

LINEAR ALGEBRA -II

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Lecture 37: Real symmetric matrices and quadratic forms

- We know that even if a matrix is real, in general the eigenvalues, i.e, roots of the characteristic polynomial, can be complex.

Lecture 37: Real symmetric matrices and quadratic forms

- We know that even if a matrix is real, in general the eigenvalues, i.e, roots of the characteristic polynomial, can be complex.
- Example 37.1: Take

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

Lecture 37: Real symmetric matrices and quadratic forms

- ▶ We know that even if a matrix is real, in general the eigenvalues, i.e, roots of the characteristic polynomial, can be complex.
- ▶ Example 37.1: Take

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

- ▶ Then $A^2 = -I$ and the eigenvalues of A are $\pm i$.

Lecture 37: Real symmetric matrices and quadratic forms

- ▶ We know that even if a matrix is real, in general the eigenvalues, i.e, roots of the characteristic polynomial, can be complex.
- ▶ Example 37.1: Take

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

- ▶ Then $A^2 = -I$ and the eigenvalues of A are $\pm i$.
- ▶ Here A is a normal matrix and we can diagonalize it. So we can get a unitary U , such that

$$A = U \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} U^*.$$

Lecture 37: Real symmetric matrices and quadratic forms

- ▶ We know that even if a matrix is real, in general the eigenvalues, i.e, roots of the characteristic polynomial, can be complex.
- ▶ Example 37.1: Take

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

- ▶ Then $A^2 = -I$ and the eigenvalues of A are $\pm i$.
- ▶ Here A is a normal matrix and we can diagonalize it. So we can get a unitary U , such that

$$A = U \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} U^*.$$

- ▶ We can't diagonalize A or make it upper triangular in real field.

Real symmetric matrices

- ▶ What if we have a real symmetric matrix? Such matrices appear often in applications.

Real symmetric matrices

- ▶ What if we have a real symmetric matrix? Such matrices appear often in applications.
- ▶ If A is real symmetric, considering it as a complex self-adjoint matrix we know that all eigenvalues are real. So the obstruction for diagonalization mentioned above is not there.

Real symmetric matrices

- ▶ What if we have a real symmetric matrix? Such matrices appear often in applications.
- ▶ If A is real symmetric, considering it as a complex self-adjoint matrix we know that all eigenvalues are real. So the obstruction for diagonalization mentioned above is not there.
- ▶ Recall that a real matrix M is said to be orthogonal if $MM^t = M^tM = I$.

Real symmetric matrices

- ▶ What if we have a real symmetric matrix? Such matrices appear often in applications.
- ▶ If A is real symmetric, considering it as a complex self-adjoint matrix we know that all eigenvalues are real. So the obstruction for diagonalization mentioned above is not there.
- ▶ Recall that a real matrix M is said to be orthogonal if $MM^t = M^tM = I$.
- ▶ **Question:** Can we diagonalize a real symmetric matrix using orthogonal matrices?

Real symmetric matrices

- ▶ What if we have a real symmetric matrix? Such matrices appear often in applications.
- ▶ If A is real symmetric, considering it as a complex self-adjoint matrix we know that all eigenvalues are real. So the obstruction for diagonalization mentioned above is not there.
- ▶ Recall that a real matrix M is said to be orthogonal if $MM^t = M^tM = I$.
- ▶ **Question:** Can we diagonalize a real symmetric matrix using orthogonal matrices?
- ▶ This is answered by the following theorems.

Continuation

- Theorem 37.1: Let A be a real matrix with **only real eigenvalues**. Then there exists an orthogonal matrix M and an upper triangular matrix T such that

$$A = M T M^t.$$

Continuation

- ▶ Theorem 37.1: Let A be a real matrix with **only real eigenvalues**. Then there exists an orthogonal matrix M and an upper triangular matrix T such that

$$A = MTM^t.$$

- ▶ We use the following simple lemma.

Continuation

- ▶ **Theorem 37.1:** Let A be a real matrix with **only real eigenvalues**. Then there exists an orthogonal matrix M and an upper triangular matrix T such that

$$A = MTM^t.$$

- ▶ We use the following simple lemma.
- ▶ **Lemma 37.2:** Let A be a real matrix and let d be a real eigenvalue of A . Then there exists a real non-zero vector w such that $Aw = dw$ (In other words, there is a real eigenvector.)

Continuation

- ▶ Theorem 37.1: Let A be a real matrix with **only real eigenvalues**. Then there exists an orthogonal matrix M and an upper triangular matrix T such that

$$A = MTM^t.$$

- ▶ We use the following simple lemma.
- ▶ Lemma 37.2: Let A be a real matrix and let d be a real eigenvalue of A . Then there exists a real non-zero vector w such that $Aw = dw$ (In other words, there is a real eigenvector.)
- ▶ Proof: Suppose $v \in \mathbb{C}^n$ is non-zero and $Av = dv$.

Continuation

- ▶ **Theorem 37.1:** Let A be a real matrix with **only real eigenvalues**. Then there exists an orthogonal matrix M and an upper triangular matrix T such that

$$A = MTM^t.$$

- ▶ We use the following simple lemma.
- ▶ **Lemma 37.2:** Let A be a real matrix and let d be a real eigenvalue of A . Then there exists a real non-zero vector w such that $Aw = dw$ (In other words, there is a real eigenvector.)
- ▶ **Proof:** Suppose $v \in \mathbb{C}^n$ is non-zero and $Av = dv$.
- ▶ Let $v = x + iy$, where x, y are real vectors.

Continuation

- **Theorem 37.1:** Let A be a real matrix with **only real eigenvalues**. Then there exists an orthogonal matrix M and an upper triangular matrix T such that

$$A = MTM^t.$$

- We use the following simple lemma.
- **Lemma 37.2:** Let A be a real matrix and let d be a real eigenvalue of A . Then there exists a real non-zero vector w such that $Aw = dw$ (In other words, there is a real eigenvector.)
- **Proof:** Suppose $v \in \mathbb{C}^n$ is non-zero and $Av = dv$.
- Let $v = x + iy$, where x, y are real vectors.
- From $Av = dv$, we get $A(x + iy) = dx + idy$. Since A has real entries and d is real, by comparing the real and imaginary parts we get $Ax = dx$ and $Ay = idy$. As $v \neq 0$, at least one of x or y is non-zero and take that as w . ■.

Upper triangular form

- ▶ **Proof of Theorem 37.1:** Using the previous Lemma, the result can be proved through induction exactly like the proof the Schur's upper triangularization theorem.

Upper triangular form

- ▶ **Proof of Theorem 37.1:** Using the previous Lemma, the result can be proved through induction exactly like the proof the Schur's upper triangularization theorem.
- ▶ Just observe that the matrices of lower order appearing in the induction hypothesis also have real entries and real eigenvalues.

Diagonalization of real symmetric matrices

- **Theorem 37.3:** Let A be a real symmetric matrix. Then there exists an orthogonal matrix M and a real diagonal matrix D such that,

$$A = MDM^t.$$

Diagonalization of real symmetric matrices

- **Theorem 37.3:** Let A be a real symmetric matrix. Then there exists an orthogonal matrix M and a real diagonal matrix D such that,

$$A = MDM^t.$$

- **Proof:** By considering real symmetric matrices as complex self-adjoint matrices we know that they have only real eigenvalues.

Diagonalization of real symmetric matrices

- **Theorem 37.3:** Let A be a real symmetric matrix. Then there exists an orthogonal matrix M and a real diagonal matrix D such that,

$$A = MDM^t.$$

- **Proof:** By considering real symmetric matrices as complex self-adjoint matrices we know that they have only real eigenvalues.
- So the previous theorem is applicable.

Diagonalization of real symmetric matrices

- **Theorem 37.3:** Let A be a real symmetric matrix. Then there exists an orthogonal matrix M and a real diagonal matrix D such that,

$$A = MDM^t.$$

- **Proof:** By considering real symmetric matrices as complex self-adjoint matrices we know that they have only real eigenvalues.
- So the previous theorem is applicable.
- Now the result is immediate as symmetric upper triangular matrices are diagonal. ■

Jordan Canonical form

- **Theorem 37.4:** Let A be a real matrix with only real eigenvalues. Then there exists a real invertible matrix M such that $M^{-1}AM$ is in Jordan form, that is, it is a direct sum of Jordan blocks.

Jordan Canonical form

- ▶ **Theorem 37.4:** Let A be a real matrix with only real eigenvalues. Then there exists a real invertible matrix M such that $M^{-1}AM$ is in Jordan form, that is, it is a direct sum of Jordan blocks.
- ▶ The proof of this is omitted.

Real quadratic forms

- ▶ **Definition 37.5** Fix $n \in \mathbb{N}$. An n -variable quadratic form Q is a function $Q : \mathbb{R}^n \rightarrow \mathbb{R}$ of the form

$$Q(x_1, \dots, x_n) = \sum_{i=1}^n b_i x_i^2 + \sum_{1 \leq i < j \leq n} c_{ij} x_i x_j.$$

Real quadratic forms

- ▶ **Definition 37.5** Fix $n \in \mathbb{N}$. An n -variable quadratic form Q is a function $Q : \mathbb{R}^n \rightarrow \mathbb{R}$ of the form

$$Q(x_1, \dots, x_n) = \sum_{i=1}^n b_i x_i^2 + \sum_{1 \leq i < j \leq n} c_{ij} x_i x_j.$$

- ▶ In other words, it is a quadratic polynomial in n -variables with no constant term.

Real quadratic forms

- ▶ **Definition 37.5** Fix $n \in \mathbb{N}$. An n -variable quadratic form Q is a function $Q : \mathbb{R}^n \rightarrow \mathbb{R}$ of the form

$$Q(x_1, \dots, x_n) = \sum_{i=1}^n b_i x_i^2 + \sum_{1 \leq i < j \leq n} c_{ij} x_i x_j.$$

- ▶ In other words, it is a quadratic polynomial in n -variables with no constant term.
- ▶ **Theorem 37.6:** Suppose Q is a quadratic form as above. Then there exists unique real symmetric $n \times n$ matrix A such that

$$Q(x) = \langle x, Ax \rangle, \quad x \in \mathbb{R}^n$$

Real quadratic forms

- ▶ **Definition 37.5** Fix $n \in \mathbb{N}$. An n -variable quadratic form Q is a function $Q : \mathbb{R}^n \rightarrow \mathbb{R}$ of the form

$$Q(x_1, \dots, x_n) = \sum_{i=1}^n b_i x_i^2 + \sum_{1 \leq i < j \leq n} c_{ij} x_i x_j.$$

- ▶ In other words, it is a quadratic polynomial in n -variables with no constant term.
- ▶ **Theorem 37.6:** Suppose Q is a quadratic form as above. Then there exists unique real symmetric $n \times n$ matrix A such that

$$Q(x) = \langle x, Ax \rangle, \quad x \in \mathbb{R}^n$$

- ▶ Note that here we are considering standard inner product on \mathbb{R}^n .

Continuation

- ▶ **Proof:** Take $a_{ii} = b_i$, $1 \leq i \leq n$ and $a_{ij} = \frac{1}{2}c_{ij}$, $i \neq j$.

Continuation

- ▶ **Proof:** Take $a_{ii} = b_i$, $1 \leq i \leq n$ and $a_{ij} = \frac{1}{2}c_{ij}$, $i \neq j$.
- ▶ Then $A = [a_{ij}]_{1 \leq i,j \leq n}$ is a real symmetric matrix and

Continuation

- ▶ **Proof:** Take $a_{ii} = b_i$, $1 \leq i \leq n$ and $a_{ij} = \frac{1}{2}c_{ij}$, $i \neq j$.
- ▶ Then $A = [a_{ij}]_{1 \leq i,j \leq n}$ is a real symmetric matrix and
- ▶

$$\begin{aligned}\langle x, Ax \rangle &= \sum_{i,j=1}^n x_i a_{ij} x_j \\ &= \sum_{i=1}^n a_{ii} x_i^2 + \sum_{i \neq j} a_{ij} x_i x_j \\ &= \sum_{i=1}^n b_i x_i^2 + \sum_{1 \leq i < j \leq n} c_{ij} x_i x_j \\ &= Q(x).\end{aligned}$$

Continuation

- ▶ **Proof:** Take $a_{ii} = b_i$, $1 \leq i \leq n$ and $a_{ij} = \frac{1}{2}c_{ij}$, $i \neq j$.
- ▶ Then $A = [a_{ij}]_{1 \leq i,j \leq n}$ is a real symmetric matrix and
- ▶

$$\begin{aligned}\langle x, Ax \rangle &= \sum_{i,j=1}^n x_i a_{ij} x_j \\ &= \sum_{i=1}^n a_{ii} x_i^2 + \sum_{i \neq j} a_{ij} x_i x_j \\ &= \sum_{i=1}^n b_i x_i^2 + \sum_{1 \leq i < j \leq n} c_{ij} x_i x_j \\ &= Q(x).\end{aligned}$$

- ▶ The uniqueness is clear from comparison of coefficients. ■.

Diagonalization

- ▶ Consider a real quadratic form Q . With out loss of generality, we may take

$$Q(x) = \langle x, Ax \rangle = \sum_{i,j=1}^n a_{ij} x_i x_j$$

for some real symmetric matrix A .

Diagonalization

- ▶ Consider a real quadratic form Q . With out loss of generality, we may take

$$Q(x) = \langle x, Ax \rangle = \sum_{i,j=1}^n a_{ij}x_i x_j$$

for some real symmetric matrix A .

- ▶ We know that we can diagonalize A . Hence there exists a diagonal matrix D and an orthogonal matrix M such that

$$A = MDM^{-1}.$$

Diagonalization

- ▶ Consider a real quadratic form Q . With out loss of generality, we may take

$$Q(x) = \langle x, Ax \rangle = \sum_{i,j=1}^n a_{ij} x_i x_j$$

for some real symmetric matrix A .

- ▶ We know that we can diagonalize A . Hence there exists a diagonal matrix D and an orthogonal matrix M such that

$$A = MDM^{-1}.$$

- ▶ Define new variables, y_1, \dots, y_n , by taking

$$y = M^{-1}x.$$

Diagonalization

- ▶ Consider a real quadratic form Q . With out loss of generality, we may take

$$Q(x) = \langle x, Ax \rangle = \sum_{i,j=1}^n a_{ij} x_i x_j$$

for some real symmetric matrix A .

- ▶ We know that we can diagonalize A . Hence there exists a diagonal matrix D and an orthogonal matrix M such that

$$A = MDM^{-1}.$$

- ▶ Define new variables, y_1, \dots, y_n , by taking

$$y = M^{-1}x.$$

- ▶ Then,

$$Q(x) = \langle x, MDM^{-1}x \rangle = \langle y, Dy \rangle.$$

Continuation

- ▶ Let d_1, \dots, d_n be the diagonal entries of D .

Continuation

- ▶ Let d_1, \dots, d_n be the diagonal entries of D .
- ▶ We get,

$$Q(x) = \sum_{j=1}^n d_j y_j^2.$$

Positive quadratic forms

- ▶ Assume that the matrix A is positive (that is, the quadratic form $Q(x) = \langle x, Ax \rangle \geq 0, \forall x$).

Positive quadratic forms

- ▶ Assume that the matrix A is positive (that is, the quadratic form $Q(x) = \langle x, Ax \rangle \geq 0, \forall x$).
- ▶ Then we know that the eigenvalues $d_j \geq 0$ for every j .

Positive quadratic forms

- ▶ Assume that the matrix A is positive (that is, the quadratic form $Q(x) = \langle x, Ax \rangle \geq 0, \forall x$).
- ▶ Then we know that the eigenvalues $d_j \geq 0$ for every j .
- ▶ Take $z_j = \sqrt{d_j}y_j$.

Positive quadratic forms

- ▶ Assume that the matrix A is positive (that is, the quadratic form $Q(x) = \langle x, Ax \rangle \geq 0, \forall x$).
- ▶ Then we know that the eigenvalues $d_j \geq 0$ for every j .
- ▶ Take $z_j = \sqrt{d_j}y_j$.
- ▶ Then we get

$$Q(x) = \sum_{j=1}^n d_j y_j^2 = \sum_{j=1}^n z_j^2,$$

Positive quadratic forms

- ▶ Assume that the matrix A is positive (that is, the quadratic form $Q(x) = \langle x, Ax \rangle \geq 0, \forall x$).
- ▶ Then we know that the eigenvalues $d_j \geq 0$ for every j .
- ▶ Take $z_j = \sqrt{d_j}y_j$.
- ▶ Then we get

$$Q(x) = \sum_{j=1}^n d_j y_j^2 = \sum_{j=1}^n z_j^2,$$

- ▶ where $z = (D)^{\frac{1}{2}}M^{-1}y$.

Positive quadratic forms

- ▶ Assume that the matrix A is positive (that is, the quadratic form $Q(x) = \langle x, Ax \rangle \geq 0, \forall x$).
- ▶ Then we know that the eigenvalues $d_j \geq 0$ for every j .
- ▶ Take $z_j = \sqrt{d_j}y_j$.
- ▶ Then we get

$$Q(x) = \sum_{j=1}^n d_j y_j^2 = \sum_{j=1}^n z_j^2,$$

- ▶ where $z = (D)^{\frac{1}{2}}M^{-1}y$.
- ▶ In other words, every positive quadratic form can be written as a 'sum of squares'.
- ▶ You may see this being applied in Statistics and other areas.

Positive quadratic forms

- ▶ Assume that the matrix A is positive (that is, the quadratic form $Q(x) = \langle x, Ax \rangle \geq 0, \forall x$).
- ▶ Then we know that the eigenvalues $d_j \geq 0$ for every j .
- ▶ Take $z_j = \sqrt{d_j}y_j$.
- ▶ Then we get

$$Q(x) = \sum_{j=1}^n d_j y_j^2 = \sum_{j=1}^n z_j^2,$$

- ▶ where $z = (D)^{\frac{1}{2}}M^{-1}y$.
- ▶ In other words, every positive quadratic form can be written as a 'sum of squares'.
- ▶ You may see this being applied in Statistics and other areas.
- ▶ END OF LECTURE 37.