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We know that even if a matrix is real, in general the
eigenvalues, i.e, roots of the characteristic polynomial, can be
complex.

Example 37.1: Take

0 1
a8
Then A? = —/ and the eigenvalues of A are =+i.

Here A is a normal matrix and we can diagonalize it. So we
can get a unitary U, such that

i 0],
AU[0 _i}u.

We can’t diagonalize A or make it upper triangular in real
field.
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» What if we have a real symmetric matrix? Such matrices
appear often in applications.

> If Ais real symmetric, considering it as a complex self-adjoint
matrix we know that all eigenvalues are real. So the
obstruction for diagonalization mentioned above is not there.

» Recall that a real matrix M is said to be orthogonal if
MMt = M*M = I.

» Question: Can we diagonalize a real symmetric matrix using
orthogonal matrices?

» This is answered by the following theorems.
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Theorem 37.1: Let A be a real matrix with only real
eigenvalues. Then there exists an orthogonal matrix M and an
upper triangular matrix T such that

A= MTM".

We use the following simple lemma.

Lemma 37.2: Let A be a real matrix and let d be a real
eigenvalue of A. Then there exists a real non-zero vector w
such that Aw = dw (In other words, there is a real
eigenvector.)

Proof: Suppose v € C" is non-zero and Av = dv.

Let v = x + iy, where x, y are real vectors.

From Av = dv, we get A(x + iy) = dx + idy. Since A has real
entries and d is real, by comparing the real and imaginary
parts we get Ax = dx and Ay = idy. As v # 0, at least one
of x or y is non-zero and take that as w. Il
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Upper triangular form

» Proof of Theorem 37.1: Using the previous Lemma, the result
can be proved through induction exactly like the proof the
Schur’s upper triangularization theorem.

» Just observe that the matrices of lower order appearing in the
induction hypothesis also have real entries and real
eigenvalues.
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Diagonalization of real symmetric matrices

» Theorem 37.3: Let A be a real symmetric matrix. Then there
exists an orthogonal matrix M and a real diagonal matrix D
such that,

A = MDM:.

» Proof: By considering real symmetric matrices as complex
self-adjoint matrices we know that they have only real
eigenvalues.

» So the previous theorem is applicable.

» Now the result is immediate as symmetric upper triangular
matrices are diagonal.
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> Theorem 37.4: Let A be a real matrix with only real
eigenvalues. Then there exists a real invertible matrix M such
that M—1AM is in Jordan form, that is, it is a direct sum of
Jordan blocks.

» The proof of this is omitted.
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Real quadratic forms

» Definition 37.5 Fix n € N. An n-variable quadratic form Q is
a function @ : R™ — R of the form

Q(x1,y ..., Xn be + Z CijXiX;-

1<i<j<n

» In other words, it is a quadratic polynomial in n-variables with
no constant term.

» Theorem 37.6: Suppose Q is a quadratic form as above. Then
there exists unique real symmetric n X n matrix A such that

Q(x) = (x,Ax), xeR"

» Note that here we are considering standard inner product on
R".
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> Proof: Take a;j = b;, 1 <i<nanda;=3cj, i#].
» Then A = [ajj]i<ij<n is a real symmetric matrix and
>

n
(x,Ax) = ina;jxj'

i,j:l

= E aji X; +§ ajjXiXj

i#

= be + Z CijXiX;
1<i<j<n
= Q(x).

» The uniqueness is clear from comparison of coefficients. H.
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Diagonalization

>

Consider a real quadratic form Q. With out loss of generality,
we may take

Q(x) = (x, Ax) Z ajjXiXj

ij=1

for some real symmetric matrix A.

We know that we can diagonalize A. Hence there exists a
diagonal matrix D and an orthogonal matrix M such that

A= MDM™'.
Define new variables, y1, ..., y,, by taking
y =M 1x.

Then,
Q(x) = (x, MDM71X> = (y, Dy).
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Continuation

> Let di,...,d, be the diagonal entries of D.
> We get,

QLX) =) diy?.
=1
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Assume that the matrix A is positive (that is, the quadratic
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Assume that the matrix A is positive (that is, the quadratic
form Q(x) = (x, Ax) >0, V¥x).

Then we know that the eigenvalues d; > 0 for every j.
Take zj = /djy;.

Then we get

Q) =Y dyf=> 7.
j=1 j=1

1
where z = (D)2 M~1y.
In other words, every positive quadratic form can be written
as a ‘sum of squares’.

You may see this being applied in Statistics and other areas.
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Assume that the matrix A is positive (that is, the quadratic
form Q(x) = (x, Ax) >0, V¥x).

Then we know that the eigenvalues d; > 0 for every j.
Take z; = \/dy;.

Then we get
n n
Q)= dt =Y. 2
j=1 j=1

1
where z = (D)2 M~1y.
In other words, every positive quadratic form can be written
as a ‘sum of squares’.

You may see this being applied in Statistics and other areas.
END OF LECTURE 37.



