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Lecture 37: Real symmetric matrices and quadratic forms

I We know that even if a matrix is real, in general the
eigenvalues, i.e, roots of the characteristic polynomial, can be
complex.

I Example 37.1: Take

A =

[
0 1
−1 0

]
.

I Then A2 = −I and the eigenvalues of A are ±i .
I Here A is a normal matrix and we can diagonalize it. So we

can get a unitary U, such that

A = U

[
i 0
0 −i

]
U∗.

I We can’t diagonalize A or make it upper triangular in real
field.
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Real symmetric matrices

I What if we have a real symmetric matrix? Such matrices
appear often in applications.

I If A is real symmetric, considering it as a complex self-adjoint
matrix we know that all eigenvalues are real. So the
obstruction for diagonalization mentioned above is not there.

I Recall that a real matrix M is said to be orthogonal if
MMt = MtM = I .

I Question: Can we diagonalize a real symmetric matrix using
orthogonal matrices?

I This is answered by the following theorems.
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Continuation

I Theorem 37.1: Let A be a real matrix with only real
eigenvalues. Then there exists an orthogonal matrix M and an
upper triangular matrix T such that

A = MTMt .

I We use the following simple lemma.

I Lemma 37.2: Let A be a real matrix and let d be a real
eigenvalue of A. Then there exists a real non-zero vector w
such that Aw = dw (In other words, there is a real
eigenvector.)

I Proof: Suppose v ∈ Cn is non-zero and Av = dv .

I Let v = x + iy , where x , y are real vectors.

I From Av = dv , we get A(x + iy) = dx + idy . Since A has real
entries and d is real, by comparing the real and imaginary
parts we get Ax = dx and Ay = idy . As v 6= 0, at least one
of x or y is non-zero and take that as w . �.
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Upper triangular form

I Proof of Theorem 37.1: Using the previous Lemma, the result
can be proved through induction exactly like the proof the
Schur’s upper triangularization theorem.

I Just observe that the matrices of lower order appearing in the
induction hypothesis also have real entries and real
eigenvalues.
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Diagonalization of real symmetric matrices

I Theorem 37.3: Let A be a real symmetric matrix. Then there
exists an orthogonal matrix M and a real diagonal matrix D
such that,

A = MDMt .

I Proof: By considering real symmetric matrices as complex
self-adjoint matrices we know that they have only real
eigenvalues.

I So the previous theorem is applicable.

I Now the result is immediate as symmetric upper triangular
matrices are diagonal. �
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Jordan Canonical form

I Theorem 37.4: Let A be a real matrix with only real
eigenvalues. Then there exists a real invertible matrix M such
that M−1AM is in Jordan form, that is, it is a direct sum of
Jordan blocks.

I The proof of this is omitted.
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Real quadratic forms

I Definition 37.5 Fix n ∈ N. An n-variable quadratic form Q is
a function Q : Rn → R of the form

Q(x1, . . . , xn) =
n∑

i=1

bix
2
i +

∑
1≤i<j≤n

cijxixj .

I In other words, it is a quadratic polynomial in n-variables with
no constant term.

I Theorem 37.6: Suppose Q is a quadratic form as above. Then
there exists unique real symmetric n × n matrix A such that

Q(x) = 〈x ,Ax〉, x ∈ Rn

I Note that here we are considering standard inner product on
Rn.
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Continuation

I Proof: Take aii = bi , 1 ≤ i ≤ n and aij = 1
2cij , i 6= j .

I Then A = [aij ]1≤i ,j≤n is a real symmetric matrix and

I
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I The uniqueness is clear from comparison of coefficients. �.
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Diagonalization

I Consider a real quadratic form Q. With out loss of generality,
we may take

Q(x) = 〈x ,Ax〉 =
n∑

i ,j=1

aijxixj

for some real symmetric matrix A.

I We know that we can diagonalize A. Hence there exists a
diagonal matrix D and an orthogonal matrix M such that

A = MDM−1.

I Define new variables, y1, . . . , yn, by taking

y = M−1x .

I Then,
Q(x) = 〈x ,MDM−1x〉 = 〈y ,Dy〉.
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Continuation

I Let d1, . . . , dn be the diagonal entries of D.

I We get,

Q(x) =
n∑

j=1

djy
2
j .
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Positive quadratic forms

I Assume that the matrix A is positive (that is, the quadratic
form Q(x) = 〈x ,Ax〉 ≥ 0, ∀x).

I Then we know that the eigenvalues dj ≥ 0 for every j .

I Take zj =
√
djyj .

I Then we get

Q(x) =
n∑

j=1

djy
2
j =

n∑
j=1

z2j ,

I where z = (D)
1
2M−1y .

I In other words, every positive quadratic form can be written
as a ‘sum of squares’.

I You may see this being applied in Statistics and other areas.

I END OF LECTURE 37.
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