \end{bmatrix} \cdot \begin{bmatrix} X & Z^* S_{12} W \\ 0 & M_2 \end{bmatrix} \begin{bmatrix} Z^* & 0 \\ 0 & W^* \end{bmatrix} U_0^* \\ &= U \begin{bmatrix} X & Z^* S_{12} W \\ 0 & M_2 \end{bmatrix} U^*, \end{aligned}$$

- ▶ where

$$U = U_0 \begin{bmatrix} Z & 0 \\ 0 & W \end{bmatrix}$$

is a unitary.

- ▶

$$T_1 := \begin{bmatrix} a_1 I_k & R_{12} \\ 0 & M_1 \end{bmatrix}$$

is upper triangular as M_1 is upper triangular.

Continuation

- ▶ Similarly,

$$\begin{aligned} A_2 &= U_0 \begin{bmatrix} Z & 0 \\ 0 & W \end{bmatrix} \cdot \begin{bmatrix} X & Z^* S_{12} W \\ 0 & M_2 \end{bmatrix} \begin{bmatrix} Z^* & 0 \\ 0 & W^* \end{bmatrix} U_0^* \\ &= U \begin{bmatrix} X & Z^* S_{12} W \\ 0 & M_2 \end{bmatrix} U^*, \end{aligned}$$

- ▶ where

$$U = U_0 \begin{bmatrix} Z & 0 \\ 0 & W \end{bmatrix}$$

is a unitary.

- ▶

$$T_1 := \begin{bmatrix} a_1 I_k & R_{12} \\ 0 & M_1 \end{bmatrix}$$

is upper triangular as M_1 is upper triangular.

- ▶

$$T_2 := \begin{bmatrix} X & Z^* S_{12} W \\ 0 & M_2 \end{bmatrix}$$

is upper triangular as X, M_2 are upper triangular

Simultaneous diagonalization

- ▶ **Theorem 36.2:** Suppose A_1, A_2 are commuting normal matrices. Then there exists a unitary U with two diagonal matrices D_1, D_2 such that $A_1 = UD_1U^*$, $A_2 = UD_2U^*$.

Simultaneous diagonalization

- ▶ **Theorem 36.2:** Suppose A_1, A_2 are commuting normal matrices. Then there exists a unitary U with two diagonal matrices D_1, D_2 such that $A_1 = UD_1U^*$, $A_2 = UD_2U^*$.
- ▶ **Proof:** This is clear from the previous theorem, as T_1, T_2 are upper triangular normal matrices they must be diagonal.

Simultaneous diagonalization

- ▶ **Theorem 36.2:** Suppose A_1, A_2 are commuting normal matrices. Then there exists a unitary U with two diagonal matrices D_1, D_2 such that $A_1 = UD_1U^*$, $A_2 = UD_2U^*$.
- ▶ **Proof:** This is clear from the previous theorem, as T_1, T_2 are upper triangular normal matrices they must be diagonal.
- ▶ Hence take $D_1 = T_1$ and $D_2 = T_2$.

Simultaneous diagonalization

- ▶ **Theorem 36.2:** Suppose A_1, A_2 are commuting normal matrices. Then there exists a unitary U with two diagonal matrices D_1, D_2 such that $A_1 = UD_1U^*$, $A_2 = UD_2U^*$.
- ▶ **Proof:** This is clear from the previous theorem, as T_1, T_2 are upper triangular normal matrices they must be diagonal.
- ▶ Hence take $D_1 = T_1$ and $D_2 = T_2$.
- ▶ **Corollary 36.3:** Suppose A_1, A_2 are normal matrices. Then A_1, A_2 are commuting if and only if there exists a normal matrix A with polynomials p_1, p_2 such that $A_1 = p_1(A), A_2 = p_2(A)$.

Simultaneous diagonalization

- ▶ **Theorem 36.2:** Suppose A_1, A_2 are commuting normal matrices. Then there exists a unitary U with two diagonal matrices D_1, D_2 such that $A_1 = UD_1U^*$, $A_2 = UD_2U^*$.
- ▶ **Proof:** This is clear from the previous theorem, as T_1, T_2 are upper triangular normal matrices they must be diagonal.
- ▶ Hence take $D_1 = T_1$ and $D_2 = T_2$.
- ▶ **Corollary 36.3:** Suppose A_1, A_2 are normal matrices. Then A_1, A_2 are commuting if and only if there exists a normal matrix A with polynomials p_1, p_2 such that $A_1 = p_1(A), A_2 = p_2(A)$.
- ▶ **Proof:** If A_1, A_2 are commuting, by the previous theorem, we may assume that both A_1, A_2 are diagonal. Now take A as the diagonal matrix with j -th diagonal entry as j . It is easy to get polynomials p_1, p_2 so that $p_1(j) = (A_1)_{jj}, p_2(j) = (A_2)_{jj}$. Hence $p_1(A) = A_1, p_2(A) = A_2$.

Simultaneous diagonalization

- ▶ **Theorem 36.2:** Suppose A_1, A_2 are commuting normal matrices. Then there exists a unitary U with two diagonal matrices D_1, D_2 such that $A_1 = UD_1U^*$, $A_2 = UD_2U^*$.
- ▶ **Proof:** This is clear from the previous theorem, as T_1, T_2 are upper triangular normal matrices they must be diagonal.
- ▶ Hence take $D_1 = T_1$ and $D_2 = T_2$.
- ▶ **Corollary 36.3:** Suppose A_1, A_2 are normal matrices. Then A_1, A_2 are commuting if and only if there exists a normal matrix A with polynomials p_1, p_2 such that $A_1 = p_1(A), A_2 = p_2(A)$.
- ▶ **Proof:** If A_1, A_2 are commuting, by the previous theorem, we may assume that both A_1, A_2 are diagonal. Now take A as the diagonal matrix with j -th diagonal entry as j . It is easy to get polynomials p_1, p_2 so that $p_1(j) = (A_1)_{jj}, p_2(j) = (A_2)_{jj}$. Hence $p_1(A) = A_1, p_2(A) = A_2$.
- ▶ The converse is to show that for any normal matrix A , $p_1(A), p_2(A)$ commute for any two polynomials and is easy.

Families of commuting matrices

- **Theorem 36.4:** Fix $k \geq 1$. Suppose A_1, A_2, \dots, A_k are commuting matrices. Then there exists a unitary U with upper triangular matrices T_1, \dots, T_k such that

$$A_j = UT_jU^*, \quad 1 \leq j \leq k.$$

Families of commuting matrices

- **Theorem 36.4:** Fix $k \geq 1$. Suppose A_1, A_2, \dots, A_k are commuting matrices. Then there exists a unitary U with upper triangular matrices T_1, \dots, T_k such that

$$A_j = UT_jU^*, \quad 1 \leq j \leq k.$$

- **Proof:** Exercise.

Families of commuting matrices

- ▶ **Theorem 36.4:** Fix $k \geq 1$. Suppose A_1, A_2, \dots, A_k are commuting matrices. Then there exists a unitary U with upper triangular matrices T_1, \dots, T_k such that

$$A_j = UT_jU^*, \quad 1 \leq j \leq k.$$

- ▶ **Proof:** Exercise.
- ▶ **Theorem 36.5:** Fix $k \geq 1$. Suppose A_1, A_2, \dots, A_k are commuting normal matrices. Then there exists a unitary U with diagonal matrices D_1, \dots, D_k such that

$$A_j = UD_jU^*, \quad 1 \leq j \leq k.$$

Families of commuting matrices

- **Theorem 36.4:** Fix $k \geq 1$. Suppose A_1, A_2, \dots, A_k are commuting matrices. Then there exists a unitary U with upper triangular matrices T_1, \dots, T_k such that

$$A_j = UT_jU^*, \quad 1 \leq j \leq k.$$

- **Proof:** Exercise.
- **Theorem 36.5:** Fix $k \geq 1$. Suppose A_1, A_2, \dots, A_k are commuting normal matrices. Then there exists a unitary U with diagonal matrices D_1, \dots, D_k such that

$$A_j = UD_jU^*, \quad 1 \leq j \leq k.$$

- **Proof:** Clear from the previous theorem.

Simultaneous Jordan form?

- ▶ Example 36.6: For $n \geq 3$, take $A_1 = J_0(n)$ and $A_2 = J_0(n)^2$.

Simultaneous Jordan form?

- ▶ Example 36.6: For $n \geq 3$, take $A_1 = J_0(n)$ and $A_2 = J_0(n)^2$.
- ▶ Then A_1 and A_2 are commuting.

Simultaneous Jordan form?

- ▶ Example 36.6: For $n \geq 3$, take $A_1 = J_0(n)$ and $A_2 = J_0(n)^2$.
- ▶ Then A_1 and A_2 are commuting.
- ▶ A_1 is already in Jordan form. By the uniqueness of Jordan form, if $S^{-1}A_1S$ is in Jordan form, then $S^{-1}A_1S = A_1$.

Simultaneous Jordan form?

- ▶ Example 36.6: For $n \geq 3$, take $A_1 = J_0(n)$ and $A_2 = J_0(n)^2$.
- ▶ Then A_1 and A_2 are commuting.
- ▶ A_1 is already in Jordan form. By the uniqueness of Jordan form, if $S^{-1}A_1S$ is in Jordan form, then $S^{-1}A_1S = A_1$.
- ▶ That is, $A_1S = SA_1$.

Simultaneous Jordan form?

- ▶ Example 36.6: For $n \geq 3$, take $A_1 = J_0(n)$ and $A_2 = J_0(n)^2$.
- ▶ Then A_1 and A_2 are commuting.
- ▶ A_1 is already in Jordan form. By the uniqueness of Jordan form, if $S^{-1}A_1S$ is in Jordan form, then $S^{-1}A_1S = A_1$.
- ▶ That is, $A_1S = SA_1$.
- ▶ This implies $A_1^2S = SA_1^2$. Hence $S^{-1}A_2S = A_2$. But A_2 is not in Jordan form.

Simultaneous Jordan form?

- ▶ Example 36.6: For $n \geq 3$, take $A_1 = J_0(n)$ and $A_2 = J_0(n)^2$.
- ▶ Then A_1 and A_2 are commuting.
- ▶ A_1 is already in Jordan form. By the uniqueness of Jordan form, if $S^{-1}A_1S$ is in Jordan form, then $S^{-1}A_1S = A_1$.
- ▶ That is, $A_1S = SA_1$.
- ▶ This implies $A_1^2S = SA_1^2$. Hence $S^{-1}A_2S = A_2$. But A_2 is not in Jordan form.
- ▶ Therefore simultaneous Jordan form is not possible for A_1 and A_2 .

Simultaneous Jordan form?

- ▶ Example 36.6: For $n \geq 3$, take $A_1 = J_0(n)$ and $A_2 = J_0(n)^2$.
- ▶ Then A_1 and A_2 are commuting.
- ▶ A_1 is already in Jordan form. By the uniqueness of Jordan form, if $S^{-1}A_1S$ is in Jordan form, then $S^{-1}A_1S = A_1$.
- ▶ That is, $A_1S = SA_1$.
- ▶ This implies $A_1^2S = SA_1^2$. Hence $S^{-1}A_2S = A_2$. But A_2 is not in Jordan form.
- ▶ Therefore simultaneous Jordan form is not possible for A_1 and A_2 .
- ▶ END OF LECTURE 36.